The present invention relates to an image forming apparatus having a function to form an image on recording medium such as a sheet of paper. It relates also to a process cartridge which is removably mountable in an image forming apparatus.
A process cartridge has long been used in the field of an electrophotographic image forming apparatus. A process cartridge is removably mountable in the main assembly of an electrophotographic image forming apparatus. It comprises: an electrophotographic photosensitive drum; one or more means for processing the photosensitive drum; and a shell (cartridge) in which the electrophotographic photosensitive drum and processing means are integrally placed. A process cartridge makes it possible for a user to maintain an image forming apparatus without relying on a service person. Thus, it can substantially increase an image forming apparatus in operational efficiency. This is why a process cartridge has been widely used in the field of an image forming apparatus. An electrophotographic image forming apparatus which employs a process cartridge has to, be enabled to make electrical connection between the process cartridge and its main assembly (for example, Japanese Laid-open Patent Application 2007-213018 (P.9, P.7, and FIG. 11) when voltage has to be applied to the charging member of a process cartridge to charge the electrophotographic photosensitive drum of the process cartridge, and when voltage has to be applied to the developing means of the process cartridge of the process cartridge to develop an electrostatic latent image formed on the electrophotographic photosensitive drum.
Some electrophotographic color image forming apparatuses of the so-called inline type employ multiple process cartridges which are aligned in parallel in the main assembly of the image forming apparatus. As the developing method usable by a process cartridge employed by an electrophotographic color image forming apparatus such as those described above, there area contact developing method and a non-contact developing method. A contact developing method is such a developing method that a development roller is placed in contact with an electrophotographic photosensitive drum in order to develop an electrostatic latent image on the drum. In the case of this developing method, a development roller has to be placed in contact with an electrophotographic photosensitive drum so that a preset amount of pressure is maintained between the roller and drum. Thus, during an image forming operation, the development roller is kept pressed upon the electrophotographic photosensitive drum. Therefore, if an electrophotographic image forming apparatus which employs a contact developing method is kept in a state in which the development roller is in contact with the electrophotographic photosensitive drum, for a substantial length of time, it is liable for the elastic layer of the development roller to be deformed by the pressure which it receives from the electrophotographic photosensitive drum. If the elastic layer of the development roller remains deformed, it is liable that the developed electrostatic latent image will suffer from nonuniformity in terms of density, the pattern of which corresponds to the rotational frequency of the development roller.
There have been proposed various solutions to this problem. One of these solutions is to provide an electrophotographic image forming apparatus and the process cartridge therefor with a mechanism for keeping the electrophotographic photosensitive drum and development roller separated while the apparatus is not being used for image formation (Japanese Laid-open Patent Application 2001-337511 (P.5, P.6, and FIG. 2), for example). Another of these solutions is to provide an electrophotographic image forming apparatus and the process cartridge therefor with such a mechanism that keeps the development roller of the process cartridge separated from the electrophotographic photosensitive drum of the process cartridge until the process cartridge is mounted into the main assembly of an image forming apparatus, and then, places the development roller in contact with the photosensitive drum as the process cartridge is mounted into the main assembly of the image forming apparatus (Japanese Laid-open Patent Application 2006-276190 (for example, P.9-P.11, FIGS. 6-8)).
However, the conventional structural solutions, such as those described above, to the problem suffer from the following problems. That is, when a development roller is placed in contact with an electrophotographic photosensitive drum, a process cartridge comes into contact with the electrical contacts of the main assembly of an electrophotographic image forming apparatus. Thus, if the amount of pressure applied to keep the development roller in contact with the electrophotographic photosensitive drum is small, it is liable that the friction between the process cartridge and the electrical contacts of the electrophotographic image forming apparatus prevents the development roller from remaining properly in contact with the electrophotographic photosensitive drum. Thus, in the case of the structural solutions such as those described above, the pressure applied to keep the development roller properly in contact with the photosensitive drum had to be substantial. However, increasing the amount of pressure between the development roller and electrophotographic photosensitive drum resulted in increase in the amount of load to which the mechanism for keeping the development roller and photosensitive drum separated from each other is subjected while the image forming apparatus was on standby. Thus, the mechanism for keeping the development roller and photosensitive drum separated from each other had to be increased in strength. The present invention was made in consideration of problems such as those described above, Thus, the primary object of the present invention is to provide a process cartridge, the image bearing member and developer bearing member of which are separable from each other, and which is more stable in the state of contact between the image bearing member and developer bearing member than any of the process cartridge in accordance with the prior art, and also, an image forming apparatus which is compatible with the process cartridge which is in accordance with the present invention.
