Process for automatic dynamic reloading of data flow processors (DFPs) and units with two- or three-dimensional programmable cell architectures (FPGAs, DPGAs, and the like)

Abstract
In a data-processing method, first result data may be obtained using a plurality of configurable coarse-granular elements, the first result data may be written into a memory that includes spatially separate first and second memory areas and that is connected via a bus to the plurality of configurable coarse-granular elements, the first result data may be subsequently read out from the memory, and the first result data may be subsequently processed using the plurality of configurable coarse-granular elements. In a first configuration, the first memory area may be configured as a write memory, and the second memory area may be configured as a read memory. Subsequent to writing to and reading from the memory in accordance with the first configuration, the first memory area may be configured as a read memory, and the second memory area may be configured as a write memory.
Description
FIELD OF THE INVENTION

The present invention is directed to a process for automatic dynamic reloading of data flow processors.


BACKGROUND INFORMATION

Programmable units presently used (DFPs, FPGAs—Field Programmable Gate Arrays) can be programmed in two different ways:

    • one-time only, i.e., the configuration can no longer be changed after programming. All configured elements of the unit perform the same function over the entire period during which the application takes place.
    • on site, i.e., the configuration can be changed after the unit has been installed by loading a configuration file when the application is started. Most units (in particular FPGA units) cannot be reconfigured during operation. For reconfigurable units, data usually cannot be further processed while the unit is being reconfigured, and the time required is very long.


Configuration data is loaded into programmable units through a hardware interface. This process is slow and usually requires hundreds of milliseconds due to the limited band width accessing the external memory where the configuration data is stored, after which the programmable unit is available for the desired/programmed function as described in the configuration file.


A configuration is obtained by entering a special bit pattern of any desired length into the configurable elements of the unit. Configurable elements can be any type of RAM cells, multiplexers, interconnecting elements or ALUs. A configuration string is stored in such an element, so that the element preserves its configuration determined by the configuration string during the period of operation.


The existing methods and options present a series of problems, such as:

    • If a configuration in a DFP (see German Patent Application No. DE 44 16 881 A1) or an FPGA is to be modified, a complete configuration file must always be transmitted to the unit to be programmed, even if only a very small part of the configuration is to be modified.
    • As a new configuration is being loaded, the unit can only continue to process data to a limited extent or not at all.
    • With the increasing number of configurable elements in each unit (in particular in FPGA units), the configuration files of these units also become increasingly large (several hundred Kbytes on average). Therefore it takes a very long time to configure a large unit and often makes it impossible to do it during operation or affects the function of the unit.
    • When a unit is partially configured during operation, a central logic entity is always used, through which all reconfigurations are managed. This requires considerable communication and synchronization resources.


SUMMARY OF THE INVENTION

The present invention makes it possible to reconfigure a programmable unit considerably more rapidly. The present invention allows different configurations of a programmable unit to be used in a flexible manner during operation without affecting or stopping the operability of the programmable unit. Unit configuration changes are performed simultaneously, so they are rapidly available without need for additional configuration data to be occasionally transmitted. The method can be used with all types of configurable elements of a configurable unit and with all types of configuration data, regardless of the purpose for which they are provided within the unit.


The present invention makes it possible to overcome the static limitations of conventional units and to improve the utilization of existing configurable elements. By introducing a buffer storage device, a plurality of different functions can be performed on the same data.


In a programmable unit, there is a plurality of ring memories, i.e., memories with a dedicated address control, which, upon reaching the end of the memory, continues at the starting point, thus forming a ring. These ring memories have read-write access to configuration registers, i.e., the circuits that receive the configuration data, of the elements to be configured. Such a ring memory has a certain number of records, which are loaded with configuration data by a PLU as described in German Patent Application No. 44 16 881 A1. The architecture of the records is selected so that their data format corresponds to the configurable element(s) connected to the ring memory and allows a valid configuration to be set.


Furthermore, there is a read position pointer, which selects one of the ring memory records as the current read record. The read position pointer can be moved to any desired position/record within the ring memory using a controller. Furthermore there is a write position pointer, which selects one of the ring memory records as the current write record. The write position pointer can be moved to any desired position/record within the ring memory using a controller.


At run time, to perform reconfiguration, a configuration string can be transmitted into the element to be configured without the data requiring management by a central logic or transmission. By using a plurality of ring memories, several configurable elements can be configured simultaneously.


Since a ring memory with its complete controller can switch configurable cells between several configuration modes, it is referred to as a switching table.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a schematic architecture of a ring memory.



FIG. 2 illustrates the internal architecture of a ring memory.



FIG. 3 illustrates a ring memory with a selectable work area.



FIG. 4 illustrates a ring memory and a controller capable of working on different ring memory sections using several read and write position pointers.



FIG. 5 illustrates a ring memory where different controllers access different sections.



FIG. 6 illustrates a ring memory and its connection to the configurable elements.



FIG. 7 illustrates the controller with a logic for responding to different trigger signals; a) implementation of the trigger pulse mask.



FIG. 8 illustrates the clock generator for the controller.



FIG. 9 illustrates the wiring of the controller and the internal cells allowing the configurable elements to be configured.



FIG. 10 illustrates the processing by the controller of the commands stored in the ring memory.



FIG. 11 illustrates the processing of the data stored in the ring memory.



FIG. 12 illustrates the connection of a buffer comprising two memory arrays to a set of configurable elements.



FIG. 12
a shows a step in the data processing sequence.



FIG. 12
b shown another step in the data processing sequence.



FIG. 12
c shown another step in the data processing sequence.



FIG. 12
d shown another step in the data processing sequence.



FIG. 13 illustrates the connection of a buffer with separate read/write pointers to a set of configurable elements.



FIG. 14 illustrates the operation of a buffer with separate read/write pointers.



FIG. 15 illustrates the connection of two buffers each comprising two memory arrays to a set of configurable elements; Figures a-c show the data processing sequence.





DETAILED DESCRIPTION OF THE INVENTION

There is a plurality of ring memories in a programmable unit or connected externally to said unit. The one or more ring memories have one or more controllers controlling the one or more ring memories. These controllers are part of the PLU named in German Patent Application No. DE 44 16 881 A1. The ring memories contain configuration strings for the configurable elements of one or a plurality of configurable units; the configurable elements can also be expressly used for interconnecting function groups and they can be crossbar circuits or multiplexers for interconnecting bus architectures, which are conventional.


Ring memories and ring memory controllers can be either directly hardware-implemented or first obtained by configuring one or more configurable cells of a configurable unit (e.g., FPGA).


