PROCESS CONTROL METHODOLOGIES FOR BIOFUEL APPLIANCE

Information

  • Patent Application
  • 20080097649
  • Publication Number
    20080097649
  • Date Filed
    October 18, 2006
    17 years ago
  • Date Published
    April 24, 2008
    16 years ago
Abstract
Apparatus for controlling the operation of a biomass stove utilizes three proportional integral derivative (PID) controllers as part of a closed loop to control the fuel feed rate, the convection fan speed and the combustion fan speed. The first loop controls room temperature, the second loop controls the convection fan speed and the third loop controls the combustion fan. Appropriate temperature readings are utilized for the first and second loop. The third loop, which utilized feedback of the ratio between the heat exchanger temperature to the exhaust temperature, in addition to measuring these temperatures also references a library of look-up tables of such ratios over the entire heat range of the stove that have been correlated to combustion efficiency, as an input. This enables the operator to optimize the heat output for any operating point.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principals, elements and interrelationships therebetween of the invention.



FIG. 1 is a block diagram representing a PID control loop associated with the fuel feed rate;



FIG. 2 is a block diagram representing a PID control loop associated with the convection fan; and,



FIG. 3 is a block diagram representing a PID control loop associated with the combustion fan.





DETAILED DESCRIPTION OF THE INVENTION

A preferred, non-limiting combustion device and/or a heating appliance is generally depicted in co-pending U.S. patent application Ser. No. ______, filed Oct. 16, 2006, entitled “Apparatus for Combustion of Biofuels,” previously incorporated herein by reference in its entirety. The PID control loops for regulating combustion parameters of said device(s), or such device(s) generally, are depicted in FIGS. 1-3, namely, the regulation of fuel feed rate in response to the selection of a target environmental ambient temperature (FIG. 1); the regulation of the convection or recirculation air throughput as a function of a preselect exhaust temperature (FIG. 2); and, the regulation of the combustion air throughput as a function of combustion efficiency, i.e., via a preselect target ratio of exhaust/heat exchanger temperature calibrated to said efficiency (FIG. 3).


In-as-much as a combination of each of the process control methodologies is especially advantageous and contemplated, such combustion regulation need not be so limited, e.g., each approach alone, or each approach in combination with one other, etc. are believed to impart technical and/or functional advantage for and in relation to heretofore known commercial devices/appliances. Likewise, in-as-much as the methodologies depicted and described are intended to be digital in nature, they need not be so limited, analog signaling being well within the skill of such artisans.


With continued general reference to FIGS. 1-3, FIG. 1 depicts a pair of proportional integral derivative (PID) systems 10, 10A, wherein associated algorithms are executed in PID controllers 12, 12A in furtherance of combustion parameter regulation. Similarly, with reference to FIG. 2, the algorithm for PID 10′ is executed in controller 12′; with reference to FIG. 3, the algorithm for PID 10″ is executed in controller 12″.


As will be later discussed, the illustrated control system duality of FIG. 1, and also indirectly manifest in the control scheme of FIG. 3, supports utilization of either of two biomass fuel types of sufficiently different quality/character, e.g., wood pellet versus corn, in an appliance capable of, or adapted for use of greater than one “type” of biomass fuel for regulating, in the instant case, fuel feed rate. Furthermore, it should be readily appreciated that while the following detailed description is directed to, or otherwise premised upon, a feed characterized by one of two alternative biomass fuel types, it need not be so limited; to wit, a single fuel type, or up to “n” different fuel types are similarly contemplated, with adaptations of the subject process control or regulating methodologies generally following that aim.


As should be readily apparent, the components, connection and general operation of controllers 12/12A (FIG. 1), 12′ (FIG. 2) and 12″ (FIG. 3) are substantially identical. To minimize repetition, only the operation and connections of controller 12 (FIG. 1) will be subsequently described in detail: controller 12A related elements (FIG. 1) are distinguished by adding an “A” after common reference numerals representing common elements or features with regard to those of controller 12 of FIG. 1; likewise, controller 12′ related elements (FIG. 2) are distinguished by adding a single prime (′) after common reference numerals representing common elements or features with regard to those of controller 12 of FIG. 1; and, finally, controller 12″ related elements (FIG. 3) are distinguished by adding a double prime (″) after common reference numerals representing common elements or features with regard to those of controller 12 of FIG. 1.


Referring now to FIG. 1, more particularly, controller 12 thereof, a discussion of general proportional integral derivative system elements and functions common to FIGS. 1-3 is provided. As illustrated, controller 12 of system 10 receives input 14 and transmits or otherwise sends or issues output 16. Three processing or execution paths are shown between input 14 and output 16, namely, paths 18, 20 and 22. The input or origin to/of paths 18, 20 and 22 (i.e., input 14) is the output of summing point 24, with output 16 of each of paths 18, 20 and 22 reflecting the summation of each such path at summing point 26.


