The present disclosure relates to a refractory metal core for use in forming varying thickness microcircuits in turbine engine components, a process for forming said refractory metal core, and a process for forming said turbine engine components.
Turbine engine components are typically formed using a casting technique in which a ceramic core is placed within a mold and later removed, leaving certain cooling features within the turbine engine component.
The use of ceramic cores does not easily allow the formation of intricate cooling schemes which are needed for turbine engine components which are used in high temperature environments.
In a first aspect, the present disclosure is directed to a process for forming a turbine engine component broadly comprising the steps of: providing a non-ceramic core formed predominantly from a refractory metal material; providing a mold having a shape of said turbine engine component; positioning only said core within said mold; introducing a molten metal material into said mold and allowing said molten metal material to solidify and form said turbine engine component; and removing said core from said solidified turbine engine component.
In a second aspect, the present disclosure is directed to a process for forming a refractory metal core for use in a turbine engine component casting system broadly comprising the steps of: providing a piece of refractory metal material having a substantially flat side; subjecting said piece of refractory metal material to a rolling operation to form a curvature in said refractory metal material; and fabricating said piece of refractory metal material to have different thicknesses in different portions.
In a third aspect, the present disclosure is directed to a core to be used in the casting of a turbine engine component, said core broadly comprising: a sheet of refractory metal material; and said sheet having a curved trailing edge portion integrally formed with a leading edge portion.
Other details of the process and refractory metal core for creating varying thickness microcircuits for turbine engine components, as well as advantages and objects attendant thereto, are set forth in the following detailed description and the accompanying drawings wherein like reference numerals depict like elements.
As noted above, the present disclosure is directed to an improved process for forming turbine engine components having an airfoil portion with one or more as cast cooling microcircuits and to a refractory metal material core for use in the casting system.
Referring now to the drawings, a piece 10 of refractory metal material, such as a piece formed solely from molybdenum or a molybdenum based alloy (an alloy having more than 50 wt % molybdenum) is provided. Preferably, the piece 10 has one substantially flat side. The piece 10 is then subjected to rolling operation to change its curvature and form a curved trailing edge portion 12 as shown in
Following the rolling operation, the piece 10 may be subjected to one or more forming operations. For example, in
As shown in
As shown in
Referring now to
As can be seen from
Referring now to
There has been provided in accordance with the instant disclosure a process and refractory metal core for creating varying thickness microcircuits for turbine engine components. While the process and core have been described in the context of specific embodiments thereof, other unforeseeable alternatives, modifications, and variations may become apparent to those skilled in the art having read the foregoing description. Accordingly, it is intended to embrace those alternatives, modifications, and variations as fall within the broad scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
7108045 | Wiedemer et al. | Sep 2006 | B2 |
7780414 | Liang | Aug 2010 | B1 |
20050098296 | Beals et al. | May 2005 | A1 |
20080008599 | Cunha et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
1358954 | Nov 2003 | EP |
1524046 | Apr 2005 | EP |
1715139 | Oct 2006 | EP |
1854567 | Nov 2007 | EP |
1865151 | Dec 2007 | EP |
1878874 | Jan 2008 | EP |
1914030 | Apr 2008 | EP |
Number | Date | Country | |
---|---|---|---|
20100206512 A1 | Aug 2010 | US |