The present invention relates to a process cartridge detachably mountable to an image forming apparatus and an image forming apparatus including the process cartridge. The image forming apparatus forms an image on a recording material using an image forming process. Examples of the image forming apparatus include a printer, a copying machine, a facsimile machine, or word processor and a multi-function machine of these machines.
Conventionally, in an image forming apparatus using an electrophotographic image forming process, a photosensitive drum and process parts actable on the photosensitive drum are unfixed into a cartridge. Further, a process cartridge type in which this cartridge is detachably mountable to an apparatus main assembly of the image forming apparatus is employed.
According to this process cartridge type, maintenance of the image forming apparatus can be performed by a user himself (herself). As a result, an operationality can be improved remarkably and the process cartridge type is widely used in image forming apparatuses.
Japanese Patent No. 4464435 discloses a color electrophotographic image forming apparatus in which a plurality of process cartridges are arranged in a line. Here, in the process cartridge, a drum unit including the photosensitive drum and a developing unit including a developing roller are connected rotatably by a swing center. Further, the photosensitive drum is provided with a drum coupling in one end side with respect to an axial direction of the photosensitive drum. Further, when the process cartridge is mounted in the apparatus main assembly, the drum coupling engages with a main assembly (-side) coupling provided in the apparatus main assembly, so that a first difference is transmitted.
Further, the developing roller is provided with an Oldham coupling which is a shaft coupling member in one end side with respect to an axial direction of the developing roller. The contact engages with a main assembly (-side) drive transmitting member, and is constituted by a driving-side engaging portion provided movably in a direction crossing an axis of the developing roller, a follower-side engaging portion fixed to the developing roller, and an intermediary engaging portion provided between the follower-side engaging portion and the follower-side engaging portion. Further, when the process cartridge is mounted in the apparatus main assembly, the driving-side engaging portion engages with a main assembly (-side) developing (means) coupling provided in the apparatus main assembly, so that a second difference is transmitted. That is, drive transmission from the apparatus main assembly to the process cartridge is performed at independent two positions.
In the process cartridge as described above, independent drive transmission is performed on an axis of the photosensitive drum and an axis of the developing roller. In this way, in the case where the cartridge of the photosensitive drum and the coupling of the developing roller are in a relationship in which these couplings are adjacent to each other, an interval between the drive transmitting member for the photosensitive drum and the drive transmitting member for the developing roller narrows. As a result, a degree of flexibility in constitution of the apparatus main assembly or the process cartridge narrows.
Accordingly, it is an object of the present invention is to provide a process cartridge and an image forming apparatus which are capable of broadening an interval between drive input to a photosensitive drum and drive input to a developing roller.
According to the present invention, there is provided a process cartridge comprising: a photosensitive drum; a rotatable developing roller for developing an electrostatic latent image formed on the photosensitive drum; a rotatable roller having a rotation shaft in a position declared from an axis of the developing roller, for transmitting a driving force to the developing roller; a coupling member disposed at an end portion of the shaft of the rotatable roller; a driving force receiving portion, provided on the coupling member and movable in a direction crossing the shaft of the rotatable roller, for receiving a driving force to be transmitted to the developing roller; an urging member for urging the drive receiving portion in the direction crossing the shaft of the rotatable roller; a supporting portion for rotatably supporting the drive receiving portion so as to be movable together with the drive receiving portion toward the rotatable roller in the direction crossing the shaft of the rotatable roller; and an abutting portion for receiving the supporting portion urged by the urging member, wherein the abutting portion is positioned outside an outer periphery of the photosensitive drum on a plane perpendicular to the shaft of the rotatable roller.