In connection to path 18, processing thereof proceeds via sub-processor 28. The error of input 14 is multiplied by a preprogrammed or preselect fixed gain, e.g., gain one. In connection to path 20, processing thereof proceeds via sub-processor 30. The derivative of input 14 is first calculated via portion 32 of sub-processor 30, and the result is multiplied by a preprogrammed or preselect fixed gain, e.g., gain two, via portion 34 of sub-processor 30. Finally, in connection to path 22, processing thereof proceeds via sub-processor 36. The integral of input 14 is first calculated via portion 38 of sub-processor 36, and the result is multiplied by a preprogrammed or preselect fixed gain, e.g., gain three, via portion 40 of sub-processor 36.


As previously noted, the combustion or operational parameter regulation depicted in FIG. 1 is fuel feed rate as a function of select target environmental ambient temperature. Generally, means are provided to set the target or sought after temperature, i.e., room temperature. In relation to the preferred embodiments of the control methodologies of the subject invention, and appliances incorporating same, a single controller input is intended to be user selected, namely, the target environmental ambient temperature.


Target setting means advantageously, but not necessarily, is characterized by twofold or dual mechanisms, each generally configured as a keypad, namely, and more particularly, an appliance keypad 42 (i.e., a keypad integral or “hard-wired” to/with the appliance), and a remote keypad 44 (e.g., a remote radio selection device or the like). Advantageously, but not necessarily, the integral input means is designated as the system default (i.e., upon expiration of a preselect, preprogrammed period of inactivity, auto-selector 46 will reference the integral means; contrariwise, upon user manipulation of the remote selector means, auto-selector 46 preferentially overrides any prior integral selector means signal).


In furtherance of the sought after parameter regulation of FIG. 1, and the described user selection means, corresponding ambient monitoring/sensing means are provided, and operatively integral with the controller, namely integral 48 and remote 50 temperature sensing and signaling means. The subject temperature sensing and signaling means are indirectly linked to, on the one hand, summation point 24, for effective consideration by PID controller 12/12A via auto-selector 52 which essentially functions as auto-selector 46, and the controller of the fuel feed system (e.g., auger gear motor 54) on the other hand.


As alluded to earlier, the subject combustion parameter regulating methodologies provide a variety of heretofore unrealized advantages, among other things, the ability to discern and respond to the character and/or quality of the fuel, more particularly, the nature of the fuel type (e.g., cereal grains versus wood, etc.). In connection to the control or regulation scheme of FIG. 1, a further selector is provided (i.e., auto-selector 56) in furtherance of choosing between controllers 12 and 12A, each of which correlates to/with, for example, a cereal based fuel such as corn (i.e., controller 12), and a pulp based fuel such as pelletized wood (i.e., controller 12A). As should be readily appreciated, as the heating quality and capacity of the numerously heretofore known biomass fuels are highly variable, the subject functionality advantageously aids the control methodology of FIG. 1, and as will be later discussed, the control methodology of FIG. 3.


Functionally, an appliance operator selects a target environmental ambient temperature via inputting same to system 10, subsequent to selection via auto-selector 46, and assessment at summing point 24 in relation to the measured or actual environmental ambient temperature, in furtherance of having the system respond to the user request or demand. Essentially, a large difference between these quantities will cause a proportional, i.e., higher, feed rate, and a small difference will cause a proportional, i.e., smaller, feed rate. The actual time response curve will be modified by the PID derivative and integral adjustments as discussed above.


Output 16/16A of controller 12/12A is operatively united with fuel auger motor 54 which controls, via adjustment, the speed of the motor in direct proportion to the size (i.e., magnitude) of the value of output 16. Dashed line 58 represents the indirect connection from the auger motor 54 to means 48, 50 for sensing and signaling environmental ambient temperature. As previously noted, such means is indirectly linked, via selector 52, to a minus null input of summing point 24.


Referring now to FIG. 2, a mechanism to regulate appliance operation, more particularly, minimize waste heat in the appliance exhaust via regulation of a convection or recirculation fan, is illustrated. The subject methodology is advantageously independent of user input; a preselect, preprogrammed target exhaust temperature is provided as summing point input 60 for subsequent consideration by controller 12′. Preferably, but not necessarily, the target exhaust temperature is within the range of about 225-275° F., and commensurate with the contemplated range of biomass feed stocks, a target exhaust temperature of 250° F. is believed to be advantageous.


