This invention relates generally to methods of manufacturing reinforcement materials for rubber products and, more specifically, to methods of and systems for producing treated tire cord. This invention further relates to products made by such methods.
The manufacture of reinforcement materials for rubber products, especially for tire cords, has been the subject of a great volume of research and innovation. This effort has focused on a number of facets, among which are concerns to produce better performing products while meeting the constantly demanding economic cost objectives of the global industry.
Alternative constructions have been proposed and patented for reinforcement materials in rubber articles and in particular rubber tires, such as modified cross-section monofilaments (DuPont Hyten®) or zero twist multifilament ribbons (Yokohama). However, the use of tire cords made from high tenacity organic fibers, such as rayon, nylon, aramid and polyester in a construction of moderate twist has remained the principal reinforcing method. High tenacity organic fibers impart improved fatigue properties and, when coated with an adhesion promoting agent, achieve excellent bonding to the surrounding rubber in the curing process for the manufactured article.
Traditional individual process steps for the production of a polyester- or nylon-based tire cord include the typical handling of materials from process machine to process machine within a facility and typical shipment from facility to facility between fiber producer, textile converter, treating unit, and tire builder. Obviously, these conventional processes involve a number of individual steps and multiple transfers of product and are both labor and cost intensive. In many instances involving traditional production processes, the cost of the treated cord is more than double the basic cost of producing the high tenacity fiber itself. Moreover, these conventional processes employ ply and cable twist machines, which at one time were prevalent as the standard.
Industry developments in the recent past have yielded changes to these traditionally treated tire cord production processes. For instance, the conversion industry in many cases is replacing old ply and twisting equipment with direct cable machines. These machines combine the ply and twisting step into one operation, thus rendering the tire cord production process more efficient and cost effective. Further, these machines produce larger package sizes and improve quality by requiring fewer knots or splices in the final cord product.
The methods used to build tires also have undergone significant developments. In many cases, current methods employ single-end treated cords rather than cut plies of a woven coated fabric as tire carcass reinforcement feed materials to the tire building machines. While the latter significantly reduces the space required and the cost incurred to build tires, the economics of traditional single-end treating processes are expensive.
The current invention addresses further major advancements in these manufacturing processes. Using recent developments in fiber production technology and adhesion chemistry, the key steps of converting a high tenacity fiber to a cabled, treated cord, having the physical and chemical properties needed to reinforce rubber products, can be carried out in a one-machine process. This eliminates the multiple package handling and multi-million dollar capital requirements for separate cord and fabric treating units. By the correct selection of each individual element, using the best individual technology, a satisfactory cabled treated cord may be produced very economically on a single machine, termed a one-machine cabled and treated cord unit (“OCT”).
The high tenacity organic fiber used in an OCT unit is selected and produced with physical properties such that when cabled and given a short term heat curing, the properties of the cord are satisfactory for the targeted end use. Individual feed yarns may be pretreated with adhesion promoters in their respective production processes or the individual feed yarn may be coated with adhesion promoters on the OCT unit. Individual feed yarns are cabled in a direct cable sub-unit, but the raw cabled cord so made is fed forward directly to a treating sub-unit without any prior package take up. The raw cabled cord is coated with an adhesion promoting dip. The coated raw cord is pulled through a heating unit under controlled tension, operated to achieve a desired temperature for a particular residence time to cure the adhesion dip prior to winding the treated cord on a package. Once packaged, the treated cable cord is delivered to product storage, preferentially by an automated conveyor pack out unit, prior to transfer out to customers or for further processing or manufacture.
The invention is directed to a method for producing a treated cord comprising the steps of twisting two or more yarns together to form a cable cord and, directly after twisting the yarns, applying and curing an adhering agent to the cable cord to form a treated cord. The steps are performed on one machine without intermediate take-up.
The invention is further directed to a system for producing treated cord, the system comprising a one-machine twist and treat unit.