Further, according to the present invention, there is provided a process cartridge comprising: a photosensitive drum; a rotatable developing roller for developing an electrostatic latent image formed on the photosensitive drum; a rotatable roller having a rotation shaft in a position deviated from an axis of the developing roller, for transmitting a driving force to the developing roller; a coupling member disposed at an end portion of the shaft of the rotatable roller; a driving force receiving portion, provided on the coupling member and movable in a direction crossing the shaft of the rotatable roller, for receiving a driving force to be transmitted to the developing roller; an urging member for urging the drive receiving portion in she direction crossing the shaft of the rotatable roller; a supporting portion for rotatably supporting the drive receiving portion so as to be movable together with the drive receiving portion toward the rotatable roller in the direction crossing the shaft of the rotatable roller; and an abutting portion for receiving the supporting portion urged by the urging member, wherein the abutting portion is provided so that a point of contact between the abutting portion and the supporting portion is positioned outside an outer peripheral surface of the photosensitive drum on a plane perpendicular to the shaft of the rotatable roller.
Further, according to the present invention, there is provided an image forming apparatus comprising: an image forming apparatus main assembly including a driving member for providing a difference; and a process cartridge detachably mountable to the image forming apparatus main assembly, wherein the process cartridge includes: a photosensitive drum; a referable developing roller for developing an electrostatic latent image formed on the photosensitive drum; a rotatable roller having a rotation shaft in a position deviated from an axis of the developing roller, for transmitting a driving force to the developing roller; a coupling member disposed, at an end portion of the shaft of the rotatable roller; a driving force receiving portion, provided on the coupling member and movable in a direction crossing the shaft of the rotatable roller, for receiving a driving force to be transmitted to the developing roller; an urging member for urging the drive receiving portion in the direction crossing the shaft of the rotatable roller; a supporting portion for rotatably supporting the drive receiving portion so as to be movable together with the drive receiving portion toward the rotatable roller in the direction crossing the shaft of the rotatable roller; and an abutting portion for receiving the supporting portion urged by the urging member, wherein the abutting portion is positioned outside an outer periphery of the photosensitive drum on a plane perpendicular to the shaft of the rotatable roller.
Further, according to the present invention, there is provided an image forming apparatus comprising: an image forming apparatus main assembly including a driving member for providing a difference; and a process cartridge detachably mountable to the image forming apparatus main assembly, wherein the process cartridge includes: a photosensitive drum; a rotatable developing roller for developing an electrostatic latent image formed on the photosensitive drum; a rotatable roller having a rotation shaft in a position deviated from an axis of the developing roller, for transmitting a driving force to the developing roller; a coupling member disposed at an end portion of the shaft of the rotatable roller; a driving force receiving portion, provided on the coupling and movable in a direction crossing the shaft of the rotatable roller, for receiving the driving force to be transmitted to the developing roller; an urging member for urging the driving force receiving portion in the direction crossing the shaft of the rotatable roller; a supporting portion for rotatably supporting the driving force receiving portion so as to be movable together with the driving force receiving portion toward the rotatable roller in the direction crossing the shaft of the rotatable roller; and an abutting portion for receiving the supporting portion urged by the urging member, wherein the abutting portion is provided so that a point of contact between the abutting portion and the supporting portion is positioned outside an outer peripheral surface of the photosensitive drum on a plane perpendicular to the shaft of the rotatable roller.
In the following, an electrophotographic image forming apparatus according to First Embodiment of the present invent ion and a process cartridge used therein will be described in accordance with the drawings.
First, a general structure of an electrophotographic image forming apparatus (hereinafter referred to as an “image forming apparatus”) 100 will be described using
The process cartridge 70 includes electrophotographic photosensitive drums (hereinafter referred to as “photosensitive drums”) 1 (1a, 1b, 1c, 1d), and at a periphery of the photosensitive drums 1, process means such as charging rollers 2 (2a, 2b, 2c, 2d), developing rollers 25 (25a, 25b, 25c, 25d), and cleaning members 6 (6a, 6b, 6c, 6d) are integrally provided.
The charging seller 2 electrically charges the surface of the photosensitive drum 1 uniformly, and the developing roller 25 develops a latent image, formed on the photosensitive drum 1, with a toner to visualize the latent image. The cleaning member 6 removes the toner remaining on the photosensitive dram 1 after a toner image formed on the photosensitive drum 1 is transferred onto a recording material.