According to an aspect of the present invention, there is provided a process cartridge detachably mountable to a main assembly of the apparatus of an image forming apparatus, said process cartridge comprising a first unit provided with an image bearing member; and a second unit which is provided with a developer carrying member for carrying a developer and which is connected with said first unit so as to be movable between a contact position in which said developer carrying member is contacted with said image bearing member and a spacing position in which said developer carrying member is spaced from said image bearing member, and said second unit including a first contact portion for contacting to a main assembly electrical contact provided in the main assembly of is the apparatus and for receiving a first contact force therefrom when said process cartridge is mounted to the main assembly of the apparatus and said second unit is positioned in the spacing position, and a second contact portion for contacting to the main assembly electrical contact and for receiving a second contact force therefrom to electrically connect with the main assembly electrical contact when said process cartridge is mounted to the main assembly of the apparatus and said second unit is positioned in the contact position, wherein the second contact force has a component oriented in a moving direction of moving said second unit away from the spacing position toward the contact position, and the component is greater than that of the first contact force.
According to another aspect of the present invention, there is provided a process cartridge detachably mountable to a main assembly of the apparatus of an image forming apparatus, said process cartridge comprising a first unit provided with an image bearing member; and a second unit which is provided with a developer carrying member for carrying a developer and which is connected with said first unit so as to be movable between a contact position in which said developer carrying member is contacted with said image bearing member and a spacing position in which said developer carrying member is spaced from said image bearing member, said second unit including a recess or opening into which a main assembly electrical contact provided in said main assembly of the apparatus to apply a voltage to said process cartridge when said process cartridge is mounted to said main assembly of the apparatus and second unit is positioned in the spacing position.
According to another aspect of the present invention, there is provided an image forming apparatus to which a process cartridge is detachably mountable, wherein said process cartridge includes a first unit provided with an image bearing member and a second unit which is provided with a developer carrying member for carrying a developer and which is connected with said first unit so as to be movable between a contact position in which said developer carrying member is contacted with said image bearing member and a spacing position in which said developer carrying member is spaced from said image bearing member, said apparatus comprising a main assembly electrical contact for contacting to and applying a first contact force to a first contact portion provided in said second unit when said second unit is in the spacing position, and for contacting to a second contact portion provided in said second unit to electrically connect with said second contact portion, wherein the second contact force has a component oriented in a direction of moving said second unit away from the spacing position toward the contact position, and the component is greater than that of the first contact force.
According to a further aspect of the present invention, there is provided an image forming apparatus to which a process cartridge is demountable, wherein said process cartridge includes a first unit provided with an image bearing member and a second unit which is provided with a developer carrying member for carrying a developer and which is connected with said first unit so as to be movable between a contact position in which said developer carrying member is contacted with said image bearing member and a spacing position in which said developer carrying member is spaced from said image bearing member, said apparatus comprising a main assembly electrical contact, capable of entering a recess or opening provided in said second unit, for applying a voltage to said process cartridge when said second unit is in the spacing position.
These and other objects, features, and advantages of the present invention will become more apparent upon consideration of the following description of the preferred embodiments of the present invention, taken in conjunction with the accompanying drawings.
Hereinafter, the preferred embodiments of the present invention are described in detail with reference to the appended drawings. However, the measurements, material, and shapes of the structural components of the image forming apparatus and process cartridge in the following preferred embodiments of the present invention, and their positional relationship, are to be modified as necessary according to the structure of the apparatus to which the present invention is applied, and also, according to various conditions under which the present invention is applied to the apparatus. That is, the following preferred embodiments of the present invention are not intended to limit the present invention in scope.
The present invention relates to the structure of the electrical contacts of an image forming apparatus, and the structure of the electrical contacts of a process cartridge for the image forming apparatus. In this specification, an “image forming apparatus” means an electrophotographic image forming apparatus which forms an image on recording medium with the use of an electrophotographic image forming method. Examples of an electrophotographic image forming apparatus include an electrophotographic copying machine, an electrophotographic printer (for example, laser beam printer, LED printer, and the like), a facsimile apparatus, a word processor, etc. A “process cartridge” means a cartridge which comprises a drum unit and a development unit, which are integrally connected to each other. The drum unit has an electrophotographic photosensitive drum, whereas the development unit has one or more developing means. The process cartridge is structured so that it can be removably mounted in the main assembly of the electrophotographic image forming apparatus. Incidentally, a process cartridge may be provided with a processing means for processing the electrophotographic photosensitive drum. Examples of the processing means include a charging means, a cleaning means, a developer supplying member for supplying the development roller with developer, a developer regulating member for regulating the layer of the developer on the peripheral surface of the development roller, in the amount (thickness), in addition to the development roller.
[Embodiment 1]
First, the first preferred embodiment of the present invention is described.
