1. Field of the Invention
The present invention relates to an image-forming device such as a laser printer, and a cartridge detachably mounted in the image-forming device.
2. Description of the Related Art
Some conventional electrophotographic image-forming devices such as laser printers provide various members used to perform image-forming processes in cartridges that can be detachably mounted in the main body of the image-forming device. In this way, the cartridges can be independently replaced as needed, based on the life span of the members accommodated therein. One such image-forming device disclosed in U.S. Pat. No. 6,385,414 B1 has a process cartridge provided with a toner-accommodating chamber for accommodating toner.
The toner-accommodating chamber is hollow in order to accommodate as much toner as possible. When the chamber is hollow, the walls of the chamber must be made thicker or non-planar in order to maintain the stiffness of the chamber and to prevent the chamber from easily becoming deformed. If the toner-accommodating chamber is deformed, toner accommodated in the chamber is ejected, resulting in toner leakage and other problems.
With the recent demands for more compact image-forming devices, the process cartridges must also be made more compact. However, by making the walls of the toner-accommodating chamber thicker or non-planar in order to maintain the stiffness of the chamber, the process cartridge is inevitably larger, making it difficult to meet demands for a more compact size.
In view of the foregoing, it is an object of the present invention to provide a cartridge capable of enhancing the stiffness of a developer-accommodating section. It is another object of the present invention to provide an image-forming device in which the cartridge can be detachably mounted.
In order to attain the above and other objects, the present invention provides a cartridge that can be detachably mounted in an image-forming device. The cartridge includes: a first wall; a second wall opposing the first wall with a gap formed therebetween, the first wall and the second wall defining therebetween a developer-accommodating section that accommodates a developer; and a reinforcing part spanning between the first wall and the second wall.
According to another aspect, the present invention provides an image-forming device, including: a housing; and the above-described cartridge that is detachably mounted in the housing.
The particular features and advantages of the invention as well as other objects will become apparent from the following description taken in connection with the accompanying drawings, in which:
A cartridge and an image forming device according to the preferred embodiments of the invention will be described with reference to the accompanying drawings.
A color laser printer 1 shown in
The main casing 2 is shaped substantially like an open-topped rectangular box when viewed from the side. A top cover 7 is provided on the top side of the main casing 2. The top cover 7 is rotatably supported by hinges (not shown) disposed on the rear side of the main casing 2 (hereinafter, the left side in
As shown in
The partitioning plates 10 and the front plate 11 are each slanted with respect to the front-to-rear direction, which is identical to the direction in which the paper 3 is conveyed through the color laser printer 1 while being formed with images, and the vertical direction, with the top end farther forward than the bottom end. As shown in, the partitioning plates 10 and front plates 11 are arranged so that a vertical gap is formed between the top ends of the plates 10, 11 and the top cover 7 and another vertical gap is formed between the bottom ends of the plates 10, 11 and a transfer section 28 described later.
Accordingly, as shown in
As shown in
The developer-accommodating section 14 is disposed as a continuation of the drum-accommodating section 13 on the upstream side of the drum-accommodating section 13 with respect to the direction in which the drum cartridge 31 is mounted. In other words, the developer-accommodating section 14 is provided above the drum-accommodating section 13 along the mounting direction for the drum cartridge 31 and the developer cartridge 32. The developer-accommodating sections 14 are partitioned by the partitioning plates 10 and front plate 11 in the front-to-rear direction and by the left side plate 8 and right side plate 9 in the widthwise direction. The internal space of the developer-accommodating sections 14 partitioned in this way (excluding an extended accommodating space 18 described later) forms a developer-accommodating space 16 for accommodating the developer cartridge 32.
As shown in
As shown in
The paper 3 is stacked inside the paper supply tray 21. The pickup roller 22 picks up the topmost sheet of the paper 3 and conveys the sheet forward. Subsequently, the feeding roller 23 feeds the sheet along the feeding side U-shaped path 24. The feeding side U-shaped path 24 is shaped substantially like the letter U and serves as a conveying path for the paper 3. The upstream end of the feeding side U-shaped path 24 is a lower part positioned adjacent to the feeding roller 23 for feeding the paper 3 forward, while the downstream end is an upper part positioned adjacent to a conveying belt 168 described later for conveying the paper 3 rearward.
After the feeding roller 23 feeds the sheet of paper 3 forward along the upstream end of the feeding side U-shaped path 24, the conveying roller 25 continues to convey the paper 3 along the feeding side U-shaped path 24 as the conveying direction of the paper 3 is reversed. The registration roller 26 first registers the sheet of paper 3 and subsequently conveys the sheet rearward.
The image-forming unit 5 includes the process sections 27, the transfer section 28, and a fixing section 29. The process sections 27 are provided one for each color of toner. Specifically, the color laser printer 1 of the preferred embodiment has four process sections 27, including a yellow process section 27Y, a magenta process section 27M, a cyan process section 27C, and a black process section 27K. The process sections 27 are disposed one in each of the process-accommodating sections 12, aligned one after another horizontally and separate from one another by a prescribed gap in the front-to-rear direction.
Each of the process sections 27 includes a scanning unit 30, the drum cartridge 31, and the developer cartridge 32 that is detachably mounted on the drum cartridge 31. A process cartridge is configured of the drum cartridge 31, and the developer cartridge 32 mounted on the drum cartridge 31.
The scanning unit 30 includes a scanner casing 35 and, within the scanner casing 35, a laser light-emitting unit (not shown), a polygon mirror 36, two lenses 37 and 38, and a reflecting mirror 39.
As shown in
Since the scanner casing 35 protrudes forward from the partitioning plates 10, the drum cartridge 31 is restricted from passing through the developer-accommodating section 14 when the developer cartridge 32 is mounted on the drum cartridge 31. However, the drum cartridge 31 can pass through the developer-accommodating space 16 when the developer cartridge 32 is separated from the drum cartridge 31.