Further, below the process cartridges 70, a scanner unit 3 for forming the latent image on the photosensitive drums 1 by subjecting the photosensitive drums 1 to selective exposure to light on the basis of image information is provided.
At a lower portion of the apparatus main assembly 100A, a cassette 99 in which sheets of the recording material S are accommodated is mounted. Further, a recording material feeding portion is provided so that the recording material S can be fed to an upper portion of the apparatus main assembly 100A by being passed through a secondary transfer roller 69 and a fixing portion 74. That is, a feeding roller 54 for separating and feeding the sheets of the recording material S in the cassette 99 in a one-by-one manner, a feeding roller pair 76 for feeding the fed recording material S, and a registration roller pair 55 for synchronizing the latent image formed on the photosensitive drum 1 with the recording material S are provided.
Further, above the process cartridges 70 (70Y, 70M, 70C, 70K), an intermediary transfer unit 5 as an intermediary transfer means onto which the toner image formed on each of the photosensitive drums 1 (1a, 1b, 1c, 1d) is to be transferred is provided. The intermediary transfer unit 5 includes a driving roller 56, a follower roller 57, primary transfer rollers 58 (58a, 58b, 58c, 58d) at positions opposing the photosensitive drums 1 for the respective colors, and an opposite roller 59 at a position opposing the secondary transfer roller 69 are provided. Around these rollers, a transfer belt 9 is extended and stretched.
Further, the transfer belt 9 is circulated and moved so as to oppose and be contacted to all of the photosensitive drums 1. Then, the toner images are primary-transferred from the photosensitive drums 1 onto the transfer belt 9 by applying a voltage to the primary transfer rollers 58 (58a, 58b, 58c, 58d). Then, by voltage application to the secondary transfer redder 69 and the opposite roller 59 disposed inside the transfer belt 9, the toner images are transferred from the transfer belt 9 onto the recording material S.
During image formation, while rotating each of the photosensitive drums 1, the photosensitive drum 1 uniformly charged by the charging roller 2 is subjected to selective exposure to light emitted from the scanner unit 3. By this, an electrostatic latent image is formed on the photosensitive drum 1. The latent image is developed by the developing roller 25. By this, the toner images of the respective colors are formed on the photosensitive drums 1, respectively. In synchronism with this image formation, the registration roller pair 55 feeds the recording material S to a secondary transfer position where the secondary transfer roller 69 opposing the opposite roller 59 is contacted to the transfer belt 9.
Then, by applying a transfer bias voltage to the secondary transfer roller 69, the respective color toner images are secondary-transferred from the transfer belt 9 onto the recording material S. By this, a color image is formed on the recording material S. The recording material S on which the color image is formed is heated and pressed by the fixing portion 74, so that the toner images are fixed on the recording material S. Thereafter, the recording material S is discharged onto a discharge portion 75 by a (sheet-) discharging roller pair 72. The fixing portion 75 is disposed at an upper portion of the apparatus main assembly 100A.
Next, the process cartridge 70 in this embodiment will be described with reference to
The respective process cartridges 70 include drum units 26 (26a, 26b, 26c, 26d) as a first unit and developing units 4 (4a, 4b, 4c, 4d) as a second unit. The drum unit 26 includes at least the photosensitive drum 1. In this embodiment, the drum unit 26 includes the photosensitive drum 1, the charging roller 2 and the cleaning member 6. Further, the developing unit 4 includes the developing roller 25 and a rotatable member, described later, for transmitting the difference to the developing roller 25.
To a frame 27 of the drum unit 26, the photosensitive drum 1 is rotatably mounted via a front drum bearing 10 and a rear drum bearing 11. The photosensitive drum 1 is provided with a drum coupling 16 and a flange 19 as a first drum coupling member in one end side with respect to an axial direction thereof.