Conventional ring memories can be used as ring memories, in particular ring memories and/or controllers with the following properties:

    • where not all records are used, and which have the capability of providing a position where the read and/or write position pointer of the ring memory is set to the beginning or the end of the ring memory. This can be implemented, for example, by using command strings (STOP, GOTO, etc.), counters, or registers storing the start and stop positions;
    • which make it possible to divide the ring memory into independent sections, and the controller of the ring memory can be set, for example, via the events listed below as examples, so that it works on one of these sections;
    • which make it possible to divide the ring memory into independent sections and there is a plurality of controllers, each one working on one section; a plurality of controllers may work on the same section. This can be implemented via arbiter switching, in which case certain processing cycles are lost. Registers can also be used instead of RAMs;
    • each controller has one or more read position pointers and/or one or more write position pointers;
    • this position pointer can be moved forward and/or backward;
    • this position pointer can be set to the start, end, or a given position on the basis of one or more events;
    • the controller has a mask register with which a subset can be selected from the set of all possible events by entering a data string. Only this subset of results is relayed to the controller as an event and triggers the forwarding of the position pointer(s);
    • controllers working with a multiple of the actual system clock rate (oversampling) to allow the processing of several records within a system cycle.


The switching table controller is implemented using a regular state machine. In addition to simple controllers required by a conventional ring memory, controllers with the following properties are best suited for performing or possibly expanding the control of the switching tables of a programmable unit (in particular also of FPGAs and DPGAs (Dynamically Programmable Gate Arrays, a new subgroup of FPGAs)) according to the present invention:

    • controllers capable of recognizing specific command strings. A command string is distinguished by the fact that it has an identifier, which allows the controller to recognize the data of a ring memory record as a command string rather than a data string;
    • controllers capable of executing specific command strings; specifically commands that change the sequence of the state machine and/or modify records of the ring memory through a data processing function;
    • controllers capable of recognizing an identifier and of processing additional records of the ring memory through the internal, higher-speed cycle (oversampling) on the basis of this identifier, until an end identifier is reached, or the next cycle of the clock that controls the oversampling cycle is reached.


In particular the following commands or a subset of those commands can be used as command strings for the appropriate control of a switching table requiring command string control. The command strings concerning position pointers can be used on the read position pointer(s) or on the write position pointer(s). Possible command strings include:

    • a WAIT command.
      • The WAIT command causes the controller to wait until the next event or (possibly several) events occur. During this state, the read/write position pointer(s) is(are) not moved. If the event(s) occur(s), the read/write position pointer(s) is (are) positioned on the next record.
    • a SKIP command.
      • The SKIP command causes a given number of ring memory records to be skipped by one of the following two methods:
    • The SKIP1 command is executed fully in a single processing cycle. If, for example, SKIP 5 is issued, the pointer jumps to the record located five records before (after) the current read/write record in a processing cycle.
    • The SKIP2 command is only executed after a number of processing cycles. It is conceivable, for example, that the SKIP 5 command is executed only after five processing cycles. Here again five records are skipped counting from the current record. The parameter (in this case the 5) is thus used twice.


The indication of the direction of jump can end either in a forward movement or in a backward movement of the position pointer with the use of a positive or negative number.

    • A SWAP command.
      • The SWAP command swaps the data of two given records.
    • RESET command.
      • The RESET command sets the read/write position pointer(s) to the start and/or a given record position within the ring memory.
    • A WAIT-GOTO command.
      • The WAIT-GOTO command waits like the above-described WAIT command for one or more specific events and then positions the read/write position pointer to a specific start state within one or more processing cycles.
    • A NOP command.
      • The NOP command executes no action. No data is transmitted from the ring memory to the element(s) to be configured, neither are the position pointers modified. Thus the NOP command identifies a record as non-relevant. However, this record is addressed and evaluated by the ring memory controller it requires using one or more processing cycles.
    • A GOTO command.
      • The GOTO command positions the read/write position pointer(s) on the given record position.
    • A MASK command.
      • The MASK command writes a new data string into the multiplexer, which selects the different events. Therefore, this command allows the events to which the controller responds to be changed.
    • An LLBACK command.
      • The LLBACK command generates a feedback to the PLU (as described in German Patent Application No. DE 44 16 881 A1). The switching table can cause greater regions of the unit to be reloaded, in particular it can cause the switching table itself to be reloaded.
    • A command triggering a read/modify/write cycle. The command triggers the reading of commands or data in another record, for example, by the controller, the PLU or an element located outside the switching table. This data is then processed in any desired fashion and written into the same or another position of the switching table ring memory. This can take place during one processing cycle of the switching table. The sequence is then terminated before a position pointer is repositioned.


The ring memory record architecture has the following format:
















Data/Command
Run/Stop
Data









The first bit identifies a record as a command or a data string. The controller of the switching table thus decides whether the bit string in the data portion of the record should be treated as a command or as configuration data.


The second bit identifies whether the controller should proceed immediately even without the occurrence of another event, should proceed with the next record, or wait for the next event. If an oversampling process is used and the RUN bit is set, the subsequent records will be processed with the help of this oversampling cycle. This continues until a record without a RUN bit set has been reached or the number or records that can be processed at the oversampling cycle rate within one system cycle has been reached.


If an oversampling process is used, the normal system cycle and the RUN bit set cause commutation to take place. Events occurring during the execution of a command sequence marked with the RUN bit are analyzed and the trigger signal is stored in a flip-flop. The controller then analyzes this flip-flop again when a record without a RUN bit set is reached.


The rest of a record contains, depending on the type (data or command), all the necessary information, so that the controller can fully perform its function.


The size of the ring memory can be implemented according to the application; this is true in particular for programmable units, where the ring memory is obtained by configuring one or more configurable cells.


A ring memory is connected to an element to be configured (or a group of elements to be configured), so that a selected configuration string (in the ring memory) is entered in the configuration register of the element to be configured or group of elements to be configured.


Thus a valid and operational configuration of the element or group to be configured is obtained.


Each ring memory has one controller or a plurality of controllers, which control the positioning of the read position pointer and/or the write position pointer.


Using the feedback channels described in German Patent Application DE 44 16 881 A1, the controller can respond to events of other elements of the unit or to external events that are transmitted into the unit (e.g., interrupt, I0 protocols, etc.) and, in response to these internal or external events, moves the read position pointer and/or the write position pointer to another record.


The following events are conceivable, for example:

    • clock signal of a CPU,
    • internal or external interrupt signal,
    • trigger signal of other elements within the unit,
    • comparison of a data stream and/or a command stream with a value,
    • input/output events,
    • counter run, overrun, reset,
    • evaluation of a comparison.


If a unit has several ring memories, the controller of each ring memory can respond to different events.


After each time the pointer is moved to a new record, the configuration string in this record is transferred to the configurable element(s) connected to the ring memory.


This transfer takes place so that the operation of the unit parts that are not affected by the reconfiguration remains unchanged.


The ring memory(ies) may be located either in a unit or connected to the unit from the outside via an external interface.


Each unit may have a plurality of independent ring memories, which can be concentrated in a region of the unit, but can also be distributed in a reasonable manner on the surface of the unit.