As shown in
More specifically, the developer-accommodating section 14 is formed wider in the thickness direction than the thickness of the holder unit 43 of the drum cartridge 31, and narrower than the thickness of the drum cartridge 31 and developer cartridge 32 when mounted on each other.
As shown in
As shown in
As shown in
The drum casing 41 includes the holder unit 43, and the extended part 44 extending from the holder unit 43. The holder unit 43 and extended part 44 are integrally formed of a synthetic resin.
Below, the drum cartridge 31 will be described with reference to
The holder unit 43 includes two side walls 45 opposing each other across a prescribed gap in the widthwise direction, a top wall 46 that spans between the upper edges of the side walls 45, and a front wall 47 that extends from the front edge of the top wall 46 vertically along part of the front edges of the side walls 45. The holder unit 43 is thicker than a developer casing 64 of the developer cartridge 32.
The holder unit 43 is formed thicker than the extended part 44. This construction can reliably accommodate the photosensitive drum 42 and the charger 62.
As shown in
As shown in
As shown in
The extended part 44 includes two extended side parts 52 that face each other across a gap in the widthwise direction, an extended rear wall 53 that spans between the rear edges of the extended side parts 52, and the middle plate 54 disposed in an area surrounded by the holder unit 43, the extended side parts 52, and the extended rear wall 53.
As shown in
As shown in
As described above, the extended rear wall 53 extends in the widthwise direction, connecting the rear edges of the extended side parts 52. A drum grip 57 is provided in the widthwise center of the extended rear wall 53 to facilitate gripping the drum cartridge 31 and mounting and removing the drum cartridge 31 with respect to the drum-accommodating section 13.
The middle plate 54 is formed in a substantially rectangular planar shape as shown in
As shown in
A rotational support member 61 is fitted onto each axial end of the main drum body 59 so as to be incapable of rotating relative to the main drum body 59. The rotational support members 61 are supported on and capable of rotating relative to the drum shaft 60. Hence, the main drum body 59 is supported so as to be capable of rotating relative to the drum shaft 60. With this construction, as shown in
As shown in
The developer cartridge 32 shown in
Next, the developer cartridge 32 will be described in detail with reference to
In the following description, when the developer cartridge 32 is in a mounted state in the color laser printer 1, the side of the developer cartridge 32 in the thickness direction positioned toward the rear side of the color laser printer 1 will be referred to as the top surface side or upper side of the developer cartridge 32; the side positioned toward the front of the color laser printer 1 will be referred to as the bottom surface side or lower side of the developer cartridge 32; the side of the developer cartridge 32 downstream in the mounting direction will be referred to as the front side of the developer cartridge 32; and the side of the developer cartridge 32 upstream in the mounting direction will be referred to as the rear side of the developer cartridge 32. The widthwise direction of the developer cartridge 32 is defined as perpendicular to both of the top-to-bottom direction and the front-to-rear direction of the developer cartridge 32.
As shown in
The casing member 70 includes a pair of side walls 72 spaced apart from each other and facing each other in the widthwise direction; a rear wall 73 connected to the rear edges of the side walls 72; and a bottom wall 74 connected to the bottom edges of the side walls 72 and rear wall 73 so as to cover one side of an area surrounded by the side walls 72 and rear wall 73.
As shown in
These front side walls 75 are provided parallel to each other on opposing sides of the thickness-regulating blade 68, supply roller 66, and agitator 69 and are disposed on the front of the developer cartridge 32 extending from the front edge rearward to corresponding midway positions in the front-to-rear direction.
The rear side walls 77 are also disposed parallel to each other in the rear of the developer cartridge 32 on the opposite side of the agitator 69 from the developing roller 67 and extend from the rear edge of the developer cartridge 32 forward to corresponding midway positions in the front-to-rear direction so that a gap is formed between the front end of the rear side walls 77 and the rear end of the front side walls 75 in the front-to-rear direction. The rear side walls 77 are separate from each other by a distance greater than the distance separating the front side walls 75.
The sloped walls 76 are provided at a slant to the front-to-rear direction so that the distance between the two grows gradually larger from the front edges toward the rear edges. The sloped walls 76 are disposed between the front side walls 75 and rear side walls 77 so that the front edges of the sloped walls 76 are connected to the front side walls 75, while the rear edges are connected to the rear side walls 77. As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The support post member 81 is disposed on the inner surface of the bottom wall 74 opposite the bottom grip part 96 provided on the outer surface of the bottom wall 74. As shown in
As shown in
The long, narrow discharge opening 84 extending in the widthwise direction of the developer cartridge 32 is formed between the end of the partitioning wall 83 facing the lower surface side and the connection part between the front end of the discharge wall 78 and the rear end of the supply roller accommodating wall 79.
As shown in
The cover member 71 is formed in a substantial plate shape that corresponds to the space surrounded by the partitioning wall 8.3, side walls 72, and rear wall 73. The cover member 71 is integrally formed of a contact part 86 formed along the peripheral edge of the cover member 71 in the same plane for contacting the rim part 85 of the casing member 70; and a top wall 87 that is enclosed by the contact part 86 and depressed toward the top surface side.
The top wall 87 is integrally provided with a front top wall 88 that is shaped like a rectangular plate and is disposed on the front side of the cover member 71; a rear top wall 89 that is shaped like a rectangular plate provided on the rear side of the cover member 71 and that is wider and more deeply depressed than the front top wall 88; and a center top wall 90 having a substantial trapezoidal plate shape that is provided between the front top wall 88 and rear top wall 89 in the front-to-rear direction.