At a periphery of the photosensitive drum 1, as described above, the charging roller 2 and the cleaning member 6 are disposed. The cleaning member 6 is constituted by an elastic member formed with a rubber blade and a cleaning supporting member 8. A free end portion of the rubber blade disposed in contact with the photosensitive drum 1 counter directionally to a rotational direction of the photosensitive drum 1. Further, a residual toner removed from the surface of the photosensitive drum 1 by the cleaning member 6 falls into a removed toner chamber 27a.
By transmitting a driving force of a main assembly driving motor (not shown) as a driving source to the photosensitive drum 1, so that the photosensitive drum 1 is rotationally driven depending on an image forming operation. The charging roller 2 is rotatably mounted to the drum unit 26 via a charging roller bearing 28. Further, the charging roller 2 is urged against the photosensitive drum 1 by a charging roller urging member 46, thus being rotated by the rotation of the photosensitive drum 1.
The developing unit 4 has a constitution including the developing roller 26, rotating in contact with the photosensitive drum 1 in an arrow B direction, and a developing device frame 31 for supporting the developing roller 25. Further, the developing unit 4 is constituted by a developing chamber 31b in which the developing roller 25 is disposed and by a toner accommodating chamber 31c, disposed below the developing chamber 31b, for accommodating container for accommodating the toner. These chambers are partitioned by a partition wall 31d. Further, the partition wall 31d is provided with an opening 31e through which the toner passes when the toner is fed from the toner accommodating chamber 31c to the developing chamber 31b. The developing roller 25 is rotatably supported by the developing (device) frame 31 via a front developing (means) bearing 12 and a rear developing (means) bearing 13 provided in both sides of the developing device frame 31, respectively.
Further, at a periphery of the developing roller 25, a developer supplying roller 34 as a rotatable member rotatable in contact with the developing roller 25, and a developing blade 35 for regulating a tenor layer on the developing roller 25 are provided. Further, in the toner accommodating chamber 31c in the developing frame 31, a toner feeding member 36 for feeding the toner into the developing chamber 31b through the opening 31e while stirring the toner accommodated in the toner accommodating chamber 31c is provided.
Further, the frame 27 is provided with a front drum bearing 10 and a rear drum bearing 11 which rotatably support the photosensitive drum 1. The rear drum bearing 11 supports a drum coupling 16 coupled to the photosensitive drum 1. Further, the front drum bearing 10 supports the flange. Here, the drum coupling 16 is a drum coupling member for transmitting a rotational driving force from the apparatus main assembly 100A to the photosensitive drum 1.
The developing frame 31 is provided with the front and rear developing bearings 12 and 13 for rotatably supporting the developing roller 25. Further, the developing unit 4 is constituted so as to be urged against the drum unit 26, during image formation of the process cartridge 70, by an urging spring 32 provided at each of ends of the developing frame 31. By these urging spring 32, an urging force for bringing the developing roller 25 into contact with the photosensitive drum 1 with, as rotation centers, the hang holes 12a and 13a of the front and rear developing bearings 12 and 13 is generated.
In
In the image forming apparatus 100, main assembly upper mounting guide portions 103 (103a, 103b, 103c, 103d) (
The process cartridge 70 is placed in a front side of the main assembly lower mounting guide portion 102 with respect to a mounting direction and then is moved in the insertion direction F along the main assembly upper and lower mounting guide portions 102 and 103, thus being inserted into the image forming apparatus 100.
An operation of mounting the process cartridge 70 into the apparatus main assembly 100A will be described.
Then, by the contact of the cartridge positioning portion 11a provided at the upper portion of the rear drum bearing 11 with an abutting portion 97a which is a main assembly (-side) positioning portion of a front plate 97, the position of the process cartridge 70 relative to the apparatus main assembly 100A is determined. Also in this state, the guide portion 27b of the frame 27 is spaced from the guide surface of the main assembly lower mounting guide portion 102, so that the process cartridge 70 is in a state in which the process cartridge 70 is pressed by a spring force, of the main assembly pressing spring 105, received from the main assembly pressing member 104.