The configuration data is loaded by a PLU, such as described in German Patent Application No. DE 44 16 881 A1, or by other internal cells of the unit into the memory of the switching table. The configuration data can also be simultaneously transferred by the PLU or other internal cells of the unit to several different switching tables in order to allow the switching tables to load simultaneously.


The configuration data can also be in the main memory of a data processing system and be transferred by known methods, such as DMA or other processor-controlled data transfer, instead of the PLU.


After the PLU has loaded the ring memory of the switching table, the controller of the switching table is set to a start status, which establishes a valid configuration of the complete unit or parts of the unit. The control of the switching table starts now with repositioning of the read position pointer and/or the write position pointer as a response to events taking place.


In order to cause new data to be loaded into the switching table or a number of switching tables, the controller can return a signal to the PLU, as described in German Patent Application No. DE 44 16 881 A1, or other parts of the unit that are responsible for loading new data into the ring memory of the switching table. Such a feedback can be triggered by the analysis of a special command, a counter status, or from the outside (the State-Back UNIT described in Patent Application PACT02).


The PLU or other internal cells of the unit analyze this signal, respond to the signal by executing a program possibly in a modified form, and transfer new or different configuration data to the ring memory(ies). Only the data of each ring memory that is involved in a data transfer as determined by the signal analysis, rather than the configuration data of a complete unit, must be transferred.


Buffer: A memory can be connected to individual configurable elements or groups thereof (hereinafter referred to as functional elements). Several known procedures can be used to configure this memory; FIFOs are well-known, in particular. The data generated by the functional elements are stored in the memory until a data packet with the same operation to be performed is processed or until the memory is full. Thereafter the configuration elements are reconfigured through switching tables, i.e., the functions of the elements are changed. FullFlag showing that the memory is full can be used as a trigger signal for the switching tables. In order to freely determine the amount of data, the position of the FullFlag is configurable, i.e., the memory can also be configured through the switching table. The data in the memory is sent to the input of the configuration elements, and a new operation is performed on the data; the data is the operand for the new computation. The data can be processed from the memory only, or additional data can be requested from the outside (outside the unit or other functional elements) for this purpose. As the data is processed, it (the result of the operation) can be forwarded to the next configuration elements or written into the memory again. In order to provide both read and write access to the memory, the memory can have two memory arrays, which are processed alternately, or separate read and write position pointers can exist in the same memory.


One particular configuration option is the connection of a plurality of memories as described above, which allows several results to be stored in separate memories; then, at a given time, several memory regions are sent to the input of a functional element and processed in order to execute a given function.


Architecture of a ring memory record: One possible structure of the records in a switching table ring memory, used in a data processing system as described in German Patent Application No. DE 44 16 881 A1 is described below. The following tables show the command architecture using the individual bits of a command string.














Bit Number
Name
Description







0
Data/Command
Identifies a record as a data




or command string


1
Run/Stop
Identifies Run or Stop mode









Thus, if a record is a data record, bit number 0 has the value 0, so the bits from position two have the following meanings:














Bit Number
Name
Description







2-6 
Cell number
Provides the cell numbers within a




group using the same switching table


7-11
Configuration data
Provides the function that the cell




(e.g., an EALU) should execute









If the record is a command, bit number 0 has the value 1, and the bits from position two have the following meanings:














Bit




Number
Name
Description







2-6
Command
Provides the number of the command that is



number
executed by the switching table controller


7
Read/Write
Shows whether the command is to be applied



position pointer
to the read position pointer or the write




position pointer. If the command does not




change either position pointer, the bit status is




undefined.


8-n
Data
Depending on the command, the data needed




for the command are stored starting with bit 8.









In the following table, bits 2-6 and 8-n are shown for each of the commands listed. The overall bit length of a data string depends on the unit where the switching table is used. The bit length must be chosen so as to code all data needed for the commands in the bits starting from position 8.














Command
Bit 2-6
Description of bit 8-n







WAIT
00 00 0
Number indicating how often an event is to be




waited for


SKIP1
00 00 1
Number with plus or minus sign showing how




many records are to be skipped forward




(backward if negative)


SKIP2
00 01 0
See SKIP1


SWAP
00 01 1
1st record position, 2nd record position


RESET
00 10 0
Number of the record on which the position




pointer is to be set


WAIT-GOTO
00 10 1
Number indicating how often an event is to be




waited for, followed by the number of the




record on which the position pointer is to be




positioned


NOP
00 11 0
No function!


GOTO
00 11 1
Number of the record on which the position




pointer is to be positioned


MASK
01 00 0
Bit pattern entered into the multiplexer to




select the events


LLBACK
01 00 1
A trigger signal is generated for the PLU




(feedback)









Reconfiguring ALUs: One or more switching tables can be used for controlling an ALU.


The present invention can be used, for example, to improve on Patent PACT02, where the switching table is connected to the M/F PLUREG registers or the M/F PLUREG registers are fully replaced by a switching table.



FIG. 1 shows the schematic architecture of a ring memory. It comprises a write position pointer 0101 and a read position pointer 0102, which access a memory 0103. This memory can be configured as a RAM or as a register. Using the read/write position pointer, an address of RAM 0104 is selected, where input data is written or data is read, depending on the type of access.



FIG. 2 shows the internal architecture of a simple ring memory. Read position pointer 0204 has a counter 0201 and write position pointer 0205 has a counter 0206. Each counter 0201, 0206 has a global reset input and an up/down input, through which the counting direction is defined. A multiplexer 0202, whose inputs are connected to the outputs of the counters, is used to switch between write 0205 and read 0204 position pointers, which point to an address of memory 0203. Read and write access is performed through signal 0207. The respective counter is incremented by one position for each read or write access. When the read 0204 or write 0205 position pointer points at the last position of the memory (last address for an upward counting counter or first address for a downward counting counter), the read or write position pointer 0204, 0205 is set to the first position of memory 0203 in the next access (first address for an upward counting counter or the last address for a downward counting counter). This provides the ring memory function.



FIG. 3 shows an extension of the normal ring memory. In this extension, counter 0303 of the write position pointer 0311 and counter 0309 of the read position pointer 0312 can be loaded with a value, so that each address of the memory can be set directly. This loading sequence takes place, as usual, through the data and load inputs of the counters. In addition, the work area of the ring memory can be limited to a certain section of internal memory 0306. This is accomplished using an internal logic controlled by counters 0303, 0309 of the write/read position pointers 0311, 0312. This logic is designed as follows: The output of one counter 0303, 0309 is connected to the input of the respective comparator 0302, 0308, where the value of the counter is compared with the value of the respective data register (0301, 0307) where the jump position, i.e., the end of the ring memory section, is stored. If the two values are the same, the comparator (0302, 0308) sends a signal to the counter (0303, 0309), which then loads the value from the data register for the target address of the jump (0304, 0310), i.e., the beginning of the ring memory section. The data register for the jump position (0301, 0307) and the data register for the target address (0304, 0310) are loaded by the PLU (see PACT01). With this extension, it is possible that the ring memory does not use the entire region of the internal memory, but only a selected portion. In addition, the memory can be subdivided into different sections when several such read/write position pointers (0312, 0311) are used.



