In
The refrigerated heating grade LNG supplied at 20 as from storage 11 is pumped by main send out pump at 15 for delivery at 16 to heat exchanger/condenser apparatus 17, from which it flows at 18 to a vaporizer 19. The pump elevates the LNG to pipeline pressure, typically 50 to 100 atmospheres; and the vaporizer operates to heat the cold LNG to warm temperature, typically 10 to 20 degrees Centigrade, for conversion to gas. The gasified LNG is then delivered at 21 to a commercial pipeline 41, as HGLNG (heating grade LNG).
The process utilizes the “cold” containing in the LNG stream 20 to provide refrigeration to a distillation column 26 operating to purify the LNG to vehicle grade (typically 99% methane). A secondary pump 40 receives cold LNG stream 20a, and delivers it to a mid-point 41′ of column, as for example at about 7 bara. The column pressure may vary over a broad range, from about 4 bara to the critical point of methane.
The liquid LNG flowing through one side of the exchanger 17 is heated slightly (typically from 115 degK to 120 degK). The other side involves condensing a near pure methane gas stream 21 from column 26 at a higher than atmospheric pressure (typically 7 to 14 atm). Most of the condensed methane is delivered at 28 (for flow by gravity or pumping) to the top of the distillation column 26 as reflux.
The remainder of the condensed methane is delivered at 23 to VGLNG (vehicle grade LNG) storage 24, from which that product is controllably delivered at 25 to transport vehicles 26 for distribution to fuel stations for vehicles.
The distillation column 26 has a lower outlet 44, through which bottoms product such as C2+ is delivered at 45 to C2+ storage 46, and transport at 58 where C2+ constitutes a liquid hydrocarbon stream containing ethane and heavier hydrocarbon components.
The C2+ product may be refined into nearly pure ethane and a C3+ bottoms hydrocarbon. As an alternative arrangement, the C2+ stream can be delivered at 50 for combination with the HGLNG stream at point 51, for processing in vaporizer 19 and delivery to pipeline.
Also shown is a secondary heater vaporizer 56 receiving product (such as C2+) via stream 57 from a lower portion of the column 26, for returning lighter product (such as remanent methane), and bottoms, at 57 to the column at 58.
Accordingly, the invention provides a simpler, efficient method for producing three distributable products (HGLNG, VGLNG, C2+) from imported refrigerated LNG.