(General Structure of Image Forming Apparatus)
First, referring to
Each process cartridge 7 has an electrophotographic photosensitive drum 1 as an image bearing member (which hereafter will be referred to simply as photosensitive drum 1), and processing means, more specifically, a charge roller 2, a development roller 25, a cleaning means, etc., which are in the adjacencies of the peripheral surface of the photosensitive drum 1. The charge roller 2 is for uniformly charging the peripheral surface of the photosensitive drum 1. The development roller 25, which is a developer bearing member, is for bearing toner, and developing a latent image formed on the peripheral surface of the photosensitive drum 1 into a visible image with the use of the toner. The cleaning member 6 is for removing the toner remaining on the peripheral surface of the photosensitive drum 1 after the transfer of a toner image (developer image) formed on the peripheral surface of the photosensitive drum 1, onto recording medium. The apparatus main assembly 100A is provided with a scanner unit 3 for forming a latent image on the photosensitive drum 1 by selectively exposing numerous points of the peripheral surface of the photosensitive drum 1, based on the information of the image to be formed. The scanner unit 3 is below the space for the process cartridges 7 in the apparatus main assembly 100A.
The apparatus main assembly 100A is provided with a space for a cassette 17 which contains sheets S of recording medium. The space is in the bottom portion of the apparatus main assembly 100A. The apparatus main assembly 100A is also provided with a recording medium conveying means, which is positioned so that the sheet S of recording medium is conveyed upward from the cassette 17 by way of a second transfer roller 70 and a fixing portion 74. The recording conveying means comprises: a feed roller 54 which feeds each of the sheets S of recording medium in the cassette 17 into the apparatus main assembly 100A while separating it from the rest; a pair of recording medium conveying rollers 76 for conveying each sheet S of recording medium further into the apparatus main assembly 100A; a pair of registration rollers 76 for synchronizing the movement of a latent image formed on the peripheral surface of the photosensitive drum 1, with the movement of the sheet S of recording medium. Further, the apparatus main assembly 100A is provided with an intermediary transfer unit 5 as an intermediary means for transferring a toner image formed on the peripheral surface of the photosensitive drum 1, from the photosensitive drum 1 onto the sheet. S of recording medium. The intermediary transfer unit 5 is above the space for the process cartridge 7. The intermediary transfer unit 5 has a driver roller 56, a follower roller 57, four first transfer rollers 58, a second transfer roller 70, a backup roller 59, and a transfer belt 9. The four first transfer rollers 58 correspond in position to the four photosensitive drums 1, one for one. The backup roller 59 corresponds in position to the second transfer roller 70. The transfer belt 9 wraps around these rollers, being thereby suspended and kept stretched, by them.
The transfer belt 9 is circularly moved in such a manner that it faces all the photosensitive drums 1 and comes into contact with them. As voltage is applied to the first transfer roller 58, the toner on the photosensitive drum 1 is transferred (first transfer) onto the transfer belt 9. Then, as voltage is applied between the backup roller 59 (which is on inward side of loop which transfer belt 9 forms) and the second transfer roller 70, the toner on the transfer belt 9 is transferred (second transfer) onto the sheet S of recording medium.
The image forming operation of the image forming apparatus 100 is as follows: While each photosensitive drum 1 is rotated, the peripheral surface of the photosensitive drum 1 is uniformly charged by the charge roller 2. Then, the numerous points of the uniformly charged portion of the peripheral surface of the photosensitive drum 1 are selectively exposed by the scanner unit 3. Consequently, an electrostatic latent image is formed on the photosensitive drum 1. This latent image is developed by the development roller 25. Thus, four monochromatic toner images, different in color, are formed on the four photosensitive drums 1, one for one. In synchronism with the formation of the toner images, a sheet S of recording medium is conveyed by the pair of registration rollers 55, to the second transfer position, in which the backup roller 59 and second transfer roller 70 are kept in contact with each other, with the presence of the transfer belt 9 between the two rollers 59 and 70. Then, transfer bias voltage is applied to the second transfer roller 7 while the sheet S of recording medium is conveyed through the second transfer position. Thus, the four monochromatic toner images, different in color, on the transfer belt 9 are transferred (second transfer) onto the sheet S of recording medium. This is how a multicolor image is formed on the sheet S of recording medium. After the formation of a multicolor image on the sheet S of recording medium, the sheet S is conveyed through the fixing portion 74. While the sheet S is conveyed through the fixing portion 74, the multicolor image is subjected to heat and pressure, whereby it becomes fixed to the sheet S. Thereafter, the sheet S is discharged into a delivery tray 75 by a pair of discharge roller 72. Incidentally, the fixing portion 74 is in the top portion of the apparatus main assembly 100A.