As shown in
As shown in
The developer casing 64 is formed by covering the casing member 70 with the cover member 71 so that the contact part 86 of the cover member 71 contacts the rim part 85 of the casing member 70 and the top end of the support post member 81 fits inside the cylindrical fitting part 91 and subsequently welding the contact part 86 to the rim part 85. The developer casing 64 is formed in a thin structure with the bottom grip part 96 and top side grip part 97 opposing each other in the thickness direction, enabling the user to grip and hold the bottom grip part 96 and top side grip part 97 in one hand.
When the support post member 81 is fitted into the cylindrical fitting part 91, the support post member 81 and cylindrical fitting part 91 form the reinforcing post 65 that spans between the bottom wall 74 and the top wall 87, as shown in
In the developer casing 64 having the construction described above, the toner-accommodating chamber 92 is defined by the top wall 87; the rear-to-middle section of the bottom wall 74 having the discharge wall 78 and opposing the top wall 87 at prescribed distances in the thickness direction; and the side walls 72 (specifically, from the rear side walls 77 to a midpoint of the front side walls 75 in the front-to-rear direction), the rear wall 73, and the partitioning wall 83 provided between the top wall 87 and the bottom wall 74.
A developing chamber 93 is formed further forward from the toner-accommodating chamber 92 by the front section of the bottom wall 74 including the supply roller accommodating wall 79 and the tongue wall 80, the side walls 72 formed continuously with the front side of the bottom wall 74 (specifically, from the front edge to a midpoint of the front side walls 75 in the front-to-rear direction), and the partitioning wall 83.
In the toner-accommodating chamber 92, the front top wall 88 and rear top wall 89 are disposed parallel to the bottom wall 74 such that the distance between the rear top wall 89 and the bottom wall 74 is greater than the distance between the front top wall 88 and the bottom wall 74. The center top wall 90 is disposed at a slant to the bottom wall 74, sloping toward the top surface side from the front to the rear.
A toner fill through-hole 98 is formed in one of the rear side walls 77 of the toner-accommodating chamber 92. As shown in
As shown in
As shown in
As shown in
As shown in
The agitator 69 is disposed inside the toner-accommodating chamber 92 near the discharge opening 84. As shown in
The reinforcing post 65 is positioned rearward of the agitator 69 in a position that does not overlap the outer circular path of the rotational path of the agitating member 152, so that the reinforcing post 65 is not contacted by the rotating agitating member 152. In other words, assuming that the area of the reinforcing post 65 that is projected in a direction parallel to the axial direction of the rotational shaft 151 onto each side wall 72 is referred to as a post-projected area, the post-projected area does not overlap the agitator-projected area on each side wall 72.
As shown in
More specifically, the toner for each color used in the preferred embodiment is a substantially spherical polymerized toner obtained by a polymerization method. The primary component of the polymerized toner is a binding resin obtained by copolymerizing a polymerized monomer using a well-known polymerization method such as suspension polymerization. The polymerized monomer may be, for example, a styrene monomer such as styrene or an acrylic monomer such as acrylic acid, alkyl (C1-C4) acrylate, or alkyl (C1-C4) meta acrylate. The base particles are formed by compounding this binding resin with a coloring agent, a charge-controlling agent, wax, and the like. An additive to improve fluidity is also mixed with the base toner particles.
The coloring agent compounded with the binding resin provides one of the colors yellow, magenta, cyan, and black. The charge-controlling agent is a charge-controlling resin obtained by copolymerizing an ionic monomer having an ionic functional group, such as ammonium salt with a monomer that can be copolymerized with an ionic monomer, such as a styrene monomer or an acrylic monomer. The additive may be powder of a metal oxide, such as silica, aluminum oxide, titanium oxide, strontium titanate, cerium oxide, or magnesium oxide, or an inorganic powder, such as a carbide powder or metal salt powder.
As shown in
An opening 159 is formed on the front end of the developer cartridge 32 so that the developing chamber 93 is open over a region from the top surface side to the front side. As shown in
As shown in
The supply roller 66 includes a metal supply roller shaft 155 rotatably supported between the front side walls 75; and a supply roller layer 156 formed of an electrically conductive sponge member that covers the periphery of the supply roller shaft 155.
The developing roller 67 is disposed in the developing chamber 93 at a position diagonally forward and toward the top surface side from the supply roller 66 and extends in the widthwise direction so as to confront the tongue wall 80. The developer roller 67 includes a metal developer roller shaft 157 that is rotatably supported between the front side walls 75 and a developer roller layer 158 formed of an electrically conductive rubber material that covers the developer roller shaft 157. More specifically, the developer roller layer 158 has a two-layer construction including an elastic roller layer formed of an electrically conductive urethane rubber, silicone rubber, or EPDM rubber containing fine carbon particles or the like, and a coating layer covering the surface of the roller layer and having the primary component of urethane rubber, urethane resin, polyimide resin, or the like.
The developing roller 67 and supply roller 66 are disposed so as to contact each other with pressure. As shown in
The thickness-regulating blade 68 is provided on the front surface of the partitioning wall 83 across the entire width of the same. As shown in
As shown in
A cover detection through-hole 179 is formed in the gear cover 164 at a position corresponding to one of the detection windows 100 in the widthwise direction. In a side view, the cover detection through-hole 179 has a substantially elliptical shape corresponding to the detection window 100 that is elongated in the front-to-rear direction.
As shown in
The lower end (deepest end) of each guiding groove 101 is a receiving part 102 for receiving the drum shaft 60. The receiving part 102 is formed as a depression in which the drum shaft 60 perfectly fits in the front-to-rear direction and is positioned so that, when the drum shaft 60 is received in the receiving parts 102, the photosensitive drum 42 is positioned in contact with a conveying belt 168 described later.