Further, the frame 27 is provided on a side surface thereof with a boss 27c as a rotation stepper for the process cartridge 70, and the boss 27c engages with a rotation preventing hole (portion) 98b provided in the rear plate 98. Thus, the process cartridge 70 is prevented from rotating in the apparatus main assembly 100A.
In the process cartridge 70 according to this embodiment, the photosensitive drum 1 and the developing roller 25 are capable of being contacted to and spaced from each other. Here, a contact and separation (spacing) mechanism between the photosensitive drum 1 and the developing roller 25 will be described with reference to
In
Further, as shown in
The contact and separation mechanism when the process cartridge 70 is mounted in the apparatus main assembly 100A will be described using
When the process cartridge 70 is mounted in the apparatus main assembly 100A, the developing unit 4 is in the contact portion, and the photosensitive drum 1 and the developing roller 25 are in contact with each other. At the time of completion of the mounting of the process cartridge 70 in the apparatus main assembly 100A and at the time of end of the image forming operation of the image forming apparatus 100, the developing unit 4 is in the spaced position, and the photosensitive drum 1 and the developing roller 25 are spaced from each other.
Therefore, when the process cartridge 70 is mounted in the apparatus main assembly 100A, there is a need to move the process cartridge 70 from the contact position to the spaced position, and a constitution thereof will be described using
As shown in (a) of
When the process cartridge 70 is caused to further enter the apparatus main assembly, as shown in (c) of
Next, a constitution of a coupling portion in the developing unit 4, the developer supplying roller 34 which is a rotatable member, and a supporting constitution of the developer supplying roller 34 according to this embodiment will be described using
Using
The follower-side engaging portion 21 is fixed and mounted a shaft 34j of the developer supplying roller 34 in one end side with respect to an axial direction. As a fixing method, there are a method in which connection is made by a spring pin or a parallel pin and a method in which as shown in
The driving-side engaging portion 23 is a portion for reserving a difference of a driving source of the main assembly. Further, a shaft portion 23d of the driving-side engaging portion 23 is rotatably held in a hole 41d of a holding portion 41. This holding portion is movable in a direction perpendicular to the axial direction of the developing roller. Further, the driving-side engaging portion 23 is integrally formed with three projections 23c1, 23c2 and 23c3 engageable with a main assembly (-side) developing (means) coupling 91 (
This Oldham coupling 20 allows a deviation between an axis of the main assembly developing coupling 91 which is a difference providing driving member provided in the main assembly and an axis of the developer supplying roller 34, and transmits a rotational difference (second rotational difference) from the apparatus main assembly 100A to the developer supplying roller 34. Further, the Oldham coupling 20 is capable of transmitting a rotational difference (second rotational difference) from the apparatus main assembly 100A to the developer supplying roller 34 in a state in which the developing unit 4 is in the contact position and in the spaced position.
In
The intermediary engaging portion 22 engages with the follower-side engaging portion 21 and the driving-side engaging portion 23, and constitutes an intermediary portion for transmitting a difference, inputted into the driving-side engaging portion 23, to the follower-side engaging portion 21, and is movable in a direction crossing the axial direction of the developer supplying roller 34 while maintaining engagement with each of the engaging portions 21 and 23.
A guide portion 41b of the holding portion 41 is movable, in a direction crossing the axial direction of the developer supplying roller 34, along the groove 43a of the side cover 43 fixed on the developing unit with an unshown screw or the like. That is, the driving-side engaging portion 23 is movable in the direction crossing the axial direction of the developer supplying roller.
In one end side of the photosensitive drum 1 with respect to the axial direction, a triangular drum coupling 16 which is a drum coupling portion is provided. In this embodiment, the drum coupling 16 is formed integrally with the flange of the photosensitive drum. In
The main assembly drum coupling 90 is urged in a direction of the process cartridge 70 by a drum pressing (urging) member 106 such as a compression spring. Further, the main assembly drum coupling 90 is movable in the axial direction of the photosensitive drum 1. Further, in the case where the drum coupling 16 and the hole 90a of the main assembly drum coupling 90 are out of phase and in contact wish each other when the process cartridge 70 is mounted in the apparatus main assembly 100A, the main assembly drum coupling 90 is pushed by the drum coupling 16, thus being retracted. Then by rotation of the main assembly drum coupling 90, the drum coupling 16 and the hole 90a are engaged with each other, the rotational difference is transmitted to the photosensitive drum 1.