Still further, the invention is directed to a system for producing treated cord. The system comprises a cabling unit adapted to twist feed yarns into cord, a treating unit adapted to apply and cure an adhering agent to the cord to form a treated cord, and a feeding unit adapted to forward the treated cord directly from the cabling unit to the treating unit without any intermediate take up.
Using recent developments in fiber production technology and adhesion chemistry, the key steps of converting a high tenacity fiber to a cabled, treated cord, having the physical and chemical properties needed to reinforce rubber products can be carried out in a one-machine process. This eliminates the multiple package handling and multi-million dollar capital requirements for separate cord and fabric treating units.
For a fuller understanding of the present invention, it will be useful to review and describe some conventional cord manufacturing and treating processes. Turning now to the drawings in general and to
The process 10 of
From transport operation 16, the converter 18 receives the packaged yarn at handling point 20. With some conventional methods of tire cord manufacturing, the converter 18 employs a ring twist machine to produce a cable in two steps, commonly known as the “ring twist process.” The yarn is twisted into a ply at point 22. As used herein, “ply” means a twisted single yarn. As used herein, the term “twisting” means the number of turns about its axis per unit of length of yarn or other textile strand. Thereafter, the ply is moved within the conversion facility 18 at handling point 24 to be twisted into a cable of two or more plies with twisting equipment 28.
Thus, with some conventional methods, the conversion of the yarn into a cable is a two-step process consisting of separate and independently operated machines dedicated respectively to twisting the yarn into a ply at point 22, moving the ply to the twisting equipment at handling point 24, and then twisting the ply into a cable on a separate machine at point 28. As used herein, a “cable” or a “cord” means a product formed by twisting together two or more plied yarns. It will be fully appreciated that this two-step ring twist process is laborious and expensive.
It is important to note that the cable at this point has not been treated. Consequently, the cable remains in a raw state and is commonly referred to as greige cord or cable.
With continuing reference to
Inasmuch as the woven greige fabric is untreated and hence is not prepared for use in any particular end use application, additional handling and transport operations 36, 38 and 40 are required to move the untreated fabric from the weaving equipment 30 to the treating equipment 44. During the treating step 44, the greige fabric is prepared for a particular end use application.
A traditional dipping process for a standard polyester tire yarn is typically referred to as a double dip or two-zone treating process. A first dip application 46 of a treating agent, selected with the desired end use in mind, is applied to the greige fabric. As used herein, the terms “dip” or “dipping” mean immersion of a fiber, yarn, cord, cable fabric, or textile in a processing liquid. The phrase “treating agent” means materials, which cause fibers, yarns, cords, cables, fabrics or textiles to be receptive to a bonding agent. This chemical dip 46 prepares the surface of the fibers comprising the fabric to receive a coating of a second chemical, in a manner yet to be described, which enables bonding of the fabric to rubber. Typical treating agents may include a solution of a blocked diisocyanide. The treated fabric is dried by heating equipment, as indicated at reference numeral 48 of
Following the first dip 46 in the treating agent and the drying stage 48, the fabric is subjected to a second dip operation 50. It will now be appreciated that the treating agent from the first dip 46 sizes the fabric in preparation for receiving the bonding agent at the second dip operation 50, wherein a bonding agent, such as a stabilized Resorcinal-Formaldehyde-Latex (RFL), is applied to facilitate adhesion of the fabric to rubber. This is an essential step since the untreated cord typically does not adhere well to rubber and a bonding agent may be desirable to accomplish this objective. As used herein, the phrase “bonding agent” means materials, which cause fibers, yarns, cords, cables or fabrics to adhere or stick together or to other materials.