FIG. 4 shows the architecture of a ring memory divided into several sections with controller 0401 working on one of said sections. The controller is described in more detail in FIG. 7. In order to allow the ring memory to be divided into several sections, several read/write position pointers (0408, 0402), whose architecture was shown in FIG. 3, are used. The controller selects the region where it operates through multiplexer 0407. Read or write access is selected via multiplexer 0403. Thus the selected read/write position pointer addresses an address of memory 0404.



FIG. 5 shows the case where each of a plurality of controllers 0501 operates in its own region of the ring memory via one read- and write-position pointer 0502, 0506 per controller. Each controller 0501 has a write position pointer 0506 and a read position pointer 0502. Using multiplexer 0503, which of the read and write position pointers 0502, 0506 accesses memory 0504 is selected. Either a read access or a write access is selected via multiplexer 0503. The read/write signal of controllers 0501 is sent to memory 0504 via multiplexer 0507. The control signal of multiplexers 0507, 0505, 0503 goes from controllers 0501 via an arbiter 0508 to the multiplexers. Arbiter 0508 prevents several controllers from accessing multiplexers 0507, 0505, 0503 simultaneously.



FIG. 6 shows a ring memory 0601 and its connection with configuration elements 0602. Ring memory 0601 is connected via lines 0604, 0605, 0606. The addresses of the addressed cells 0607 are transmitted via 0604. Line 0605 transmits the configuration data from the ring memory. Via line 0606, cells 0607 transmit the feedback whether reconfiguration is possible. The data stored in the ring memory is entered in configuration element 0602. This configuration element 0602 determines the configuration of configurable elements 0603. Configurable elements 0603 may comprise logical units, ALUs, for example.



FIG. 7 shows a controller that may respond to different triggering events. The individual triggering events can be masked, so that only one triggering event is accepted at any time. This is achieved using multiplexer 0701. The trigger signal is stored with flip-flop 0704. Multiplexer 0702, which can be configured as a mask via AND gates (see FIG. 7a), is used to process low active and high active triggering signals. The triggering signal stored in the flip-flop is relayed via line 0705 to obtain a clock signal, which is described in FIG. 8. The state machine 0703 receives its clock signal from the logic that generates the clock signal and, depending on its input signals, delivers an output signal and a reset signal to reset flip-flop 0704 and stop processing until the next trigger signal. The advantage of this implementation is the power savings when the clock is turned off, since state machine 0703 is then idle. An implementation where the clock is permanently applied and the state machine is controlled by the status of the command decoder and the run bit is also conceivable.



FIG. 7
a shows the masking of the trigger signals. The trigger signals and lines from A are connected to the inputs of AND gate 0706. The outputs of AND gate 0706 are OR-linked with 0707 to generate the output signal.



FIG. 8 shows the logic for generating the clock signal for the state machine. Another clock signal is generated in 0801 with the help of a PLL. Using multiplexer 0802, the normal chip clock or the clock of PLL 0801 can be selected. Signals C and B are sent to OR gate 0804. Signal C is generated as a result of a trigger event in the controller (see FIG. 7, 0705). Signal B originates from bit 1 of the command string (see FIG. 10, 1012). This bit has the function of a run flag, so that the controller continues to operate, independently of a trigger pulse, if the run flag is set. The output of OR gate 0804 is AND-linked with the output of multiplexer 0802 to generate the clock signal for the state machine.



FIG. 9 shows the connection between controller 0907, PLU 0902 with memory 0901, ring memory 0906, configurable elements 0905, and configuration elements 0908, as well as the internal cells 0903 used for the configuration. The internal cell 0903 used for configuration is shown here as a normal cell with configurable elements 0905 and configuration elements 0908. Ring memory 0906 is connected to configuration elements 0908 and is in turn controlled by controller 0907. Controller 0907 responds to different trigger pulses, which may also originate from the internal cell 0903 used for configuration. Controller 0907 informs PLU 0902, via feedback channel 0909, if new data is to be loaded into ring memory 0906 due to a trigger event. In addition to sending this feedback, controller 0907 also sends a signal to multiplexer 0904 and selects whether data is sent from PLU 0902 or internal cell 0903 used for configuration to the ring memory.


In addition to the configuration of the ring memory by the PLU, the ring memory can also be set as follows: Configurable element 0903 is wired so that it generates, alone or as the last element of a group of elements, records for ring memory 0906. It generates a trigger pulse, which advances the write position pointer in the ring memory. In this mode, multiplexer 0904 switches the data from 0903 through to the ring memory, while with a configuration by the PLU the data are switched through by the PLU. It would, of course, be conceivable that additional permanently implemented functional units might serve as sources of the configuration signals.



FIG. 10 shows the processing by the controller of the commands stored in the ring memories. 1001 represents the memory of the ring memory with the following bit assignment. Bit 0 identifies the record as a data or command string. Bit 1 identifies the run and stop modes. Bits 2-6 identify the command number coding the commands. Bit 7 tells whether the command is to be applied to the read or write position pointer. If the command affects no position pointer, bit 7 is undefined. The data needed for a command is stored in bits 8-n. Counters 1004, 1005 form the write and read position pointers of the ring memory. If the controller receives a trigger pulse, the state machine sends a pulse to the read position pointer. The write position pointer is not needed to read a command, but is only used for entering data in the ring memory. The selected read position pointer moves forward one position, and a new command is selected (bit 0=0). Now bits 2-6 and bit 7 are sent to command decoder 1002, are decoded, and the result is relayed to the state machine (1024), which recognizes the type of command and switches accordingly.