Further, the main assembly developing coupling 91 is surged in the direction of the process cartridge 70 toward a direction parallel to the axial direction of the photosensitive drum 1 by a developing (means) pressing (urging) member 107 such as a compression spring. However, the main assembly developing coupling 91 has no play with respect to the direction crossing the axial direction and is provided in the apparatus main assembly 100A. That is, the main assembly developing coupling 91 not only rotates for transmitting the drive (difference) but also in movable only in the axial direction.
When the driving-side engaging portion 23 and the main assembly developing coupling 91 are engaged with each other by causing the process cartridge 70 to enter the apparatus main assembly 100A, the projections 23c1-23c3 and the holes 91a1-91a3 are out of phase in some cases. In this case, free ends of the projections 23c1-23c3 contact portions other than the holes 91a1-91a3, so that the main assembly developing coupling 91 is retracted in the axial direction against an urging force of the developing pressing member 107. However, when the main assembly developing coupling 91 rotates and the projections 23c1-23c3 and the holes 91a1-91a3 are in phase, the main assembly developing coupling 91a advances by the urging force of the developing pressing member 107.
Then, the projections 23c1-23c3 and the centering boss 23a which is an engaging portion positioning portion and the centering hole 91b which is a transmitting member positioning portion engage with each other, so that the driving-side engaging portion 23 and the axis (rotation center) of the main assembly developing coupling 91 coincide with each other. Then, by rotation of the main assembly coupling 91, the projections 23c1-23c3 and the holes 91a1-91a3 engage with each other, respectively, so that the rotational difference is transmitted to the developer supplying roller 34. Next, rotation of the developing roller 25 will be described. The developer supplying roller 34 is provided wish the driving side engaging portion 23 in one end side and is provided with a first gear in the other end side with respect to the longitudinal direction (the axial direction of the developer supplying roller, the axial direction of the developing roller). Incidentally, in this embodiment, the axial direction of the developer supplying roller and the axial direction of the developing roller are is a substantially parallel relationship. On the other hand, the developing roller 25 is provided with a second gear engageable with the above gear. By this constitution, the rotational difference is transmitted to the developing roller 25 drive-connected to the developer supplying roller 34 by the gears in the other end side with respect to the longitudinal direction.
Here, the drive transmission to the main assembly drum coupling 90 and the main assembly developing coupling 91 is made by a motor provided in the apparatus main assembly 100A. By this, the photosensitive drum 1 and the developer supplying roller 34 receive the difference from the image forming apparatus main assembly independently of each other. Incidentally, the motor may employ a constitution using a single motor per each of the process cartridges 70 for the respective colors and a constitution in which the drive is transmitted to some process cartridges by the single motor.
Next, an operation of the contact 20 during a contact end separation operation between the developing roller and the photosensitive drum in the process cartridge 70 according to this embodiment will be described using
However, an arm portion 42a of an urging spring 42 which is an urging member constituted by a helical coil spring provided in a side cover 43 contacts a locking portion 41c of the holding portion 41. By that, the driving-side engaging portion 23 is urged in a direction Q (direction toward the develop) crossing the axial direction of the photosensitive drum 1. Then, a contact portion 41a of the holding portion 41 contacts a bearing contact portion 11a which is an abutting portion (stopping portion) provided on the rear drum bearing 11, and engages with the bearing contact portion 11a.