Following the second dip operation 50, the treated fabric is stretched and relaxed with heat, as shown at reference numerals 52 and 54 of
With continuing reference to
Turning now to
The process 110 of
From the fiber manufacturing facility 112, the fiber is moved via handling and transport operations 114, 116 and 120 to the conversion facility 118 where the fibers are twisted into cables. The conversion industry in many instances now has replaced the ring twist operations with equipment that combines both steps into a single machine, commonly referred to as a direct able unit (“DCU”) 126. This combination significantly reduces the cost and space required in the conversion operation. The construction and operation of such machines is yet to be described herein.
It will be appreciated that the raw cord may be transferred from the DCU 126 to the weaving equipment 130 via handling operation 132. Again, as with process 10 illustrated in
With continuing reference to
With this understanding of some conventional cord manufacturing processes, attention is now directed to
The process 210 begins with the production of a yarn by the fiber producer 212. The fiber producer 212 may produce a yarn that is treated during the production process to yield a high tenacity organic fiber. The high tenacity fiber may be selected from a wide variety of available synthetic materials, including nylons, polyesters, aramids, and other high performance polymers such as PBO. In addition, natural-based materials, such as rayon, may be used to produce the treated fiber. One such pre-treated yarn suitable for this purpose is a polyester-based yarn which is dimensionally stable. This yarn is known as 1×53, and sold by Honeywell International as DSP® yarn. As used herein, dimensional stability means the ability of a textile material to resist shrinkage during heating and reduce extension under force. Polyester yarns of this type are commonly referred to as high modulus, low shrinkage (“HMLS”) yarns. Alternatively, copolymers of materials, particularly as bi-component or sheath/core fibers, may also be used to achieve highly satisfactory results.
The individual feed yarns may be pre-treated with adhesion promoters, or bonding agents, during the respective production processes. In one preferred process, this yarn may be selected and produced with physical properties such that when cabled and given a short term heat curing, at approximately 200° C. for 30 second or less, the physical properties of the fiber and ultimately of the woven cord are satisfactory for the targeted end use. The high tenacity fiber may be selected from a wide variety of available synthetic materials, including nylons, polyesters, aramids, and other high performance polymers such as PBO. In addition, natural-based materials, such as rayon, may be used to produce the treated fiber. Alternatively, copolymers of materials, particularly as bi-component or sheath/core fibers, may also be used to achieve highly satisfactory results. Methods and products for making pre-treated, high tenacity, organic fibers are set forth in U.S. Pat. No. 5,067,538 and U.S. Pat. No. 4,652,488, the entire contents of which are incorporated by reference. It also will be appreciated that the fiber producer 112 may produce an untreated yarn, and the process of the present invention is also useful in the manufacture of cord using untreated yarn.
Individual feed yarns may be pretreated with adhesion promoters in their respective production processes (e.g. PET) or the individual feed yarn may be coated with adhesion promoters on the cabling machine in a manner yet to be described. Some suitable adhesion promoters are based on various epoxy compounds, such as epoxysilane, and are described in U.S. Pat. No. 5,693,275 and U.S. Pat. No. 6,046,262, the entire contents of which are incorporated by reference. With continuing reference to
Attention is now drawn to
Yarns for producing a cable first may be processed through the DCU 312. In so doing, an outer yarn 314 is pulled from the supply package 316 located in the bobbin creel 318 or reserve bobbin creel 319. The outer yarn 314 is pretensed by a tensioning device, such as brake 320. It will be appreciated that other tensioning devices, such as paired driver rolls, skewed rolls, adjustable finger or ladder units, computerized tension measuring devices, whether online, manual, computerized or otherwise, may be substituted for or used in conjunction with the brake 220. It will be appreciated that a number of devices may be adapted to pretense the yarns for twisting.
With continuing reference to
The outer yarn 314 and the inner yarn 322 are twisted into a cord 334 as the yarns 314 and 322 pass through spinning discs 336, which act to even-any remaining differences in lengths between the yarns prior to twisting.
With continuing reference to
Heretofore, the cord treating equipment has been kept separate to achieve the targeted level of adhesion for the desired end property and use and the desired levels of physical and chemical performance.