(Process Cartridge)
Next, referring to
The drum unit 26 has a cleaning means frame 27, to which the photosensitive drum 1 is rotatably attached with the presence of a front drum bearing 10 and a rear drum bearing 11 between the photosensitive drum 1 and cleaning means frame 27. One of the lengthwise end portions of the photosensitive drum 1 is provided with a drum coupling 16, and the other is provided with a flange 85 (
The development unit 4 comprises: the development roller 25 which rotates in contact with the photosensitive drum 1 in the direction indicated by an arrow mark B in
Referring to
The process cartridge 7 is structured so that when the process cartridge 7 is being used for image formation, the development unit 4, which is shown in
The front end of the development unit 4 is provided with an electrical contact 40 for the development roller 25 (which hereafter is referred to as development roller contact 40), an electrical contact 41 for the toner supply roller 34 (which hereafter is referred to as toner supply roller contact 41), and an electrical contact 42 for the development blade 35 (which hereafter is referred to as development blade contact 42). The development roller contact 40 is for applying bias voltage to the development roller 25. The toner supply roller contact 41 is for applying bias voltage to the toner supply roller 34. The development blade contact 42 is for applying bias voltage to the development blade 35. In a case where the image forming apparatus 100 is of the contact development type which places the development roller 25 in contact with the photosensitive drum 1 to develop a latent image on the photosensitive drum 1, it is desired that the photosensitive drum 1 is a rigid member, whereas the development roller 25 is an elastic roller, that is, a roller having an elastic layer. As the development roller 25, a roller having a single layer of solid rubber, a roller having a solid rubber layer and a resin layer coated on the solid rubber layer in consideration of the charging of toner by the roller, or the like roller, is usable.
Next, the image formation sequence of the process cartridge 7 is described (
The toner in the toner storage portion 31a is conveyed to the toner supply roller 34 by the rotation of the toner conveying member 36. To the toner supply roller 34, the bias voltage is applied. As the toner supply roller 34 is rotated, the peripheral surface of the rotating development roller 25 is supplied with the toner from the toner supply roller 34. After being supplied to the peripheral surface of the development roller 25, the toner on the peripheral surface of the development roller 25 is frictionally charged by the development blade 35 to which the bias voltage is being applied. Further, to the development roller 25, the development bias is applied from the apparatus main assembly 100A, whereby the electrostatic latent image formed on the photosensitive drum 1 is developed.
The development roller 25 is positioned so that its peripheral surface squarely faces the peripheral surface of the photosensitive drum 1. Further, the development unit 4 is structured so that the development roller 25 develops the electrostatic latent image formed on the peripheral surface of the photosensitive drum 1, by being placed in contact with the peripheral surface of the photosensitive drum 1.
(Mechanism for Mounting Process Cartridge into Main Assembly of Image Forming Apparatus)
Next, referring to
b) is a drawing for describing the process cartridge 7 which is being mounted into the apparatus main assembly 100A. The cartridge guiding member 81 of the apparatus main assembly 100A is provided with a slanted surface 81a, which is at the downstream end of the guiding member 81 in terms of the direction in which the process cartridge 7 is inserted into the apparatus main assembly 100A. The slanted surface 81a inclines upward in terms of the cartridge insertion direction. Further, the cleaning means frame 27 is provided with a slanted surface 27c, which is at the upstream end of the cleaning means frame 27. The slanted surface 27c inclines downward in terms of the opposite direction to the cartridge insertion direction. As the process cartridge 7 is inserted into the apparatus main assembly 100A, the guiding portion 27b of the cleaning means frame 27 comes into contact with the slanted surface 81a, and slides diagonally upward by being guided by the slanted surface 81a, whereas the slanted surface 27c comes into contact with the cartridge guiding member 81, whereby the trailing end portion of the process cartridge 7 slides diagonally upward by being guided by the slanted surface 27c. Thus, the process cartridge 7 is moved toward the intermediary transfer unit 5 (upward).
c) is a drawing for describing the process cartridge 7 after it is properly positioned in the apparatus main assembly 100A. As the process cartridge 7 is inserted further into the apparatus main assembly 100A after it is moved toward the intermediary transfer unit 5, a stopper 27d, which is an integral part of the cleaning means frame 27 comes into contact with the rear plate 83 of the apparatus main assembly 100A, which completes the mounting of the process cartridge 7 into the apparatus main assembly 100A. When the process cartridge 7 is in the state shown in
Also right before the cartridge stopper portion 27d comes into contact with the rear plate 83 of the apparatus main assembly 100A, the bearing pulling member 93 of the front plate 82 fits into the hole of the bearing pulling portion of the front drum bearing 10. Thus, the bearing pulling portion 10a of the front drum bearing 10 is moved upward by the bearing pulling portion 93 which is under the upward pressure generated by the tension spring 94 of the front plate 82. Therefore, the stopper portion 10b of the front drum bearing 10, which is the cartridge positioning portion of the front drum bearing 10, is placed in contact with the bearing positioning portion 82b of the front plate 82, whereby the front end of the process cartridge 7 is precisely positioned relative to the apparatus main assembly 100A.