Here, the bearing contact portion 11a of the rear drum bearing 11 has a V-character shape. Then, the bearing contact portion 11a is formed by two surfaces (sides) parallel to the axis of the photosensitive drum 1 with respect to the axial direction of the photosensitive drum 1. Further, by the contact of the holding portion 41 with this bearing contact portion 11a, the holding portion 41 can be held in parallel to the axis of the photosensitive drum 1. Further, the rear drum 11 is provided with the cartridge positioning portion 11a as a unit. Accordingly, the driving-side engaging portion 23 rotatably supported by the holding portion 41 is positioned with accuracy relative to the rear plate 98, of the apparatus main assembly 100A, to which the cartridge positioning portion 11a is to be positioned. Accordingly, the driving-side engaging portion 23 can be positioned with accuracy also relative to an axis 91j of the main assembly developing coupling 91 provided in the apparatus main assembly 100A.
Incidentally, in this embodiment, as the member for urging the holding portion 41, the urging spring 40 was used. However, an elastically deformable elastic portion is provided integrally with the holding portion 41 and thus may also be contacted to the bearing contact portion 11a.
Next, when the driving-side engaging portion 23 engages with the main assembly developing coupling 91 and then rotates, the driving-side engaging 23 is positioned by the main assembly developing coupling 91. At this time, a constitution in which the contact portion 41a of the holding portion 41 is spaced from the rear drum bearing 11, i.e., the bearing contact portion 11a is formed.
For that reason, when the contact 70 enters the apparatus main assembly 100A, an axis 23j of the driving-side engaging portion 23 will start engagement in a state in which the axis 23j is deviated from the axis 91j of the main assembly developing coupling 91 toward the photosensitive drum 1 side by a certain distance. From this state, when the process cartridge 70 further enters the apparatus main assembly 100A, a constitution in which a taper-shaped chambered portion provided at an outer periphery of a free end of the centering boss 23a and a chamfered portion provided in the hole 91b correspondingly thereto engage with each other while contacting each other, and thus engage with each other while correcting deviation of the axis canter is formed.
Then, the main assembly developing coupling 91 rotates, and when the projections 23c1-23c3 (
Further,
Further, as shown in
Next, a positional relationship between the bearing contact portion 11a and the photosensitive drum 1 in the process cartridge 70 according to shift embodiment will be described using
Here, the bearing contact portion 11a which is a feature portion in this embodiment will be described.
The bearing contact portion 11a is a contact portion provided on the rear drum bearing 11 against which the holding portion 41 abuts. When the driving-side engaging portion 23 engages with the main assembly developing coupling 91, the position of the driving-side engaging portion 23 is determined by the main assembly developing coupling portion. However, when the process cartridge 70 is inserted into the main assembly in the state in which the developing roller and the photosensitive drum are spaced from each other, the driving-side engaging portion 23 does not readily engage with the main assembly developing coupling depending on the position of the driving-side engaging portion. In this embodiment, the position of the main assembly developing coupling is determined by the main assembly, and therefore in order to facilitate engagement between the driving-side engaging portion, and the main assembly developing cartridge during the insertion of the process cartridge into the main assembly, there is a need to determine the position of the driving-side engaging portion. For that reason, in this embodiment, a constitution in which in the case where the driving-side engaging portion and the main assembly developing coupling do not engage with each other, the holding portion 41 is urged against the bearing contact portion 11a by the spring 42 is employed. By that constitution, the holding portion 41 is positioned to the bearing contact portion 11a, with the result that even in the case where the driving-side engaging portion and the main assembly developing cartridge do not engage with each other, the position of the driving-side engaging portion is determined.
As shown in
First, a distance between the axis 90j of the main assembly drum coupling 90 and the axis 91j of the main assembly developing coupling 91 is La. As a comparison example, a constitution in which the bearing contact portion 11a against which the holding portion 41 abuts is provided inside the outer peripheral surface of the photosensitive drum 1 is shown in
In this way, by providing the bearing contact portion, against which the holding portion 41 abuts, outside the outer peripheral surface of the photosensitive drum 1, it becomes possible to make the distance between the axis 90j of the main assembly drum coupling 90 and the axis 91j of the main assembly developing coupling 91 larger (La>Lb).