    • If it is a SKIP command, state machine 1011 sends a pulse to adder/subtractor 1006 so it can add/subtract the bit 8-n command string data to/from the data sent by counters 1004, 1005 via multiplexer 1003. Depending on bit 7, multiplexer 1003 selects the counter of write position pointer 1004 or the counter of read position pointer 1005. After the data has been added/subtracted, state machine 1011 activates gate 1010 and sends a receive signal to counter 1004, 1005. Thus the selected position pointer points as many positions forward or backward as set forth in the data of the SKIP command.
    • Upon a GOTO command, gate 1007 is activated by state machine 1011 so that the data goes to read position pointer 1005 or write position pointer 1004 and is received there.
    • Upon a MASK command, the data is received in a latch 1008 and stored there. This data is then available to the controller described in FIGS. 7/7a via line A (1013) where it masks all the trigger inputs which should receive no trigger pulse.
    • Upon a WAIT command, an event is waited for as often as set forth in the data bits. If this command is registered by state machine 1011, it sends a pulse to wait cycle counter 1009 which receives the data. The wait cycle counter then counts one position downward for each event relayed by state machine 1011. As soon as it has counted to zero, the carry flag is set and sent to state machine 1011 (1023). The state machine then continues to operate due to the carry flag.
    • Upon a WAIT-GOTO command, the data providing the number of wait events is received in the wait cycle counters. After receipt of the number of events given in the data, the state machine activates gate 1007 and relays the jump position data to the selected counter.
    • The SWAP command is used for swapping two records between two positions of the ring memory. The address of the first record to be swapped is stored in latch 1017; the address of the second record is stored in latch 1018. The addresses are sent to multiplexers 1015 and 1016 of the read/write pointer. Initially, record 1 is selected via 1016 and stored in latch 1019; then record 2 is selected via 1016 and stored in 1020. The write pointer is first positioned on the first record via 1015, and the data formerly of the second record is stored via gate 1022. Then the write pointer is positioned on the second record via 1015 and the data formerly of the first record is stored via gate 1021.
    • State machine 1011 sends feedback to the PLU via 1014 (e.g., via a State-Back UNIT, see PACT02). The state machine sends a signal via this connection as soon as an LLBack command is registered.
    • Bit 1, used as a run flag, is sent to the controller for generating a clock signal, which is described in FIG. 8.
    • The NOP command is registered in the state machine, but no operation is performed.



FIG. 11 shows the processing of a data string stored in the ring memory. 1101 corresponds to 1001 in FIG. 10. Since this is a data string, bit 0 is set to one. Command decoder 1107 recognizes the data string as such and sends a query 1106 to the cell addressed in bits 2-6 to verify if reconfiguration is possible. The query is sent at the same time gate 1102 is activated, which causes the address of the cell to be transmitted. The cell shows via 1105 whether reconfiguration is possible. If so, the configuration data is transmitted to the cell via gate 1103. If no reconfiguration is possible, processing continues, and reconfiguration is attempted again in the next cycle in the ring memory. Another possible sequence would be the following: The state machine activates gates 1102 and 1103 and transmits the data to the cell addressed. If the cell can be reconfigured, the cell acknowledges receipt of the data via 1105. If no configuration is possible, the cell does not send a receive signal, and reconfiguration is attempted again in the next cycle of the ring memory.



FIG. 12 shows a group (functional element) 1202 of configurable elements 1201. The data is sent to the functional element via input bus 1204, and the results are sent forth via output bus 1205. Output bus 1205 is also connected to two memory arrays 1203, which operate alternately as a read or write memory. Their outputs are connected to input bus 1204. The entire circuit can be configured via a bus leading to switching tables 1206; the trigger signals are transmitted to the switching table and the configuration data is transmitted from the switching table via this bus. In addition to the function of the functional element, the write/read memory active at that time and the depth of the respective memory are set.



FIG. 12
a shows how external data 1204, i.e., data of another functional unit or from outside the unit, is computed in the functional element 1202 and then written into write memory 1210.



FIG. 12
b shows the next step after FIG. 12a. Functional element 1202 and memories 1220, 1221 are reconfigured upon a trigger generated by the functional element or the memories or another unit and transmitted over 1206. Write memory 1210 is now configured as a read memory 1220 and delivers the data for the functional element. The results are stored in write memory 1221.



FIG. 12
c shows the step following FIG. 12b. Functional element 1202 and memories 1230, 1231 were reconfigured upon a trigger generated by the functional element or the memories or another unit and transmitted over 1206. Write memory 1221 is now configured as a read memory 1230 and delivers the data to the functional element. The results are stored in write memory 1231. In this example, additional external operands 1204, i.e., from another functional unit or from outside the unit, are also processed.



FIG. 12
d shows the next step after FIG. 12c. Functional element 1202 and memories 1203, 1240 were reconfigured upon a trigger generated by the functional element or the memories or another unit and transmitted over 1206. Write memory 1231 is now configured as a read memory 1240 and delivers the data to the functional element. The results are forwarded via output bus 1205.



FIG. 13 shows a circuit according to FIG. 12, where a memory with separate read and write pointers 1301 is used instead of the two memory arrays.



FIG. 14 shows memory 1401 according to FIG. 13. The record in front of read pointer 1402 has already been read or is free 1405. The pointer points to a free record. Data 1406 still to be read are located behind the read position pointer. A free area 1404 and data already re-written 1407 follow. Write position pointer 1403 points at a free record, which is either empty or already has been read. The memory can be configured as a ring memory, as described previously.



FIG. 15 shows a circuit according to FIG. 12, where both memory banks 1203 are present in duplicate. This makes it possible to store and then simultaneously process a plurality of results.



FIG. 15
a shows how external data 1204, i.e., from another functional unit or from outside the unit, is computed in functional element 1202 and then written in write memory 1510 via bus 1511.



FIG. 15
b shows the next step after FIG. 15a. Functional element 1202 and memories 1203, 1510, 1520 have been reconfigured following a trigger generated by the functional element or the memories or another unit and transmitted over 1206. External data 1204, i.e., from another functional unit or from outside the unit, is computed in functional element 1202 and then written in write memory 1520 via bus 1521.



FIG. 15
c shows the next step after FIG. 15b. Functional element 1202 and memories 1203, 1530, 1531, 1532 have been reconfigured following a trigger generated by the functional element or the memories or another unit and transmitted over 1206. Write memories 1510, 1520 are now configured as read memories 1531, 1532 and deliver several operands simultaneously to functional elements 1202. Each read memory 1531, 1532 is connected to 1202 via an independent bus system 1534, 1535. The results are either stored in write memory 1530 via 1533 or forwarded via 1205.












Glossary
















ALU
Arithmetic Logic Unit. Basic unit for data processing. The unit can



perform arithmetic operations such as addition, subtraction, and



occasionally also multiplication, division, expansions of series, etc. The



unit can be configured as an integer unit of a floating-point unit. The unit



can also perform logic operations such as AND, OR, as well as



comparisons.


data string
A data string is a series of bits, of any length. This series of bits represents



a processing unit for a system. Both commands for processors or similar



components and data can be coded in a data string.


DFP
Data flow processor according to German Patent No. DE 44 16 881.


DPGA
Dynamically Configurable FPGAs. Related art.


D Flip-Flop
Memory element, which stores a signal at the rising edge of a cycle.


EALU
Expanded Arithmetic Logic Unit, ALU which has been expanded to



perform special functions needed or convenient for the operation of a data



processing device according to German Patent Application No. DE



441 16 881 A1. These are, in particular, counters.


Elements
Generic concept for all enclosed units used as a part in an electronic unit.



Thus, the following are defined as elements:



configurable cells of all types



clusters



RAM blocks



logics



arithmetic units



registers



multiplexers



I/O pins of a chip


Event
An event can be analyzed by a hardware element in any manner suitable



for the application and trigger an action as a response to this analysis.



Thus, for example, the following are defined as events:



clock pulse of a CPU



internal or external interrupt signal



trigger signal from other elements within the unit



comparison of a data stream and/or a command stream with a value



input/output events



run, overrun, reset of a counter



analysis of a comparison


flag
Status bit in a register showing a status.