Next, referring to
(Mechanism for Separating Photosensitive Drum and Development Roller of Process Cartridge from Each Other, or Placing Them in Contact with Each Other)
Next, referring to
Next, referring to
(Member for Separating, and Keeping Separated, Development Roller from Photosensitive Drum)
a) is a schematic perspective view of the process cartridge 7 prior to the mounting (insertion) of the process cartridge 7 into the apparatus main assembly 100A. The process cartridge 7 is provided with a member 64 for keeping the development unit 4 locked in the separation position. Hereafter, the member 64 is referred to as a cartridge locking member 64. When the process cartridge 7 is in the state shown in
b) is a schematic perspective view of the process cartridge 7 after the disengagement of the cartridge locking member 64 has allowed the development roller 25 to come into contact with the photosensitive drum 1. Referring to
Next, referring to
Next, referring to
Consequently, it becomes possible for the development unit frame 31 to be moved in the direction indicated by an arrow mark L, that is, the direction for placing the development roller 25 in contact with the photosensitive drum 1.
As an image forming operation is started by a print signal after the completion of the mounting of the process cartridge 7, the separation member 8 (
As soon as the development of the latent image on the photosensitive drum 1 ends, the separation member 8 is moved in the direction indicated by the arrow mark N in
As described above, in this embodiment, the development unit 4 can be easily placed in the state in which the development roller 25 is kept separated from the photosensitive drum 1, or the state in which the development roller 25 is kept in contact with the photosensitive drum 1. Therefore, it is unnecessary to strictly select the material for the elastic layer of the development roller 25 in order to prevent the deformation of the elastic layer.
(Structure of Electrical Contacts of Process Cartridge and Apparatus Main Assembly)
Next, the structure of the electrical contacts of the process cartridge 7 and apparatus main assembly 100A is described.
The process cartridge 7 has the above described electrical contact 40 for the development roller 25, electrical contact 41 for the toner supply roller 34, and electrical contact 42 for the development blade 35 (
Next, the structure of the development roller contact 40 of the process cartridge 7 and the development bias contact 43 of the apparatus main assembly 100A are described as the examples of the structure of the electrical contacts in this embodiment. That is, in this embodiment, the structure of the toner supply roller contact 41, the structure of the toner supply bias contact 44, and the structural relationship between the contacts 41 and 44, are the same as those of the development roller contact 40 and development bias contact 43, and so are those of the development blade contact 42 and development blade bias contact 45. In terms of practicality, all that is necessary is that at least one of the electrical contacts mentioned above is structured as will be described next.
Referring to
Next, the state of the process cartridge 7, in which the electrical contacts of the process cartridge 7 are in contact with the corresponding electrical contacts of the apparatus main assembly 100A, is described.
Referring to
The apparatus main assembly 100A and process cartridge 7 are structured so that the area 48a is flat, and the plane of the area 48a of the side cover 48 is perpendicular to the direction in which the compression spring 43a of the development bias contact 43 is kept compressed. That is, the plane of the area is 48a is not parallel to the direction in which the pressure is applied to place the development roller 25 in contact with the photosensitive drum 1. In this embodiment, the area 48a is flat, and is perpendicular to the rotational axis of the development roller 25. Further, the area with which the toner supply roller bias contact 44 comes into contact, and the area with which the development blade bias contact 45 comes into contact, are similar to the area 48a.
Next, referring to
It should be noted here that because bias voltage has to begin to be applied to the development roller 25 before the development roller 25 comes into contact with the photosensitive drum 1, the development roller contact 40 is positioned so that it comes into contact with the development bias contact 43 while the development unit 4 is moved from the separation position to the contact position. If the development roller 25 comes into contact with the photosensitive drum 1 while bias voltage is not being applied to the development roller 25, it is liable that toner particles with no electrical charge might be transferred from the development roller 25 onto the photosensitive drum 1. This is why the image forming apparatus 100 and process cartridge 7 are structured so that the development bias contact 43 and development roller contact 40 come into contact with each other before the development roller 25 comes into contact with the photosensitive drum 1.
Next, the development roller contact 40 and side cover 48 of the process cartridge 7 are described about their structures.
The side cover 48 is provided with the area 48a of electrical contact of the process cartridge 7, on which the portion 43b of the development bias contact 43 slides. The process cartridge 7 is designed so that the normal line of the area 48a of electrical contact of the process cartridge 7 is parallel to the rotational axis 25c of the development roller 25, and also, so that the normal line H2 of the area 40a of the development roller contact 40 is angled relative to the normal line H1 of the area 48a of electrical contact (parallel to direction in which development unit 4 is moved from contact position to separation position).
Next, referring to
Referring to
In this embodiment, the direction of the contact pressure P1 is perpendicular to the lengthwise direction of the process cartridge 7 (rotational axis of development roller 25 and rotational axis of photosensitive drum 1), that is, the direction in which the development unit 4 is moved to place the development roller 25 in contact with the photosensitive drum 1. When the process cartridge 7 is not being used for image formation, the development unit 4 is kept in the separation position by the separation member 8 in the apparatus main assembly 100A. Since the contact pressure P1 which the development bias contact 43 generates is parallel to the lengthwise direction of the process cartridge 7, it is different in direction from the force applied for placing the development unit 4 development roller 25 in contact with the photosensitive drum 1. Therefore, the separation member 8 is not subjected to the contact pressure P1.
