This application claims the benefit under 35 U.S.C. §119(e) to European application No. 12305244.1, filed Feb. 29, 2012, the entire contents of which are incorporated herein by reference.
The present invention relates to a process and apparatus for the separation of air by cryogenic distillation. In particular, it relates to a process for separation of air using three cryogenic distillation columns for the production of gaseous oxygen.
The process is particularly efficient for the production of gaseous oxygen at pressures between 30 and 45 bars abs, in which the oxygen is produced by removing liquid oxygen from a distillation column, pressurizing the oxygen and vaporizing the pressurized liquid by heat exchange with air.
According to an object of the invention, there is provided a process for the separation of air by cryogenic distillation in which air is purified, cooled and sent to a first distillation column of a column system wherein it is separated into an oxygen enriched liquid and a nitrogen enriched gas, oxygen enriched liquid or a liquid derived therefrom is sent from the first column to a top condenser of a second column operating at a lower pressure than the first column and is partially vaporized therein, the bottom of the second column is warmed via a bottom reboiler, liquid from the bottom of the second column is sent to an intermediate point of a third column operating at a lower pressure than the second column, nitrogen enriched liquid from the top of the second column is sent to the top of the third column, oxygen rich liquid is removed from the bottom of the third column, pressurized and vaporized by heat exchange with air, characterized in that oxygen enriched liquid from the top condenser of the second column is sent to an intermediate point of the second column to be separated therein.
According to other optional features:
According to another object of the invention, there is provided an apparatus for the separation of air by cryogenic distillation comprising a column system having a first column, a second column and a third column, a heat exchanger, means for sending purified, cooled air from the heat exchanger to the first distillation column wherein it is separated into an oxygen enriched liquid and a nitrogen enriched gas, a conduit for sending oxygen enriched liquid or a liquid derived therefrom from the first column to a top condenser of the second column operating at a lower pressure than the first column, the second column having a bottom reboiler, a conduit for sending liquid from the bottom of the second column to an intermediate point of a third column operating at a lower pressure than the second column, a conduit for sending nitrogen enriched liquid from the top of the second column to the top of the third column, a conduit for removing oxygen rich liquid from the bottom of the third column, a pump for pressurizing the oxygen rich liquid, a conduit for sending pressurized oxygen rich liquid to the heat exchanger to be vaporized by heat exchange with air, characterized in that it comprises a conduit for sending oxygen enriched liquid from the top condenser of the second column to an intermediate point of the second column to be separated therein.
The apparatus may also comprise
One advantage of the present invention is that by sending a large amount of expanded air to the second or (where present) fourth column, the amount of liquid reflux sent to the second column is reduced. Thus, since the amount of gaseous nitrogen produced is constant, it will be understood that the feed and reflux streams to the low pressure column will be subcooled to a greater degree than is usually the case, so that there is less flash.
Another advantage linked to the high turbine flow of air sent to the second or (where present) fourth column is that the turbine temperature can be cooler and consequently liquid may formed at the turbine outlet. Approximately 4.5% of the expanded air is liquefied in the turbine, in this case. This means that more of the feed air can be sent to the distillation in gaseous form.
These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, claims, and accompanying drawings. It is to be noted, however, that the drawings illustrate only several embodiments of the invention and are therefore not to be considered limiting of the invention's scope as it can admit to other equally effective embodiments.
The invention will be described in greater detail with respect to the figures.
In the process of
Gaseous air 2 is the principal feed to first column 100 which is also fed by a stream of liquid air 4 at a higher introduction point than that of stream 2. Liquid air stream 4 is shown as a single stream but can be composed of multiple liquid air streams (not shown) resulting from the thermal optimization of the main heat exchanger. A stream of air 6 is expanded in a turbine 8 and sent to an intermediate point of third column 103. No air is sent directly to second column 102, though this could be envisaged. Oxygen enriched liquid 10 is removed from the bottom of column 100, expanded in a valve and sent to the top condenser 107 of the second column 102. In the top condenser, the oxygen enriched liquid is partially vaporized by heat exchanger with the top gas of the second column 102, thereby condensing the top gas which returns to the second column 102 as reflux. This option gives the optimal temperature for the top condenser; however it is also possible to send only a part of the oxygen enriched liquid 10 to the top condenser and to send the rest to the third column 103, for example.
The non-vaporized liquid 26 from the condenser is divided in two. One part 25 is sent to the third column 103 and the rest 24 is pressurized in a pump 110 and sent to a lower region of the second column 102 as feed. The reboil of the second column 102 is ensured by a stream of gaseous nitrogen enriched fluid from the top of the first column. The fluid is liquefied in bottom reboiler 106 of the second column 102 and sent back to the top of the first column as stream 53. A stream of the same gas is also condensed in the bottom reboiler of the third column. Gaseous nitrogen may be removed at the top of the first column as a product stream.
Liquid 60 containing between 65 and 75% mol. oxygen is removed from the bottom of the second column, expanded and sent to the third column 103. Vaporized oxygen enriched liquid 123 from the top condenser is also fed to column 103. Nitrogen enriched liquid from the top of the second column 102 is expanded and sent to the top of the third column 103 as stream 23.
A liquid stream 62 having a composition similar to air is removed from the first column, expanded and sent to the third column. A liquid nitrogen stream from the top of the first column is sent to the top of the third column as stream 41.
Nitrogen enriched gas 59 is removed from the top of the third column 103. Oxygen enriched liquid 30 is removed from the bottom of the third column 103, and pressurized in pump 120 to between 30 and 45 bars to form high pressure stream 31.
A final portion 71 is compressed in a further warm booster 9, cooled partially in heat exchanger 10, further compressed in cold booster 13, cooled in the heat exchanger 10, liquefied and sent to the column system as liquid stream 4.