Output 16′ of controller 12′ is operatively united with convection fan 62 which controls, via adjustment, the speed of the motor thereof in direct proportion to the size (i.e., magnitude) of the value of output 16′. Dashed line 64 represents the operative linkage between the convection fan 62 and means for sensing and signaling real time exhaust temperature, e.g., a thermocouple 66 or the like. The sensed and signaled real time exhaust temperature is passed to a minus null input of summing point 24′ in furtherance of assessment of the differential by the controller.


With regard to the subject response scheme, several advantages are offered. As is well known, contamination build-up (i.e., fouling) associated with heat exchanger tubes of heat transfer means is well known, and detrimental to optimal operation; less heat is transferred from the combustion air to the convection or recirculation air (i.e., heat is unintentionally exhausted). Such condition may be offset via an increase in the amount of circulation air introduced to the heat transfer means. The subject active feedback system senses, for example, an increase in the exhaust temperature, and responds with an increased recirculation air throughput, and thereby maintains maximum efficiency considerably longer, and more easily, than heretofore known approaches. A further desirable result is that the appliance so controlled is easier to set up at time of installation, since one of the most delicate variables, i.e., convection air throughput, is automatically set or established, rather than via establishment by a technician/user. Finally, it should be readily appreciated that the subject scheme can be adapted such that a user warning can issue upon detection of a preselect condition indicative of a drop in heat transfer efficiency (i.e., conditions giving rise to a maintenance or service call).


Referring now to FIG. 3, a mechanism to regulate appliance operation, more particularly, combustion efficiency is illustrated. Again, the subject methodology is advantageously independent of user input; a preselect ratio of exhaust to heater exchanger temperature, indicative of combustion efficiency of a select fuel type and feed rate, is provided as a summing point input for subsequent consideration by controller 12″ in furtherance of controlling a combustion air throughput.


The instant regulation or control scheme preliminarily, and advantageously, detects the quality and/or character of relatively distinguishable biomass fuels, e.g., corn versus wood, as is likewise the case for the method of FIG. 1. For example, and without limitation, data relating to the fuel feed system, e.g., real time/periodic monitoring of the work of the auger gear motor, periodic density determination of the fuel occupying the feed hopper, etc., may be obtained and readily correlated to a select or designated fuel or fuel type of a variety of fuel types. In any event, and by generally known means or mechanisms, detection of fuel I (e.g., corn) or fuel II (e.g., wood) permits reference to a corresponding look-up table 68, 70 of a library of look up-tables 72 wherein look-up tables of the library of look-up tables correlate combustion efficiency data with ratios of exhaust and heat exchanger temperatures, and fuel I/II feed rates. As should be readily appreciated, means and/or mechanism establishing such correlations are well known, e.g., empirical means such as determining, for each fuel type, a combustion efficiency for a range of incremental temperature ratios for each fuel feed rate of a select range of fuel feed rates.


Functionally, with selection of look-up table “X” corresponding to fuel “X” from the library of look-up tables 72 via auto-selector 74, the target exhaust/heat exchanger ratio 76 is input to summing point 24″ of system 10″ for assessment relative to an input of an actual ratio 78 of same. The real time or actual ratio 78 is obtained via execution of a division operation in arithmetic operator or unit 80, using as inputs real time sensing and signaling values of both the exhaust 82 and heat exchanger temperatures 84.


Output 16″ of controller 12″ is operatively united with combustion fan 86 which controls, via adjustment, the speed of the motor thereof in direct proportion to the size (i.e., magnitude) of the value of output 16″. Dashed line 88 represents the operative linkage between the combustion fan 86 and means for sensing and signaling real time exhaust 82 and heat exchanger 84 temperatures, e.g., via thermocouples or the like. The ratio 78 of the sensed and signaled real time exhaust and heat exchanger temperatures, as output from the arithmetic operator 80, is passed to a minus null input of summing point 24″ in furtherance of assessment of the differential by the controller.


There are other variations or variants of the described methods of the subject invention which will become obvious to those skilled in the art. It will be understood that this disclosure, in many respects, is only illustrative. Although the various aspects of the present invention have been described with respect to various preferred embodiments thereof, it will be understood that the invention is entitled to protection within the full scope of the appended claims.