Drum positioning grooves 103 are formed in the left side plate 8 and right side plate 9 at corresponding widthwise positions. The drum positioning grooves 103 are located at the midway positions in the lengths of the guiding grooves 101. The drum positioning grooves 103 are depressions that are rectangular-shaped in a side view and open on the front for receiving the drum bosses 56.
As shown in
With the color laser printer 1 according to the preferred embodiment, as shown in
More specifically, to mount the drum cartridge 31 in the drum-accommodating space 15 of the process-accommodating section 12, the user grips the drum grip 57, inserts the drum bosses 56 of the drum cartridge 31 into the corresponding guiding grooves 101, and pushes the drum cartridge 31 downward, as shown in
When the holder unit 43 of the drum cartridge 31 passes through the developer-accommodating space 16 of the developer-accommodating section 14, the ridges 51 of the drum cartridge 31 frequently slide against the rail parts 17 of the developer-accommodating section 14 as the drum cartridge 31 is mounted. In this way, since the ridges 51 protrude toward the rail parts 17 and the rail parts 17 are formed of thick strips, the ridges 51 contact the rail parts 17 to form a gap between the front wall 34 of the scanner casing 35 and the top wall 46 opposing the front wall 34, thereby preventing the top wall 46 from rubbing against the front wall 34 of the scanner casing 35.
Then, the drum bosses 56 are inserted into the corresponding drum-positioning grooves 10.3. As a result, the drum cartridge 31 is accommodated in the drum-accommodating space 15 with the extended part 44 accommodated in the extended accommodating space 18 of the developer-accommodating section 14. In this way, the drum cartridge 31 is mounted in the main casing 2.
In the color laser printer 1 having the construction described above, the front wall 34 of the scanner casing 35 protrudes into the process-accommodating section 12 toward the developer-accommodating space 16, restricting passage of the drum cartridge 31 through the developer-accommodating section 14 when the developer cartridge 32 is mounted on the drum cartridge 31 in the developer-accommodating section 14. However, the drum cartridge 31 is allowed to pass through the developer-accommodating space 16 of the developer-accommodating section 14 when the developer cartridge 32 is separated from the drum cartridge 31.
By forming the front wall 34 of the scanner casing 35 to expand toward the developer-accommodating space 16, the drum cartridge 31 can be passed through the developer-accommodating space 16 without conflicting with the front wall 34 of the scanner casing 35 and can be mounted in the drum-accommodating section 13 and accommodated in the drum-accommodating space 15 when separated from the developer cartridge 32, without simply allocating additional space for the mounting paths of the drum cartridge 31 and the developer cartridge 32. Subsequently, as described below, the developer cartridge 32 can be mounted in the developer-accommodating section 14 and accommodated in the developer-accommodating space 16, thereby completing the process of mounting both the drum cartridge 31 and developer cartridge 32.
When the holder unit 43 is accommodated in the drum-accommodating space 15 of the drum-accommodating section 13, the ridges 51 pass over the rail parts 17 to a position below the scanner casing 35, as shown in
Next, the user grips the developer cartridge 32 on the bottom grip part 96 and top side grip part 97, lines up the developer bosses 95 with the corresponding boss insertion grooves 133, as shown in
Further, when mounting the developer cartridge 32 as described above, the runners 154 of the developer casing 64 contact the rear surface 33 of the partitioning plate 10 before the jaw part 153, and the runners 154 slide along the rear surface 33 of the partitioning plate 10 as the developer cartridge 32 is mounted. This construction can prevent damage to the jaw part 153 and can reliably prevent toner from leaking from the peripheral surface of the developing roller 67.
When an image-forming operation is not being performed in the color laser printer 1, a separating mechanism (not shown) holds the developer cartridge 32 in a separated state from the drum cartridge 31 so that the developing roller 67 is separate from the photosensitive drum 42. During an image-forming operation, the developer cartridge 32 is moved to a contact position so that the photosensitive drum 42 and developing roller 67 are in contact with each other.
By fitting the developer roller shaft 157 of the developing roller 67 into the developer positioning groove 48 of the drum casing 41 when the developer cartridge 32 is mounted on the drum cartridge 31, the developer cartridge 32 can be positioned in relation to the drum cartridge 31 so that the developer cartridge 32 can be selectively switched between the separated position and the contact position in the developer-accommodating section 14. The developer cartridge 32 can also be positioned in relation to the developer-accommodating section 14 by placing the contact protrusions 94 on the bottom wall 74 of the developer casing 64 in contact with the rear surface 33 of the partitioning plate 10.
When mounted and positioned in this way, each of the developer cartridges 32 is disposed at a slant to the vertical, as shown in
When the drum cartridge 31 is mounted in the drum-accommodating section 13, the photosensitive drum 42 is electrically grounded through a connection with contact points (not shown). During an image-forming operation, a charge bias is applied to the charger 62. Also during an image-forming operation, a driving force inputted from a motor (not shown) rotates the photosensitive drum 42 through the engagement of gears (not shown).
When the developer cartridge 32 is mounted in the developer-accommodating section 14, a connection is made with contact points (not shown), enabling a developing bias to be applied to the developer roller shaft 157 of the developing roller 67 during an image-forming operation. Further, a male coupling part (not shown) is engaged with the female coupling part 163, so that a driving force from the motor (not shown) can be inputted during an image-forming operation to rotate the agitator 69, supply roller 66, and developing roller 67.
During an image-forming operation, toner accommodated in the toner-accommodating chamber 92 of each developer cartridge 32 corresponding to each color shifts vertically downward by its own weight toward the discharge opening 84 and is discharged through the discharge opening 84 as the agitator 69 rotates. Toner discharged through the discharge opening 84 is supplied onto the supply roller 66 and in turn is supplied onto the developing roller 67 as the supply roller 66 rotates. At this time, a developing bias is applied to the developing roller 67 and the toner is positively tribocharged between the supply roller 66 and the developing roller 67.