While the development unit 4 is moved from the separation position to the contact position, the development unit 4 remains in contact with the portion 43b of the development bias contact 43, creating thereby a frictional resistance Q. If the amount of force applied to place the development roller 25 in contact with the photosensitive drum 1 is relatively small, this friction resistance Q interferes with the movement of the development unit 4, making it impossible to ensure that the development roller 25 is placed in contact with the photosensitive drum 1. Thus, one of the characteristic features of this embodiment is that the area 40a of the development roller contact 40 is angled relative to the direction in which the development bias contact 43 comes into contact with the development unit 4 (area 40a). Therefore, when the development bias contact 43 comes into contact with the area 40a of the development roller contact 40, the effect of the frictional resistance Q which occurs between the development bias contact 43 and area 40a is significantly smaller than the effect of the comparable frictional resistance in any process cartridge in accordance with the prior art.
As described above, the area 40a of the development roller contact 40 is angled relative to the direction in which the development bias contact 43 comes into contact with the development unit 4 (area 40a). More specifically, the area 40a of the development roller contact 40 is angled so that the upstream end of the area 40a, in terms of the direction in which the development unit 4 is moved from the separation position to the contact position, is farther from the development bias contact 43 than the downstream end of the area 40a. Next, referring to
That is, the process cartridge 7 is structured so that the component P4 of the contact pressure P2, to which the area 40a of the development roller contact 40 is subjected by the development bias contact 43 when the development roller 25 is placed in contact with the photosensitive drum 1 for image formation, is parallel to the direction in which the development roller 25 is moved to be placed in contact with the photosensitive drum 1. That is, the process cartridge 7 is structured so that the force to which the area 40a of the development roller contact 40 is subjected by the development bias contact 43 as the development bias contact 43 comes into contact with, and presses on, the area 40a of the development roller contact 40 while the development unit 4 is moved into the contact position, is parallel to the direction in which the development unit 4 is moved from the separation position to the contact position.
In a case where the area of the electrical contact of the development roller is parallel to the electrical contact portion of the side cover as in the case of a conventional process cartridge, it is liable that the development roller is prevented by the frictional resistance between the area of the electrical contact of the development roller, and the development bias contact, from being properly pressed upon the photosensitive drum. Further, in consideration of the frictional resistance between the area of the electrical contact of the development roller, and the spring of the development bias contact of the apparatus main assembly 10A, the spring with which the process cartridge is provided to press the development roller upon photosensitive drum has to be substantial in resiliency. However, if this spring is substantial in resiliency, the force to which the separation member for separating the development roller from the photosensitive drum is subjected when the development roller is separated from the photosensitive drum is substantial, making it necessary to increase the separation member in strength.
In this embodiment, however, the component P4 of the contact pressure P2 to which the area 40a of the development roller contact 40 is subjected by the development bias contact 43 of the apparatus main assembly 100A is utilized as an additional force for placing the development roller 25 in contact with the photosensitive drum 1. Therefore, the force applied to place the development roller 25 in contact with the photosensitive drum 1 is prevented from being substantially robbed by the friction resistance between the area 40a of the development roller contact 40 and the development bias contact 43. Further, the compression spring 38 and tension spring 39, which are necessary to keep the development roller 25 in contact with the photosensitive drum 1, may be substantially smaller in resiliency. Thus, the amount of the load to which the separation member 8 and separation force catching portion 31b are subjected when the photosensitive drum 25 is separated from the photosensitive drum 1 is smaller than in the case of a conventional image forming apparatus and process cartridge therefor. Therefore, it is unlikely for the process cartridge 7 to be deformed by the force from the compression spring 38 and the force applied by the separation member 8. Further, the strength required of the separation member 8 and process cartridge 7 is smaller.
Also in this embodiment, in order to prevent the development unit 4 from being moved from the separation position to the contact position by the contact pressure. P1 (
To summarize, according to this embodiment, it is possible to minimize the amount of the load to which the separation member 8 is subjected by the development bias contact 43 while the image forming apparatus 100 is not being used for image formation, and also, to ensure that while the image forming apparatus 100 is being used for image formation, the development roller 25 is kept properly in contact with the photosensitive drum 1.