Therefore, it becomes possible to further ensure a clearance between the main assembly drum coupling 90 and the main assembly developing 91, so that a degree of flexibility in design and arrangement of the apparatus main assembly 100A can be improved. Further, also in the process cartridge 70, the photosensitive drum 1 and the developing roller 25 are made to have a small diameter, so that it also becomes possible to further downsize the process cartridge 70.
In
Further, as shown in
However, as shown in
Further, as shown in
By this, it becomes possible to make the distance between the axis 90j of the main assembly drum coupling 90 and the axis 91j of the main assembly developing coupling 91 large while avoiding the increase of the number of parts due to an increase of the number of the driving gears and the lowering in strength of the drive engaging portion.
According to the present invention, there are provided a process cartridge and an image forming apparatus which are capable of broadening an interval between drive input to a photosensitive drum and drive input to a developing roller.
Number | Date | Country | Kind |
---|---|---|---|
2012-273205 | Dec 2012 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
6947686 | Kawai et al. | Sep 2005 | B2 |
6968142 | Arimitsu et al. | Nov 2005 | B2 |
6980758 | Murayama et al. | Dec 2005 | B2 |
7046942 | Arimitsu et al. | May 2006 | B2 |
7072594 | Hoshi et al. | Jul 2006 | B2 |
7072603 | Tsuzuki et al. | Jul 2006 | B2 |
7088939 | Maeshima et al. | Aug 2006 | B2 |
7127194 | Hoshi et al. | Oct 2006 | B2 |
7158735 | Murayama et al. | Jan 2007 | B2 |
7162181 | Maeshima et al. | Jan 2007 | B2 |
7340197 | Murayama et al. | Mar 2008 | B2 |
7349649 | Hoshi et al. | Mar 2008 | B2 |
7715746 | Tanabe et al. | May 2010 | B2 |
7813671 | Nittani et al. | Oct 2010 | B2 |
7894733 | Tanabe et al. | Feb 2011 | B2 |
7953340 | Tanabe et al. | May 2011 | B2 |
8213828 | Murayama et al. | Jul 2012 | B2 |
8301054 | Tanabe et al. | Oct 2012 | B2 |
8369743 | Maeshima et al. | Feb 2013 | B2 |
8565639 | Nittani et al. | Oct 2013 | B2 |
8583006 | Murayama et al. | Nov 2013 | B2 |
8688003 | Maeshima et al. | Apr 2014 | B2 |
9063501 | Hirukawa et al. | Jun 2015 | B2 |
20060034637 | Kim et al. | Feb 2006 | A1 |
20080095549 | Yoshizawa | Apr 2008 | A1 |
20080138114 | Chadani | Jun 2008 | A1 |
20080138115 | Chadani | Jun 2008 | A1 |
20090297211 | Kanno et al. | Dec 2009 | A1 |
20110268473 | Hashimoto | Nov 2011 | A1 |
20130223853 | Chadani et al. | Aug 2013 | A1 |
20130272753 | Fukasawa | Oct 2013 | A1 |
20130308978 | Nittani et al. | Nov 2013 | A1 |
20140169829 | Maeshima et al. | Jun 2014 | A1 |
20140178097 | Maeshima et al. | Jun 2014 | A1 |
Number | Date | Country |
---|---|---|
H02-21049 | Jan 1990 | JP |
H09-114160 | May 1997 | JP |
2002-189401 | Jul 2002 | JP |
2003-295596 | Oct 2003 | JP |
4464435 | May 2010 | JP |
2011-048399 | Mar 2011 | JP |
2 367 016 | Oct 2007 | RU |
Entry |
---|
International Search Report for International Patent Application No. PCT/JP2013/084171. |
Decision on Grant in Russian Patent Application No. 2015128302, dated Dec. 16, 2016 (with English translation). |
Official Communication in European Patent Application No. 13862816.9, dated Jul. 8, 2016. |
Number | Date | Country | |
---|---|---|---|
20150277370 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2013/084171 | Dec 2013 | US |
Child | 14736723 | US |