As the developing roller 67 rotates, the toner supplied to the surface of the developing roller 67 passes between the developer layer 158 of the developing roller 67 and the pressing part 162 of the thickness-regulating blade 68 so that the thickness-regulating blade 68 can regulate the toner carried on the surface of the developing roller 67 at a fixed thin layer.
In the meantime, a charge bias is applied to the charger 62 in the drum cartridge 31, causing the charger 62 to generate a corona discharge to apply a uniform positive charge to the surface of the photosensitive drum 42. As the photosensitive drum 42 rotates, the surface of the photosensitive drum 42 is exposed to the high-speed scan of a laser beam emitted from the scanning unit 30. The scanning unit 30 forms an electrostatic latent image on the surface of the photosensitive drum 42 corresponding to an image to be formed on the paper 3.
As the photosensitive drum 42 rotates further, the electrostatic latent image formed on the surface of the photosensitive drum 42 comes into contact with the positively charged toner carried on the surface of the developing roller 67. The toner on the surface of the rotating developing roller 67 is supplied to the latent image on the surface of the photosensitive drum 42, that is, is supplied to the exposed parts of the surface of the photosensitive drum 42 that have been exposed by the laser beam and, therefore, have a lower potential than other parts of the surface carrying a positive charge. In this way, the electrostatic latent image is developed into a visible toner image through a reverse developing process, and the toner image is carried on the surface of the photosensitive drum 42 for each color.
As shown in
The conveying belt 168 is an endless belt formed of a synthetic resin such as an electrically-conductive polycarbonate or polyimide containing dispersed conductive particles such as carbon. The conveying belt 168 is looped around the drive roller 166 and the follow roller 167. When the drive roller 166 is driven, the follow roller 167 follows the rotation of the drive roller 166, while the conveying belt 168 travels in a circuit between the drive roller 166 and follow roller 167. The outer surface of the conveying belt 168 opposes and contacts the photosensitive drum 42 in each process section 27 at an image-forming position and moves in the same direction as the surface of the photosensitive drum 42 at the point of contact.
The transfer rollers 169 are disposed inside the conveying belt 168 at positions opposing each photosensitive drum 42 with the conveying belt 168 interposed therebetween. The transfer rollers 169 are configured of a metal roller shaft covered with a roller part that is formed of an elastic material such as a conductive rubber material. The transfer rollers 169 are rotatably provided so that the surfaces of the transfer rollers 169 move in the same direction as the conveying belt 168 at the image-forming positions. A transfer bias is applied to the transfer rollers 169 during a transfer operation.
As described above, the conveying belt 168 moves in a circuit around the drive roller 166 and follow roller 167 when the drive roller 166 is driven and the follow roller 167 follows. When a sheet of paper 3 is supplied from the feeder unit 4, the conveying belt 168 conveys the paper 3 past each image-forming position between the conveying belt 168 and the photosensitive drum 42 of the process sections 27 in sequence in the rearward direction. As the conveying belt 168 conveys the paper 3, toner images in each color conveyed on the photosensitive drums 42 of each process section 27 are transferred sequentially onto the paper 3, thereby forming a multicolor image on the paper 3.
Specifically, first a yellow toner image carried on the surface of the photosensitive drum 42 in the yellow process section 27Y is transferred onto the paper 3. Next, a magenta toner image carried on the surface of the photosensitive drum 42 in the magenta process section 27M is transferred onto the paper 3 and superimposed over the yellow toner image. This operation is repeated for transferring and superimposing the cyan toner image carried on the surface of the photosensitive drum 42 in the cyan process section 27C and the black toner image carried on the surface of the photosensitive drum 42 in the black process section 27K, producing a multicolor image on the paper 3.
To form multicolor images in this way, the color laser printer 1 is configured as a tandem type device in which the drum cartridge 31 and developer cartridge 32 are provided as a set in each process sections 27, and a set is provided for each color. Accordingly, the color laser printer 1 of the preferred embodiment forms toner images in each color at about the same speed as required for forming monochrome images, thereby achieving rapid color image formation. Hence, the color laser printer 1 of the preferred embodiment can form color images while maintaining a compact shape.
The fixing section 29 is disposed in the main casing 2 at a position rearward of the process-accommodating section 12 accommodating the black process section 27K and is aligned in the front-to-rear direction with the image-forming positions at points of contact between the photosensitive drums 42 and the conveying belt 168. The fixing section 29 includes a heating roller 170 and a pressure roller 171.
The heating roller 170 is configured of a metal tube, the surface of which is coated with a release layer. The metal tube accommodates a halogen lamp that extends along the axis of the heating roller 170. The halogen lamp heats the surface of the heating roller 170 to a fixing temperature. The pressure roller 171 is disposed in confrontation with the heating roller 170 for applying pressure thereto.
After the toner images have been transferred onto the paper 3, the paper 3 is conveyed to the fixing section 29. The fixing section 29 fixes the color image onto the paper 3 with heat as the paper 3 passes between the heating roller 170 and the pressure roller 171.
The discharge unit 6 includes a U-shaped discharge path 172, discharge rollers 173, and a discharge tray 174.
The discharge path 172 has a curved U shape and functions as a path for conveying the paper 3. The upstream end of the discharge path 172 is the lower section of the discharge path 172 and is positioned adjacent to the fixing section 29 for feeding the paper 3 in a rearward direction, while the downstream end of the discharge path 172 is the upper section and is positioned adjacent to the discharge tray 174 for discharging the paper 3 forward.