FPGA
Programmable logic unit. Related art.


gate
Group of transistors that performs a basic logic function. Basic functions



include NAND, NOR. Transmission gates.


configurable
A configurable element represents a component of a logic unit, which can


element
be set for a special function using a configuration string. Configurable



elements are therefore all types of RAM cells, multiplexers, arithmetic



logic units, registers, and all types of internal and external interconnecting



units, etc.


configure
Setting the function and interconnections of a logic unit, an FPGA cell or a



PAE (see reconfigure).


configuration
Any set of configuration strings.


data


configuration
The configuration memory contains one or more configuration strings.


memory


configuration
A configuration string consists of a series of bits, of any length. This bit


string
series represents a valid setting for the element to be configured, so that an



operable unit is obtained.


PLU
Unit for configuring and reconfiguring the PAE. Constituted by a



microcontroller designed specifically for this purpose.


latch
Memory element that usually relays a signal transparently during the H



level and stores it during the L level. Latches where the level function is



reversed are used in some PAEs. Here an inverter is normally connected



before the cycle of a normal latch.


read position
Address of the current record for read access within a FIFO or a ring


pointer
memory.


logic cells
Cells used in DFPs, FPGAs, and DPGAs, performing simple logic and



arithmetic functions, depending on their configuration.


oversampling
A clock runs with a frequency that is a multiple of the base clock,



synchronously with the same. The faster clock is usually generated by a



PLL.


PLL
Phase Locked Loop. Unit for generating a multiple of a clock frequency on



the basis of a base clock.


PLU
Units for configuring and reconfiguring the PAE. Constituted by a



microcontroller specifically designed for this purpose.


ring memory
Memory with its own read/write position pointer, which-upon reaching the



end of the memory-is positioned at the beginning of the memory. An



endless ring-shaped memory is thus obtained.


RS flip-flop
Reset/Set flip-flop. Memory element that can be switched by two signals.


write position
Address of the current record for write access within a FIFO or ring


pointer
memory.


State-Back
Unit that controls the feedback of status signals to the PLU, comprising a


unit
multiplexer and an open-collector bus driver element.


switching
A switching table is a ring memory, which is addressed by a controller.


table
The records of a switching table may contain any configuration strings.



The controller can execute commands. The switching table responds to



trigger signals and reconfigures configurable elements using a record in a



ring memory.


gate
Switch that forwards or blocks a signal. Simple comparison: relay.


reconfigure
New configuration of any number of PAEs, while any remaining number



of PAEs continue their functions (see configure).


processing
A processing cycle describes the time required by a unit to go from a


cycle
specific and/or valid state into the next specific and/or valid state.


state machine
Logic that can assume different states. The transition between the states



depends on different input parameters. These machines are used for



controlling complex functions and correspond to the related art.










Conventions












Naming conventions


















unit
UNIT



mode
MODE



multiplexer
MUX



negated signal
not-



register visible to PLU
PLUREG



internal register
REG



shift register
sft




















Function conventions


















shift
registersft




















AND function &









A
B
Q





0
0
0


0
1
0


1
0
0


1
1
1



















OR function#









A
B
Q





0
0
0


0
1
1


1
0
1


1
1
1



















NOT function!










A
Q







0
1



1
0




















GATE functionG









EN
D
Q





0
0



0
1



1
0
0


1
1
1








Claims
  • 1. A method of processing data in a packet-wise manner using (a) an array of elements configurable with respect to function and interconnection, said array being at least two dimensional and having at least some elements that comprise arithmetic-logic units, and (b) a memory arrangement comprising at least one reading pointer separate from at least one writing pointer, said method comprising the steps of: processing, with a plurality of said configurable elements, data comprising at least a first packet of data to ascertain a first packet of result data;writing the first packet of result data into a memory block, said memory block being part of the memory arrangement and said at least one writing pointer being positioned so as to allow writing into a memory area of said memory block; andsubsequent to the processing: reconfiguring at least one of a first group of at least some of the plurality of said configurable elements, wherein the reconfiguring includes using a configuration data from the memory arrangement, the configuration data being provided only for said first group of at least some of the plurality of said configurable elements, while retaining a configuration of at least one other of the plurality of said configurable elements;reading out result data of the first packet of result data from the memory after reconfiguration of said at least some of the plurality of said configurable elements in accordance with the position of the reading pointer, said reading pointer being positioned so as to allow reading undisturbed by writing of packet data into said memory arrangement; andusing the reconfigured at least some of the plurality of said configurable elements to process the result data of the first packet of result data in order to obtain second result data.
  • 2. The data-processing method as recited in claim 1, wherein the memory arrangement includes a first memory area and a second memory area, the first and second memory areas being spatially separate, the method further comprising: in a first configuration: using the first memory area as a write memory; andusing the second memory area as a read memory; andsubsequent to writing and reading in accordance with the first configuration, reconfiguring the at least some of the plurality of configurable elements to use the first memory area as a read memory and the second memory area as a write memory.
  • 3. The method of claim 1, further comprising: determining, by a controller and based on a record-type identifier within a data record, whether the data record includes configuration data or a memory control command;writing, by the controller, at least a portion of the data record to the memory arrangement if the determination is that the data record includes configuration data; andcontrolling, by the controller, at least one of the at least one reading pointer and the at least writing pointer in accordance with the data record if the determination is that the data record includes a memory control command.
  • 4. A method of processing data in a packet-wise manner using (a) an array of elements configurable with respect to function and interconnection, said array being at least two dimensional and having at least some elements that comprise arithmetic-logic units, and (b) a memory arrangement comprising at least one reading pointer separate from at least one writing pointer, said method comprising the steps of: processing, with a plurality of said configurable elements, data comprising at least a first packet of data to ascertain a first packet of result data;writing the first packet of result data into a memory block, said memory block being part of the memory arrangement and said at least one writing pointer being positioned so as to allow writing into a memory area of said memory block; andsubsequent to the processing: reconfiguring at least one of a first group of at least some of the plurality of said configurable elements, wherein the reconfiguring includes transferring a configuration data from the memory arrangement to the configurable elements of the first group, the configurable elements being adapted for locally storing the transferred configuration data in respective memory elements, the configuration data being provided only for said first group of at least some of the plurality of said configurable elements, while retaining a configuration of at least one other of the plurality of said configurable elements;reading out result data of the first packet of result data from the memory after reconfiguration of said at least some of the plurality of said configurable elements in accordance with the position of the reading pointer, said reading pointer being positioned so as to allow reading undisturbed by writing of packet data into said memory arrangement; andusing the reconfigured at least some of the plurality of said configurable elements to process the result data of the first packet of result data in order to obtain second result data.
Priority Claims (1)
Number Date Country Kind
196 54 846 Dec 1996 DE national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/265,846, filed Oct. 7, 2002, now U.S. Pat. No. 7,028,107 which is a continuation of U.S. patent application Ser. No. 09/613,217, filed Jul. 10, 2000, now U.S. Pat. No. 6,477,643, which is a continuation of U.S. patent application Ser. No. 08/947,002 filed on Oct. 8, 1997, now U.S. Pat. No. 6,088,795, expressly incorporated herein by reference in the entirety.