The high pressure liquid oxygen 31 at between 30 and 45 bars is vaporized in the heat exchanger 10 to form gaseous pressurized oxygen. The nitrogen enriched gas 59 is also warmed in the heat exchanger 10. Boosters 9 and 13 can be driven by electric motor(s).
In this case, two cold boosters 13,13A are arranged in series to compress air 4C to be liquefied. The efficiency can be improved by cooling and liquefying a fraction of stream 73 to form liquid stream 4B. Similarly, liquid stream 4A can be extracted after compression of booster 13A. All liquid air streams 4A, 4B, 4C and 8A are sent as feeds to the column 100. For illustration purposes, these streams can be combined and shown as a single stream 4.
The high pressure liquid oxygen 31 at between 30 and 45 bars is vaporized in the heat exchanger 10 to form gaseous pressurized oxygen. The nitrogen enriched gas 59 is also warmed in the heat exchanger 10. Booster 9 can be driven by electric motor(s). Stream 71 is compressed in warm booster 9 to form stream 73. Part of stream 73 is completely cooled in the heat exchanger to form stream 4B. The rest is partially cooled, compressed in cold booster 13A, warmed in exchanger from one intermediate temperature to another and divided in two. One part 41 is cooled to the cold end of the exchanger and expanded as stream 4A.
The rest 4C is compressed in cold compressor 13, having an inlet temperature colder than that compressor 13A, sent back to the exchanger at an intermediate temperature and cooled to the cold end of the exchanger before being expanded into the column system.
Both of the cold boosters 13 and 13A are driven by turbine 8.
In
The fourth column is also fed at the bottom by the air stream 6, no longer sent to the column 103, via turbine 8.
In other respects, the column system is as in
In
The oxygen stream 30 at 95% mol oxygen is pressurized and vaporized at 40 bars a.
The advantage of this particular set-up is that since the second column 102 is at a lower pressure of 2.3 bars, as opposed to 2.5 bars for
In all of the figures, the stream 6 expanded in turbine 8 can be partially liquefied. Preferably between 2 and 5% of the expanded air is liquefied.
In all of the figures, the air stream 70 represents at least 35%, preferably at least 40% or even at least 50% of the total feed air to be separated. Because of the large amount of air sent directly to the second or fourth column, the first column can have a much smaller diameter than usual, for example twice as small as usual. In the case where the turbine expanded air is sent to the fourth column 104, the third column can also have a much reduced diameter.
Another advantage of the process is that the majority of the waste gas 59 is not sent to the regeneration of the adsorption system for purifying the air. It is this feature which allows the fourth column or minaret to operate at a lower pressure than the third column.
The turbine expansion of a large quantity of air down to a particularly low temperature produces a great deal of refrigeration and the use of the cold booster can dissipate efficiently this refrigeration such that the energy consumption can be reduced considerably.
Preferably for all the figures, reboiler 106 is a falling film vaporizer. The minimum temperature difference is 0.5° C. and the average temperature difference is between 0.9 and 1.1° C. The expected vaporization rate is less than 33%. Preferably for all the figures, condenser 107 is a falling film vaporizer. The minimum temperature difference is 0.5° C. and the average temperature difference is between 0.9 and 1.1° C. Again, the expected vaporization rate is less than 33%.
Although not shown in the figures, it is possible to send feed air to the second column in gaseous or liquid form. In all of the figures, the process produces no or a small amount of liquid product (about 3% of oxygen product) as a final product.
In all of the figures, pump 110 may be replaced or supplemented by hydrostatic pressure.
While the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art in light of the foregoing description. Accordingly, it is intended to embrace all such alternatives, modifications, and variations as fall within the spirit and broad scope of the appended claims. The present invention may suitably comprise, consist or consist essentially of the elements disclosed and may be practiced in the absence of an element not disclosed. Furthermore, if there is language referring to order, such as first and second, it should be understood in an exemplary sense and not in a limiting sense. For example, it can be recognized by those skilled in the art that certain steps can be combined into a single step.
The singular forms “a”, “an” and “the” include plural referents, unless the context clearly dictates otherwise.
“Comprising” in a claim is an open transitional term which means the subsequently identified claim elements are a nonexclusive listing (i.e., anything else may be additionally included and remain within the scope of “comprising”). “Comprising” as used herein may be replaced by the more limited transitional terms “consisting essentially of” and “consisting of” unless otherwise indicated herein.
“Providing” in a claim is defined to mean furnishing, supplying, making available, or preparing something. The step may be performed by any actor in the absence of express language in the claim to the contrary a range is expressed, it is to be understood that another embodiment is from the one.
Optional or optionally means that the subsequently described event or circumstances may or may not occur. The description includes instances where the event or circumstance occurs and instances where it does not occur.
Ranges may be expressed herein as from about one particular value, and/or to about another particular value. When such particular value and/or to the other particular value, along with all combinations within said range.
All references identified herein are each hereby incorporated by reference into this application in their entireties, as well as for the specific information for which each is cited.
Number | Date | Country | Kind |
---|---|---|---|
12305244 | Feb 2012 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
5682764 | Agrawal | Nov 1997 | A |
20010052243 | Davidian | Dec 2001 | A1 |
20110146343 | Ha et al. | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
1055891 | Nov 2000 | EP |
1189003 | Mar 2002 | EP |
1199532 | Apr 2002 | EP |
11132652 | May 1999 | JP |
Entry |
---|
EP 12305244.1, EP Search Report, Aug. 7, 2012. |
Number | Date | Country | |
---|---|---|---|
20130219959 A1 | Aug 2013 | US |