With conventional processes, to achieve uniformity of target properties for individual cords with low modulus materials, whether in single end or fabric based treating units, it was considered necessary to perform a stretch then a relax operation on the cord. The stretch and relax operation, often preceded by a drying step, used high temperatures and time periods in excess of one minute to achieve the tenacity and shrinkage levels in combination with adequate curing of the bonding agent. This stretch and relax operation are known to those skilled in the art. Typical conditions are given in U.S. Pat. No. 4,491,657, the entire contents of which are incorporated herein by reference, for a Litzler Computreater as dry heating at 160° C. under stress to maintain a consistent length of the cord, then heating in a stretched condition for 120 seconds at 240° C. and for 120 seconds at 240° C. in a relaxed condition. Another example is found in U.S. Pat. No. 5,403,659, the entire contents of which are incorporated herein by reference, which describes using stretches of 2 to 8% and shrinkages of 0 to 4% while heating at 227° C. for 40 to 60 seconds.
The commercial units required to achieve these temperatures, times and tensions, particularly with tire fabrics containing over 1000 individual ends in parallel, are extremely large and expensive with ovens several stories high.
Surprisingly, it is not necessary to use these severe conditions with high modulus materials which are capable of physical property uniformity and with surface chemistry enabling adequate adhesion to be achieved with relatively short time heat treatment at moderate temperatures. The desired properties may be achieved without stretching the cord simply by controlling the tension in the cord to allow for a small heat shrinkage to occur. Using these greige cord parameters and applying the concept to DCU machines yields an unexpected capability to combine dipping and heat treating with the DCU and eliminate the handling and transport operations between these steps.
Commercial DCU machines are limited by the spindle speed achievable. In practice, the maximum spindle speed is about 11000 rpm. For example, typical twist in a tire cord cable is 400 TPM (turns per meter); thus, the cord speed in meters per minute through the machine is 11000 rpm divided by 400, i.e., 27.5 meters per minute. For a 30 second heating time, the total linear distance required will be only 13.75 meters, which can be achieved in a short multi-pass heater.
It now will be appreciated that by controlling the tension on the cord, via the tensioning devices and the speed of the yarns from the DCU 312, to the treating subunit 328, the cord may be fed directly from the DCU to the treating equipment without intermediate take-up, thus eliminating handling and transport operations between these two process steps.
At the treating subunit 328, the raw cabled cord 334 is coated with an adhesion agent, such as a Resorcinal-Formaldehyde-Latex (RFL) for nylon, PET or rayon. RFL may contain catalytic additives to enhance adhesion of the cord to rubber. The adhesion agent may be adjusted or substituted for the type of raw cord. T oated raw cord 334 is pulled through dip tray 340 of the heating unit 342 unc controlled tension via a system of tensioning devices 344. In a preferre bodiment, the raw cord 334 may be moved through the heating unit 342 in a ber of shorter multiple passes. It will be appreciated that any number alternati esigns for moving the raw cord 334 through the heater 342 may be used in Z,999 ractice of the invention.
heating unit 342 may comprise an electrical unit, an infrared unit, a radio fre ncy unit, a microwave unit or plasma, or it may be heated with forced hot air s oiled from a central source. It will be appreciated that a number of devices alternative heater designs may be used to heat the cord 334 and may be substi ed for the heating unit 342. The heating unit 342 may also comprise, an exhau outlet for removal or release of the by-products from the curing of the dip. A son skilled in the art will appreciate that any number of heating units are suita for use in association with the present invention and may be adapted to receiv e raw cabled cord 334 directly from the DCU 312. In one preferred embodid t, the treating equipment is operated to achieve a temperature of approxin ely 200° C. for a residence time of approximately 30 seconds or less to cure the nding agent prior to winding the treated cord 346 on a package or spool 350.