[Embodiment2]
Next, referring to
Referring to
That is, the component P7 of the contact pressure P5, the direction of which is perpendicular to the component P6 of the contact pressure P5, the direction of which is parallel to the lengthwise direction of the process cartridge 7, is parallel to the direction in which the development roller 25 is separated from the photosensitive drum 1. Therefore, the contact pressure P5 to which the area 48b of electrical contact is subjected by the development bias contact 43 reduces the amount of the force which has to be applied to the process cartridge 7 by the separation member 8 (
On the other hand, the area 40a of the development roller contact 40 is inclined so that its upstream end in terms of the direction in which the development unit 4 is moved from the separation position to the contact position, is farther from the development bias contact 43 than its downstream end. That is, the force to which the area 40a of the development roller contact 40 is subjected by the development bias contact 43 when the development unit 4 is in the contact position works in the direction to keep the development roller 25 in contact with the photosensitive drum 1. Therefore, the image forming apparatus 100 and process cartridge 7 in this embodiment are smaller in the amount of the force (load) necessary to keep the development roller 25 separated from the photosensitive drum 1 when the image forming apparatus 100 is not forming an image, whereas they are more stable in the state of contact between the development roller 25 and photosensitive drum 1 when they are being used for image formation.
[Embodiment 3]
Next, referring to
The primary characteristic feature of this embodiment is that when the development unit 4 is in the separation position, that is, the position in which the development roller 25 is kept separated from the photosensitive drum 1, the compression spring 43a of the development bias contact 43 is not in contact with the process cartridge 7, as shown in
More specifically, the side cover 48 of the development unit 4 has a recess 48c, which is positioned so that as the development unit 4 is moved into the separation position, the compression spring 34a of the development bias contact 43 enters the recess 48c, and therefore, does not come into contact with the process cartridge 7. Thus, it does not occur that when the development roller 25 is kept separated from the photosensitive drum 1, the separation member 8 is subjected to the force generated by the resiliency of the development bias contact 43. When the development unit 4 is moved from the separation position to the contact position, first, the compression spring 43a rides onto the bent portion 40d of the development roller contact 40. Then, as the development unit 4 is moved further toward the contact position, the compression spring 43a comes into contact with the area 40a of the development roller contact 40. Thus, as the development unit 4 is moved further toward the contact position, the development unit 4 is pressed toward the contact position by the development bias contact 43. Therefore, it is ensured that the development unit 4 places the development roller 25 in contact with the photosensitive drum 1, and keeps the development roller 25 in contact with the photosensitive drum 1.
Incidentally, the gist of this embodiment is that when the development unit 4 is in the separation position, the development bias contact 43 is not in contact with the development unit 4. Thus, the side cover 48 may be provided with a through hole or the like, instead of the recess 48c.
[Embodiment 4]
Next, the fourth preferred embodiment of the present invention is described with reference to
The image forming apparatus 100 and process cartridge 7 in the first embodiment described above are structured so that when the development unit 4 is in the separation position, that is, the position in which it keeps the development roller 25 separated from the photosensitive drum 1, the development bias contact 43 is in contact with the area 48a of the side cover 48. Referring to
Referring to
In this embodiment, however, the development bias contact 43 and development roller contact 40 are in contact with each other even when the development unit 4 is in the separation position. Therefore, a certain amount of latitude can be afforded for the timing with which bias voltage has to be applied to the development roller 25. That is, this embodiment also can provide the same effects as those which can be provided by the first embodiment. Moreover, this embodiment ensures better than the first embodiment, that the toner particles with no electrical charge are not transferred from the development roller 25 onto the photosensitive drum 1.
Although in this embodiment, in order to prevent the development unit 4 from being moved to the contact position by the contact pressure which the area 40c of the development roller contact 40 receives from the development bias contact 43, the area 40c is made perpendicular to the rotational axis of the development roller 25. This setup, however, is not mandatory. That is, all that is necessary is that, relative to the direction in which the development unit 4 is moved from the separation position to the contact position, the inclination of the area 40a is gentler than the inclination of the area 40c.
That is, the area 40c of the development roller contact 40 may be inclined so that in terms of the direction in which the development unit 4 is moved from the separation position to the contact position, the downstream end of the area 40c is farther from than development bias contact 43 than the upstream end of the area 40c. In this embodiment, therefore, the amount of the force applied to the area 40c by the development bias contact 43 works in the same direction as the direction in which the development unit 4 is moved from the contact position to the separation position. Thus, this embodiment can reduce the amount of the force necessary to be applied to the process cartridge 7 by the separation member 8 (
[Miscellaneous Embodiments]
In each of the preferred embodiments of the present invention, four process cartridges were used. However, the preceding embodiments are not intended to limit the present invention in process cartridge count. That is, the process cartridge count may be set as necessary. Also in the preceding embodiments, the image forming apparatus was a printer. However, the preceding embodiments are not intended to limit the present invention in terms of the image forming apparatus to which the present invention is applicable. That is, the present invention is applicable to various image forming apparatuses other than a printer. For example, the present invention is applicable to a copying machine, a facsimile machine, etc., and a multifunction image forming apparatus capable of performing two or more functions of the preceding machines. Also in the preceding preferred embodiments, the image forming apparatus was such an image forming apparatus that employs an intermediary transfer member; transfers multiple monochromatic toner images, different in color, onto the intermediary transferring member; and transfers all at once the multiple monochromatic toner images from the intermediary transfer member onto recording medium. However, these preferred embodiments are not intended to limit the present invention in terms of the image forming apparatus to which the present invention is applicable. For example, the present invention is also applicable to an image forming apparatus which employs a recording medium bearing member, and sequentially transfers multiple monochromatic toner images, different in color, onto the recording medium borne on the recording medium bearing member. The application of the present invention to these image forming apparatuses other than those in the preceding preferred embodiments provides the same effects as those provided by the preferred embodiments.