US Referenced Citations (534)
Number Name Date Kind
2067477 Cooper Jan 1937 A
3242998 Gubbins Mar 1966 A
3681578 Stevens Aug 1972 A
3757608 Willner Sep 1973 A
3855577 Vandierendonck Dec 1974 A
4233667 Devine et al. Nov 1980 A
4414547 Knapp et al. Nov 1983 A
4498134 Hansen et al. Feb 1985 A
4498172 Bhavsar Feb 1985 A
4566102 Hefner Jan 1986 A
4571736 Agrawal et al. Feb 1986 A
4590583 Miller May 1986 A
4591979 Iwashita May 1986 A
4623997 Tulpule Nov 1986 A
4663706 Allen et al. May 1987 A
4667190 Fant May 1987 A
4682284 Schrofer Jul 1987 A
4686386 Tadao Aug 1987 A
4706216 Carter Nov 1987 A
4720778 Hansen et al. Jan 1988 A
4720780 Dolecek Jan 1988 A
4739474 Holsztynski Apr 1988 A
4761755 Ardini et al. Aug 1988 A
4791603 Henry Dec 1988 A
4811214 Nosenchuck et al. Mar 1989 A
4852043 Guest Jul 1989 A
4852048 Morton Jul 1989 A
4860201 Stolfo et al. Aug 1989 A
4870302 Freeman Sep 1989 A
4882687 Gordon Nov 1989 A
4884231 Mor et al. Nov 1989 A
4891810 de Corlieu et al. Jan 1990 A
4901268 Judd Feb 1990 A
4910665 Mattheyses et al. Mar 1990 A
4918440 Furtek et al. Apr 1990 A
4959781 Rubinstein et al. Sep 1990 A
4967340 Dawes Oct 1990 A
4972314 Getzinger et al. Nov 1990 A
4992933 Taylor Feb 1991 A
5010401 Murakami et al. Apr 1991 A
5014193 Garner et al. May 1991 A
5015884 Agrawal et al. May 1991 A
5021947 Campbell et al. Jun 1991 A
5023775 Poret Jun 1991 A
5034914 Osterlund Jul 1991 A
5036473 Butts et al. Jul 1991 A
5041924 Blackborow et al. Aug 1991 A
5043978 Nagler et al. Aug 1991 A
5047924 Fujioka et al. Sep 1991 A
5055997 Sluijter et al. Oct 1991 A
5065308 Evans Nov 1991 A
5072178 Matsumoto Dec 1991 A
5081375 Pickett et al. Jan 1992 A
5099447 Myszewski Mar 1992 A
5103311 Sluijter et al. Apr 1992 A
5109503 Cruickshank et al. Apr 1992 A
5113498 Evan et al. May 1992 A
5115510 Okamoto et al. May 1992 A
5123109 Hillis Jun 1992 A
5125801 Nabity et al. Jun 1992 A
5128559 Steele Jul 1992 A
5142469 Weisenborn Aug 1992 A
5144166 Camarota et al. Sep 1992 A
5193202 Jackson et al. Mar 1993 A
5203005 Horst Apr 1993 A
5204935 Mihara et al. Apr 1993 A
5208491 Ebeling et al. May 1993 A
5212716 Ferraiolo et al. May 1993 A
5212777 Gove et al. May 1993 A
5218302 Loewe et al. Jun 1993 A
5226122 Thayer et al. Jul 1993 A
RE34363 Freeman Aug 1993 E
5233539 Agrawal et al. Aug 1993 A
5237686 Asano et al. Aug 1993 A
5243238 Kean Sep 1993 A
5247689 Ewert Sep 1993 A
RE34444 Kaplinsky Nov 1993 E
5274593 Proebsting Dec 1993 A
5276836 Fukumaru et al. Jan 1994 A
5287472 Horst Feb 1994 A
5287511 Robinson et al. Feb 1994 A
5287532 Hunt Feb 1994 A
5294119 Vincent et al. Mar 1994 A
5301284 Estes et al. Apr 1994 A
5301344 Kolchinsky Apr 1994 A
5303172 Magar et al. Apr 1994 A
5311079 Ditlow et al. May 1994 A
5327125 Iwase et al. Jul 1994 A
5336950 Popli et al. Aug 1994 A
5343406 Freeman et al. Aug 1994 A
5347639 Rechtschaffen et al. Sep 1994 A
5349193 Mott et al. Sep 1994 A
5353432 Richek et al. Oct 1994 A
5355508 Kan Oct 1994 A
5361373 Gilson Nov 1994 A
5365125 Goetting et al. Nov 1994 A
5379444 Mumme Jan 1995 A
5386154 Goetting et al. Jan 1995 A
5386518 Reagle et al. Jan 1995 A
5392437 Matter et al. Feb 1995 A
5408643 Katayose Apr 1995 A
5410723 Schmidt et al. Apr 1995 A
5412795 Larson May 1995 A
5418952 Morley et al. May 1995 A
5418953 Hunt et al. May 1995 A
5421019 Holsztynski et al. May 1995 A
5422823 Agrawal et al. Jun 1995 A
5425036 Liu et al. Jun 1995 A
5426378 Ong Jun 1995 A
5428526 Flood et al. Jun 1995 A
5430687 Hung et al. Jul 1995 A
5440245 Galbraith et al. Aug 1995 A
5440538 Olsen et al. Aug 1995 A
5442790 Nosenchuck Aug 1995 A
5444394 Watson et al. Aug 1995 A
5448186 Kawata Sep 1995 A
5450022 New Sep 1995 A
5455525 Ho et al. Oct 1995 A
5457644 McCollum Oct 1995 A
5465375 Thepaut et al. Nov 1995 A
5469003 Kean Nov 1995 A
5473266 Ahanin et al. Dec 1995 A
5473267 Stansfield Dec 1995 A
5475583 Bock et al. Dec 1995 A
5475803 Stearns et al. Dec 1995 A
5475856 Kogge Dec 1995 A
5477525 Okabe Dec 1995 A
5483620 Pechanek et al. Jan 1996 A
5485103 Pedersen et al. Jan 1996 A
5485104 Agrawal et al. Jan 1996 A
5489857 Agrawal et al. Feb 1996 A
5491353 Kean Feb 1996 A
5493239 Zlotnick Feb 1996 A
5497498 Taylor Mar 1996 A
5504439 Tavana Apr 1996 A
5506998 Kato et al. Apr 1996 A
5510730 El Gamal et al. Apr 1996 A
5511173 Yamaura et al. Apr 1996 A
5513366 Agarwal et al. Apr 1996 A
5521837 Frankle et al. May 1996 A
5522083 Gove et al. May 1996 A
5525971 Flynn Jun 1996 A