T package take up is preferably by an automatic doffing winder unit; however y mechanical means adapted to take up the cabled cord is suitable.
T treated cable cord product package 350 is delivered to product storage, ferentially by an automated conveyor pack out unit, prior to transfer to the Tire Production Unit (“TP Unit”). The OTC unit may be located, for example, at:
The treating subunit 328 may be constructed as part of the DCU 312 to conserve floor space as shown in
Alternatively, the treating subunit 328 may be configured in an assembly parallel to the DCU 312, as shown in
Additionally, as shown in
The practice of the invention is further illustrated by reference to the following examples, which are intended to be representative rather than restrictive of the scope of the invention. Examples to show the achievement of typical treated cord property targets are given for polyester and nylon.
High tenacity high modulus low shrinkage (HMLS) commercial polyester tire yarn, pretreated by the producer (Honeywell) to achieve good adhesion to rubber stocks (Adhesion Activated 1×53), was obtained as 1440 dtex packages. Two packages were placed in the upper and spindle positions of an ICBT direct cable machine and cabled to produce two ply 410 twist per meter cabled greige cords. The greige cords were then treated in a Zell single end laboratory dipping and treating unit with the operating conditions of speed, number and length of passes in the ovens etc. being adjusted, to achieve the conditions given in Table I.
Run 1 of Table I is a comparative example to show a typical current commercial set of conditions for a fabric treating unit and to produce typical cords for measurement of physical and chemical properties desirable for in-rubber end use. Runs 2, 3 and 4 of Table I are examples to simulate the invention OCT treating sub-unit wherein the duration of the heat treatment is reduced to only 30 seconds with the temperature in the oven used at 180° C., 200° C. and 220° C., respectively. In all four runs each cord was treated with a conventional non-ammoniated resorcinol-formaldehyde-latex dip comprising a pre-condensed vinyl pyridine latex, res formaldehyde, sodium hydroxide and water solution at about 4.5% total s pickup based on the weights of the cord. The treated cords were then test physical properties using an Instron Model 4466 test unit under ASTM D 84 conditions, with thermal shrinkage carried out using a Testrite Model N 177° C. for 2 mins. with 0.5 gms/dtex pretension. Adhesion of the treated was determined using standard rubber stocks and H-Adhesion tests as define U.S. Pat. No. 3,940,544, hereby incorporated by reference. The physical adhesion results are given in Table II.
cords were produced on the ICBT Direct Cable unit using 1400 dtex Nyl high viscosity high tenacity yarn (IR88 from Honeywell) at a twist level of RPM. The treating conditions to simulate an OCT unit were selected to be 18 and 200° C. for 30 seconds following application of the same dip type and leve Example 1. The H-adhesions were 126 N and 144 N respectively. The adh results for Examples 1 and 2 are shown on
olyester greige cords produced as in Example 1 were treated in the simulat unit under the conditions listed in Table III to determine the affects of the treating unit tension (stretch or relax) on the key properties of the treated cord.
The results for treated cord properties are given in Table IV and shown in
To compare with commercially targeted treated cords, a measurement was made of the expected part load modulus of cords after they had been cured in-rubber. This test is as described in Nelson et. al., Rubber World, “Dimensionally Stable PET Fibers for Tire Reinforcement,” pp. 30-37 (May 1991), and Nelson et. al., 3rd International TechTextile Symposium, “Dimensionally Stable PET Fibers” (May 1991), and is denoted as “In-Tire E45 (N)” in Table IV.
From
While certain representative embodiments and details have been shown for the purpose of illustrating the invention, it will be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the spirit and scope of the invention.
This application claims priority to pending U.S. provisional application Ser. No. 60/292,674, filed May 21, 2001, the entire contents of which are incorporated by reference. This application is a divisional of allowed application Ser. No. 10/150,799, filed May 17, 2002, which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60292674 | May 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10150799 | May 2002 | US |
Child | 11093320 | Mar 2005 | US |