Further, the preceding preferred embodiments were described with reference to the structure of the development roller contact 40, structure of the development bias contact 43, and the positional relationship between the development roller contact 40 and development bias contact 43. However, the preferred embodiments are not intended to limit the present invention in scope. That is, the present invention is applicable to other electrical contact (connection) between the process cartridge 7 and apparatus main assembly 100A than between the development roller contact 40 and development bias contact 43, as effectively as in the preferred embodiments. In a case where each of the process cartridge 7 and apparatus main assembly 100A has multiple (two) electrical contacts through which electrical connection is made between the process cartridge 7 and 100A, it is desired that the process cartridge 7 is provided with the first and second areas (points) of electrical contact, which correspond to the multiple (two) electrical contacts of the apparatus main assembly 100A, one for one.
While the invention has been described with reference to the structures disclosed herein, it is not confined to the details set forth, and this application is intended to cover such modifications or changes as may come within the purposes of the improvements or the scope of the following claims.
This application claims priority from Japanese Patent Applications Nos. 112208/2010 and 097427/2011 filed May 14, 2010 and Apr. 25, 2011, respectively, which are hereby incorporated by reference.
Number | Date | Country | Kind |
---|---|---|---|
2010-112208 | May 2010 | JP | national |
2011-097427 | Apr 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5943529 | Miyabe et al. | Aug 1999 | A |
5966567 | Matsuzaki et al. | Oct 1999 | A |
6144815 | Chadani et al. | Nov 2000 | A |
6173140 | Suzuki et al. | Jan 2001 | B1 |
6173145 | Chadani et al. | Jan 2001 | B1 |
6178302 | Nagashima et al. | Jan 2001 | B1 |
6205305 | Suzuki et al. | Mar 2001 | B1 |
6219504 | Matsuzaki et al. | Apr 2001 | B1 |
6282389 | Matsuzaki et al. | Aug 2001 | B1 |
6301457 | Chadani et al. | Oct 2001 | B1 |
6473585 | Abe et al. | Oct 2002 | B2 |
6512903 | Chadani | Jan 2003 | B2 |
6535699 | Abe et al. | Mar 2003 | B1 |
6671474 | Chadani | Dec 2003 | B2 |
6795666 | Miyabe et al. | Sep 2004 | B2 |
6823155 | Tsuda et al. | Nov 2004 | B2 |
6931226 | Chadani et al. | Aug 2005 | B2 |
6934485 | Miyabe et al. | Aug 2005 | B2 |
6980759 | Kanno et al. | Dec 2005 | B2 |
7136604 | Chadani et al. | Nov 2006 | B2 |
7184682 | Chadani et al. | Feb 2007 | B2 |
7421225 | Yokoi | Sep 2008 | B2 |
7433622 | Chadani et al. | Oct 2008 | B2 |
7499663 | Sato et al. | Mar 2009 | B2 |
7570900 | Chadani et al. | Aug 2009 | B2 |
7689146 | Sato et al. | Mar 2010 | B2 |
7761024 | Imaizumi et al. | Jul 2010 | B2 |
7890012 | Koishi et al. | Feb 2011 | B2 |
7890025 | Chadani et al. | Feb 2011 | B2 |
7899364 | Chadani et al. | Mar 2011 | B2 |
7907866 | Imaizumi et al. | Mar 2011 | B2 |
20080292356 | Furuichi et al. | Nov 2008 | A1 |
20090297208 | Suzuki et al. | Dec 2009 | A1 |
20090297214 | Chadani et al. | Dec 2009 | A1 |
20090297215 | Munetsugu et al. | Dec 2009 | A1 |
20100329732 | Chadani et al. | Dec 2010 | A1 |
20110097108 | Chadani et al. | Apr 2011 | A1 |
20110123224 | Chadani et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
1728013 | Feb 2006 | CN |
2001-337511 | Dec 2001 | JP |
2006-276190 | Oct 2006 | JP |
2007-213018 | Aug 2007 | JP |
2008-165023 | Jul 2008 | JP |
Entry |
---|
Office Action in Chinese Patent Application No. 201110128605.5, dated Jan. 30, 2013 (with English translation). |
Number | Date | Country | |
---|---|---|---|
20110280620 A1 | Nov 2011 | US |