The discharge rollers 173 are a pair of rollers disposed near the downstream end of the discharge path 172. The discharge tray 174 is a surface formed on the top of the main casing 2 that slopes downward from the front to the rear side.
After a multicolor image is fixed on the paper 3 in the fixing section 29, the paper 3 is conveyed into the upstream end of the discharge path 172 in the rearward direction. The U-shaped discharge path 172 reverses the conveying direction of the paper 3, and the discharge rollers 173 discharges the paper 3 forward onto the discharge tray 174.
In the color laser printer 1 described above, the forward direction in which the pickup roller 22 picks up the paper 3 is opposite the rearward direction in which the paper 3 is conveyed past the image-forming positions. Further, the rearward direction in which the paper 3 is conveyed past the image-forming positions is opposite the forward direction in which the discharge rollers 173 discharge the paper 3. This construction enables the device to be made compact while providing conveying paths for the paper 3.
In the color laser printer 1 of the preferred embodiment described above, the drum cartridge 31 and developer cartridge 32 are mounted in the drum-accommodating section 13 and developer-accommodating section 14 of each process-accommodating section 12 at a slant to the front-to-rear direction (conveying direction of the paper 3 that is being conveyed while being formed with images) and the vertical direction (thickness direction of the paper 3 that is being conveyed while being formed with images). More specifically, the drum cartridge 31 and the developer cartridge 32 are mounted in a direction that slopes rearward from top to bottom. This construction can improve the operability of mounting and removing the drum cartridge 31 and developer cartridge 32.
In the color laser printer 1 of the preferred embodiment described above, the plurality of sets of the drum cartridge 31 and developer cartridge 32 are disposed alternately with the plurality of scanning units 30 in the front-to-rear direction, thereby achieving an efficient arrangement that can produce a compact device.
In the developer cartridge 32, the reinforcing post 65 provided in the toner-accommodating chamber 92 spans between the top wall 87 and the bottom wall 74 and can absorb stress applied between the top wall 87 and bottom wall 74 in a compressing direction, thereby improving the stiffness of the toner-accommodating chamber 92. Moreover, since the reinforcing post 65 is disposed inside the toner-accommodating chamber 92 between the top wall 87 and the bottom wall 74, the reinforcing post 65 can improve the stiffness of the toner-accommodating chamber 92 while maintaining the thinness of the developer cartridge 32, regardless of the outer shape of the developer cartridge 32, thereby making it possible to achieve a compact device.
In the developer cartridge 32 having this construction, the reinforcing post 65 is disposed in the widthwise center and front-to-rear center of the toner-accommodating chamber 92 at a position separate from the side walls 72, rear wall 73, and partitioning wall 83, thereby reinforcing the space in the toner-accommodating chamber 92 farther inward from the side walls 72, rear wall 73, and partitioning wall 83. This construction further improves the stiffness of the toner-accommodating chamber 92.
The reinforcing post 65 is also disposed rearward of the agitator 69 in a position that the post-projected area does not overlap the agitator-projected area on the side walls 72, so that the reinforcing post 65 is not contacted by the rotating agitating members 152. If the reinforcing post 65 were disposed in a position for contacting the agitator 69 so that the rotating agitating members 152 deform while sliding over the reinforcing post 65, this contact will apply an excessive load to the agitator 69 and generate noise.
However, by positioning the reinforcing post 65 so as not to contact the rotating agitating member 152 as in the preferred embodiment, it is possible to prevent an excessive load from being applied to the agitator 69 and to prevent the generation of noise.
In a comparative example, a cutout part 175 is formed in the widthwise center of each agitating member 152, as shown in
However, the reinforcing post 65 in the preferred embodiment (
Even though the agitator 69 is disposed near the discharge opening 84, the reinforcing post 65 reinforces the space in the section of the toner-accommodating chamber 92 on the opposite side of the agitator 69 from the discharge opening 84. Accordingly, it is possible to improve the stiffness of the toner-accommodating chamber 92 and ensure that toner can be smoothly discharged through the discharge opening 84.
Since the developer cartridge 32 has a thin shape, the operator can grip the bottom grip part 96 and top grip part 97 with one hand when mounting or removing the developer cartridge 32. This gripping action applies stress in a compressing direction to the top wall 87 and bottom wall 74 of the developer cartridge 32 in the region where the bottom grip part 96 and top grip part 97 are provided.
However, the reinforcing post 65 spans between the inner surface of the bottom wall 74 opposing the bottom grip part 96 and the inner surface of the top wall 87 opposing the top grip part 97, thereby reliably absorbing this stress in the compressing direction. Therefore, this construction improves the stiffness of the toner-accommodating chamber 92 and prevents the toner-accommodating chamber 92 from deforming when the operator grips the developer cartridge 32.
When the supporting post member 81 is fitted into the cylindrical fitting part 91, the resulting reinforcing post 65 has a teardrop-shaped cross-section with the tapered point of the teardrop shape pointing upstream in the direction that toner is discharged (upward when the developer cartridge 32 is mounted). The reinforcing post 65 has a substantially V-shaped tapered surface 82 along its rear side. The surface 82 is formed from the guide surface 82a and the guide surface 82b. The surface 82 serves as a guide surface for guiding toner in the discharging direction.
Hence, the guide surface 82 can smoothly guide toner downstream in the discharging direction (downward when the developer cartridge 32 is mounted), preventing the toner from accumulating around the reinforcing post 65. Further, since the guide surface 82 is formed in a tapered shape pointing upstream in the discharging direction, the toner is smoothly guided downstream in the discharging direction along the tapered guide surface 82, thereby reliably preventing toner from accumulating around the reinforcing post 65.