Claims
  • 1. A combustion regulation methodology for a biofuel appliance characterized by a heat transfer means, a fuel feed system, a combustion fan, a convection fan, and at least a single proportional integral derivative controller, said methodology comprising: a. selecting a target environmental ambient temperature for input to said controller;b. detecting and selectively inputting environmental ambient temperature for comparison to target environmental ambient temperature by said controller; and,c. signaling said fuel feed system in furtherance of achieving and maintaining said target environmental ambient temperature.
  • 2. The combustion regulation methodology of claim 1 wherein said selecting is accomplished via user input means.
  • 3. The combustion regulation methodology of claim 2 wherein said user input means comprises a key pad operatively linked to said controller.
  • 4. The combustion regulation methodology of claim 3 wherein said key pad is integral to said appliance.
  • 5. The combustion regulation methodology of claim 3 wherein said key pad is a remote device.
  • 6. The combustion regulation methodology of claim 1 wherein said selecting is accomplished via one of either of an integral or remote selecting means.
  • 7. The combustion regulation methodology of claim 6 wherein of said one of either of an integral or remote selecting means, said integral means is a default mode for said setting.
  • 8. The combustion regulation methodology of claim 1 wherein said controller is an automatically selected controller from at least two controllers.
  • 9. The combustion regulation methodology of claim 8 wherein controllers of said at least two controllers correlate with select fuels of fuels for feeding via said fuel feeding system.
  • 10. The combustion regulation methodology of claim 9 wherein a first controller of said at least two controllers correlates with a fuel comprising cereal grain
  • 11. The combustion regulation methodology of claim 9 wherein a first controller of said at least two controllers correlates with a fuel comprising corn.
  • 12. The combustion regulation methodology of claim 9 wherein a first controller of said at least two controllers correlates with a fuel comprising cereal grain, and a second controller of said at least two controllers correlates with a fuel comprising wood.
  • 13. The combustion regulation methodology of claim 1 wherein said methodology further comprises detecting and selectively inputting an exhaust temperature, for comparison to a preselect exhaust temperature, by said controller.
  • 14. The combustion regulation methodology of claim 13 wherein said preselect exhaust temperature is within the range of about 225-275° F.
  • 15. The combustion regulation methodology of claim 14 wherein said methodology further comprises signaling a convection fan in furtherance of achieving and maintaining said preselect exhaust temperature.
  • 16. A combustion regulation methodology for a biofuel appliance characterized by heat transfer means, a fuel feed system, a combustion fan, a convection fan, and at least a single proportional integral derivative controller, said methodology comprising: a. selective, automatic inputting of a ratio of periodically detected exhaust and heat exchanger temperatures to said controller;b. selective, automatic inputting of a target ratio of exhaust and heat exchanger temperatures as a function of fuel type and fuel feed rate, said target ratio correlating to an optimal combustion efficiency for said fuel type and said fuel feed rate; and,c. signaling said combustion fan in furtherance of achieving and maintaining said target ratio of exhaust and heat exchanger temperatures.
  • 17. The combustion regulation methodology of claim 16 wherein said target ratio of exhaust and heat exchanger temperatures are selected from a look-up table of a library of look-up tables, each look-up table of said library of look up tables correlates with a select fuel of fuels for feeding via said fuel feeding system.
  • 18. The combustion regulation methodology of claim 17 wherein a first look-up table of said look-up tables of said library of look-up tables correlates with a fuel comprising cereal grain.
  • 19. The combustion regulation methodology of claim 18 wherein a second look-up table of said look-up tables of said library of look-up tables correlates with a fuel comprising wood.
  • 20. The combustion regulation methodology of claim 17 wherein said methodology further comprises detecting and selectively inputting an exhaust temperature, for comparison to a preselect exhaust temperature, by said controller.
  • 21. The combustion regulation methodology of claim 20 wherein said preselect exhaust temperature is within the range of about 225-275° F.
  • 22. The combustion regulation methodology of claim 20 wherein said methodology further comprises signaling a convection fan in furtherance of achieving and maintaining said preselect exhaust temperature.
  • 23. A process control method for a biomass combustion appliance having biomass fuel feed means, heat transfer means, a combustion air system, a recirculating air system, and a multifunction process controller, said method comprising: a. automatic detection of fuel type of fuel handled by the biomass fuel feed means; and,b. signaling the multifunction process controller of the detected fuel type of fuel handled by the biomass fuel feed means in furtherance of regulating a fuel feed rate of the biomass fuel feed means in response to a differential of a user select target environmental ambient temperature and a real time environmental ambient temperature.
  • 24. The process control method of claim 23 wherein signaling the multifunction process controller of the detected fuel type of fuel handled by the biomass fuel feed means is in furtherance of regulating a combustion air throughput of the combustion air system in response to differential of a preprogrammed ratio of exhaust and heat transfer means temperature, correlated with combustion efficiency data for a select fuel type of fuel types of fuel handled by the biomass fuel feed means as a function of select feed rates, and a select real time ratio of exhaust and heat transfer means temperature.