Fitting the supporting post member 81 of the bottom wall 74 in the cylindrical fitting part 91 provided on the top wall 87 forms the reinforcing post 65 that spans between the bottom wall 74 and top wall 87. Hence, the reinforcing post 65 can be reliably provided between the bottom wall 74 and top wall 87 by fitting the supporting post member 81 into the cylindrical fitting part 91, thereby reliably improving the stiffness of the toner-accommodating chamber 92.
As described above, the reinforcing post 65 is disposed in a position forward of the extended line X and not overlapping the extended line X. The extended line X is a line extending from the toner-filling nozzle 99 inserted through the toner fill through-hole 98 along the filling direction in which the toner-filling nozzle 99 introduces toner into the toner-accommodating chamber 92. In other words, the line X extends from the center of the toner fill through-hole 98 in a direction perpendicular to the side walls 72. This construction reduces the percentage of toner that directly contacts the reinforcing post 65 when the toner-filling nozzle 99 fills the toner-accommodating chamber 92 with toner, enabling the toner-accommodating chamber 92 to be smoothly filled with toner.
The toner fill through-hole 98 is disposed rearward of the agitator 69 so as not to overlap the agitator-projected area on the side wall 72. This construction reduces the percentage of toner that directly contacts the agitator 69 when filling the toner-accommodating chamber 92 with toner, enabling the toner-accommodating chamber 92 to be smoothly filled with toner. Moreover, by forming the toner fill through-hole 98 in one of the rear side walls 77, which are spaced farther apart than the front side walls 75, toner-filling efficiency can be improved.
By providing the supporting post member 81 on the plate-shaped bottom wall 74 and the cylindrical fitting part 91 on the plate-shaped center top wall 90, the toner-accommodating chamber 92 can be formed in a thin shape.
Further, the reinforcing post 65 is disposed at a position rearward of and not overlapping the optical path of the detection light transmitted between the detection windows 100. Therefore, the detection light can be reliably transmitted through the detection windows 100, thereby easily and reliably detecting the amount of residual toner.
In the developer cartridge 32 described above, the gear train (not shown) and the female coupling part 163 are provided on the outer surface of the front side wall 75 for transferring a driving force to the agitator 69, supply roller 66, and developing roller 67. If the axial length of the rotational shaft 151 for the agitator 69 were increased, the gear train and female coupling part 163 would be further expanded outward in the widthwise direction, making it difficult to manufacture a compact developer cartridge 32.
Hence, by setting the distance between the front side walls 75 at the position where the agitator 69 is provided shorter than the distance between the rear side walls 77 at the position on the opposite side of the agitator 69 from the discharge opening 84, it is possible to increase the capacity for accommodating developer by increasing the length between the rear side walls 77 at the position on the opposite side of the agitator 69 from the discharge opening 84. The gear cover holds the gears (not shown) and the female coupling part 163 on the outside surface of the front side wall 75 within a small, compact space.
By forming the sloped surface 188 on the inner surface of the sloped walls 76 for guiding toner in the discharging direction, a step part between the front side walls 75 and the rear side walls 77 can be eliminated, even though the distance between the front side walls 75 is shorter than the distance between the rear side walls 77. Accordingly, the sloped surfaces 178 prevent toner from accumulating between the front side walls 75 and rear side walls 77 and smoothly guide the toner to be discharged from the toner-accommodating chamber 92.
In the toner-accommodating chamber 92, the front top wall 88 and rear top wall 89 are disposed parallel to the bottom wall 74 such that the distance between the rear top wall 89 and the bottom wall 74 is greater than the distance between the front top wall 88 and the bottom wall 74. This construction increases the toner capacity in the rear portion of the developer cartridge 32 that is relatively unimpeded when the developer cartridge 32 is mounted or removed due to its relative position to the scanning unit 30 and the like. Hence, the toner capacity in the developer cartridge 32 can be increased while ensuring a smooth mounting and removal operation.
In the developer cartridge 32 described above, the developing roller 67 is disposed in the front end of the developing chamber 93, which is in fluid communication with the toner-accommodating chamber 92, so that the front surface of the developing roller 67 is exposed through the opening 159. Accordingly, toner accommodated in the toner-accommodating chamber 92 can be effectively discharged into the developing chamber 93 and effectively carried on the developing roller 67. Further, since the toner accommodated in the toner-accommodating chamber 92 shifts downward toward the discharge opening 84 by its own weight when the developer cartridge 32 is mounted in the developer-accommodating section 14, the smooth discharge of toner can be achieved through a simple structure.
Since the agitator 69 is disposed above and near the discharge opening 84 when the developer cartridge 32 is mounted in the developer-accommodating section 14, the agitator 69 can discharge toner, which has shifted toward the discharge opening 84 by its own weight, in uniform amounts through the discharge opening 84. Hence, this construction ensures that a stable amount of toner will be carried on the developing roller 67 to achieve reliable image formation.
When the developer cartridge 32 is mounted in the developer-accommodating section 14, the supply roller 66 and developing roller 67 are disposed below the toner-accommodating chamber 92, enabling the developer cartridge 32 to be manufactured in a thin shape. Further, the supply roller 66 and developing roller 67 are disposed below the toner-accommodating chamber 92 such that the vertical line Z extending vertically downward from the rotational shaft 151 of the agitator 69 intersects the line segment Y connecting the supply roller shaft 155 of the supply roller 66 with the developer roller shaft 157 of the developing roller 67, enabling the developer cartridge 32 to be manufactured in a even thinner shape.
In the preferred embodiment described above, a single reinforcing post 65 is provided in the toner-accommodating chamber 92. However, in a second embodiment of the present invention, a plurality of reinforcing posts 65 are provided in the toner-accommodating chamber 92.
As shown in
In the developer cartridge 32 shown in
In the second embodiment described above, the reinforcing posts 65 are disposed on the inner surface of the bottom wall 74 at positions separate from the side walls 72, rear wall 73, and partitioning wall 83. However, reinforcing parts can be formed continuously with any of the side walls 72, rear wall 73, and partitioning wall 83.
For example, in a third embodiment of the present invention shown in
The reinforcing plates 186 are provided on the rear end of the bottom wall 74 erected toward the top surface side and are spaced at prescribed intervals from each other in the widthwise direction. The reinforcing plates 186 are also formed continuously with the inner surface of the rear wall 73 extending in the front-to-rear direction.
The reinforcing plate receiving members 187 are provided on the rear end of the rear top wall 89, extending in the front-to-rear direction and protruding downward toward the bottom surface side. The reinforcing plate receiving members 187 are spaced at prescribed intervals in the widthwise direction so as to correspond to the reinforcing plates 186. Each of the reinforcing plate receiving members 187 is formed of two gripping plates 188 facing each other across a gap for receiving and gripping the corresponding reinforcing plate 186.
In the developer cartridge 32 shown in
Specifically, as shown in
Each of the reinforcing ribs 200 includes a bottom surface side end 201, and a top surface side end 202. The bottom surface side end 201 is erected on the inner surface of the discharge wall 78 and is formed continuously along the discharge wall 78, which protrudes toward the top surface side and which has an arc-shaped cross-section. Each of the top surface side ends 202 is erected from the rear surface of the partitioning wall 83 and is formed continuously along the rear surface of the partitioning wall 83.
The reinforcing rib 200 also includes a center part 203 that is disposed between the bottom surface side end 201 and top surface side end 202 and that crosses through the discharge opening 84 in the thickness direction of the developer cartridge 32, that is, orthogonal to the widthwise direction of the developer cartridge 32 in which the discharge opening 84 extends; and an insertion part 204 provided on the center part 203 that fits into the discharge opening 84. The end surface of the partitioning wall 83 on the bottom surface side slopes toward the top surface side from the rear end toward the front. Each of the insertion parts 204 is formed integrally with the corresponding center part 203, the top surface side end of the insertion parts 204 being formed to contact the entire bottom surface side end surface of the partitioning wall 83 and the bottom surface side end of the insertion part 204 being formed to contact the end surface on the top surface side of the connecting part between the front end of the discharge wall 78 and the rear end of the supply roller accommodating wall 79. The surface on the front side of the center part 203 is formed such that its top surface side end is flush with the front surface of the partitioning wall 83, and its bottom surface side end is flush with the front surface on the rear end of the supply roller accommodating wall 79.
As shown in
Because the toner-accommodating chamber 92 and developing chamber 93 are formed in the developer cartridge 32, the discharge opening 84 is formed so that the toner-accommodating chamber 92 and developing chamber 93 are in fluid communication.
The reinforcing ribs 200 juxtaposed in the discharge opening 84 can reinforce the discharge opening 84, while allowing the smooth discharge of toner through the discharge opening 84. Accordingly, the reinforcing ribs 200 can absorb stress applied to the top wall 87 and bottom wall 74 in the compressing direction, thereby improving stiffness between the toner-accommodating chamber 92 and developing chamber 93. This construction can prevent the developer cartridge 32 from being dented or deformed and can prevent toner in the toner-accommodating chamber 92 from being accidentally ejected through the discharge opening 84 toward the developing roller 67.
In the fourth embodiment described above, the reinforcing parts are formed by the reinforcing ribs 200 juxtaposed in the discharge opening 84.
More specifically, as shown in
In the developer cartridge 32 shown in
The connecting walls 207 formed on the partitioning wall 83 in this way can reinforce the discharge opening 84, while enabling the smooth discharge of toner through the discharge opening 84. Hence, as described above, the connecting walls 207 can absorb stress applied to the top wall 87 and bottom wall 74 in the compressing direction, thereby improving the stiffness between the toner-accommodating chamber 92 and developing chamber 93. As a result, this construction can prevent the developer cartridge 32 from becoming dented or deformed and can prevent toner within the toner-accommodating chamber 92 from being accidentally ejected through the discharge opening 84 toward the developing roller 67.
In the fifth embodiment described above, the top surface side of the discharge opening 84 is closed by the partitioning wall 83 along the widthwise direction, while the connecting walls 207 partition the discharge opening 84 at intervals along the widthwise direction. Accordingly, the discharge opening 84 can be further reinforced to prevent deformation, while enabling the smooth discharge of toner.
Although the present invention has been described with respect to specific embodiments, it will be appreciated by one skilled in the art that a variety of changes may be made without departing from the scope of the invention.
For example, in the above-described first embodiment, the support post member 81 is provided on the bottom wall 74, while the cylindrical fitting part 91 is provided on the top wall 87 for fitting over the end of the support post member 81. However, the support post member 81 may be provided on the top wall 87, and the cylindrical fitting part 91 may be provided on the bottom wall 74 for fitting over the end of the support post member 81.
In the above-described embodiments, the fill through-hole 98 is located in one of the two opposite side walls 72. However, two fill through-holes 98 may be formed in both of the two opposite side walls 72.
The above-described embodiments are related to a tandem-type color laser printer 1 for directly transferring toner images from each photosensitive drum 42 to the paper 3, but the present invention is not limited to this device. For example, the present invention may be applied to an intermediate transfer-type color laser printer that transfers toner images in each color from the respective photosensitive members to an intermediate transfer member temporarily and subsequently transfers the entire color image to the paper. The present invention may also be applied to a monochrome laser printer.
Number | Date | Country | Kind |
---|---|---|---|
2004-317220 | Oct 2004 | JP | national |
2005-223222 | Aug 2005 | JP | national |