5530873 Takano Jun 1996 A
5530946 Bouvier et al. Jun 1996 A
5532693 Winters et al. Jul 1996 A
5532957 Malhi Jul 1996 A
5535406 Kolchinsky Jul 1996 A
5537057 Leong et al. Jul 1996 A
5537580 Giomi et al. Jul 1996 A
5537601 Kimura et al. Jul 1996 A
5541530 Cliff et al. Jul 1996 A
5544336 Kato et al. Aug 1996 A
5548773 Kemeny et al. Aug 1996 A
5550782 Cliff et al. Aug 1996 A
5555434 Carlstedt Sep 1996 A
5559450 Ngai et al. Sep 1996 A
5561738 Kinerk et al. Oct 1996 A
5570040 Lytle et al. Oct 1996 A
5572710 Asano et al. Nov 1996 A
5574930 Halverson, Jr. et al. Nov 1996 A
5581731 King et al. Dec 1996 A
5583450 Trimberger et al. Dec 1996 A
5586044 Agrawal et al. Dec 1996 A
5587921 Agrawal et al. Dec 1996 A
5588152 Dapp et al. Dec 1996 A
5590345 Barker et al. Dec 1996 A
5590348 Phillips et al. Dec 1996 A
5596742 Agarwal et al. Jan 1997 A
5600265 El Gamal et al. Feb 1997 A
5600597 Kean et al. Feb 1997 A
5600845 Gilson Feb 1997 A
5606698 Powell Feb 1997 A
5608342 Trimberger Mar 1997 A
5611049 Pitts Mar 1997 A
5617547 Feeney et al. Apr 1997 A
5617577 Barker et al. Apr 1997 A
5619720 Garde et al. Apr 1997 A
5625806 Kromer Apr 1997 A
5625836 Barker et al. Apr 1997 A
5627992 Baror May 1997 A
5634131 Matter et al. May 1997 A
5635851 Tavana Jun 1997 A
5642058 Trimberger et al. Jun 1997 A
5646544 Iadanza Jul 1997 A
5646545 Trimberger et al. Jul 1997 A
5649176 Selvidge et al. Jul 1997 A
5649179 Steenstra et al. Jul 1997 A
5652529 Gould et al. Jul 1997 A
5652894 Hu et al. Jul 1997 A
5655069 Ogawara et al. Aug 1997 A
5655124 Lin Aug 1997 A
5656950 Duong et al. Aug 1997 A
5657330 Matsumoto Aug 1997 A
5659785 Pechanek et al. Aug 1997 A
5659797 Zandveld et al. Aug 1997 A
5675262 Duong et al. Oct 1997 A
5675743 Mavity Oct 1997 A
5675757 Davidson et al. Oct 1997 A
5680583 Kuijsten Oct 1997 A
5682491 Pechanek et al. Oct 1997 A
5687325 Chang Nov 1997 A
5694602 Smith Dec 1997 A
5696791 Yeung Dec 1997 A
5696976 Nizar et al. Dec 1997 A
5701091 Kean Dec 1997 A
5705938 Kean Jan 1998 A
5706482 Matsushima et al. Jan 1998 A
5713037 Wilkinson et al. Jan 1998 A
5717943 Barker et al. Feb 1998 A
5732209 Vigil et al. Mar 1998 A
5734869 Chen Mar 1998 A
5734921 Dapp et al. Mar 1998 A
5737516 Circello et al. Apr 1998 A
5737565 Mayfield Apr 1998 A
5742180 Detton et al. Apr 1998 A
5745734 Craft et al. Apr 1998 A
5748872 Norman May 1998 A
5748979 Trimberger May 1998 A
5752035 Trimberger May 1998 A
5754459 Telikepalli May 1998 A
5754820 Yamagami May 1998 A
5754827 Barbier et al. May 1998 A
5754871 Wilkinson et al. May 1998 A
5760602 Tan Jun 1998 A
5761484 Agarwal et al. Jun 1998 A
5773994 Jones Jun 1998 A
5778439 Trimberger et al. Jul 1998 A
5781756 Hung Jul 1998 A
5784636 Rupp Jul 1998 A
5794059 Barker et al. Aug 1998 A
5794062 Baxter Aug 1998 A
5801547 Kean Sep 1998 A
5801715 Norman Sep 1998 A
5801958 Dangelo et al. Sep 1998 A
5802290 Casselman Sep 1998 A
5804986 Jones Sep 1998 A
5815004 Trimberger et al. Sep 1998 A
5815715 Kucukcakar Sep 1998 A
5815726 Cliff Sep 1998 A
5821774 Veytsman et al. Oct 1998 A
5828229 Cliff et al. Oct 1998 A
5828858 Athanas et al. Oct 1998 A
5831448 Kean Nov 1998 A
5838165 Chatter Nov 1998 A
5841973 Kessler et al. Nov 1998 A
5844422 Trimberger et al. Dec 1998 A
5844888 Markkula, Jr. et al. Dec 1998 A
5848238 Shimomura et al. Dec 1998 A
5854918 Baxter Dec 1998 A
5857097 Henzinger et al. Jan 1999 A
5857109 Taylor Jan 1999 A
5859544 Norman Jan 1999 A
5860119 Dockser Jan 1999 A
5862403 Kanai et al. Jan 1999 A
5865239 Carr Feb 1999 A
5867691 Shiraishi Feb 1999 A
5867723 Chin et al. Feb 1999 A
5870620 Kadosumi et al. Feb 1999 A
5884075 Hester et al. Mar 1999 A
5887162 Williams et al. Mar 1999 A
5887165 Martel et al. Mar 1999 A
5889533 Lee Mar 1999 A
5889982 Rodgers et al. Mar 1999 A
5892370 Eaton et al. Apr 1999 A
5892961 Trimberger Apr 1999 A
5892962 Cloutier Apr 1999 A
5894565 Furtek et al. Apr 1999 A
5901279 Davis, III May 1999 A
5915123 Mirsky et al. Jun 1999 A
5924119 Sindhu et al. Jul 1999 A
5926638 Inoue Jul 1999 A
5927423 Wada et al. Jul 1999 A
5933023 Young Aug 1999 A
5933642 Greenbaum et al. Aug 1999 A
5936424 Young et al. Aug 1999 A
5943242 Vorbach et al. Aug 1999 A
5956518 DeHon et al. Sep 1999 A
5960193 Guttag et al. Sep 1999 A
5960200 Eager et al. Sep 1999 A
5966143 Breternitz, Jr. Oct 1999 A
5966534 Cooke et al. Oct 1999 A
5970254 Cooke et al. Oct 1999 A
5978260 Trimberger et al. Nov 1999 A
5978583 Ekanadham et al. Nov 1999 A
5996083 Gupta et al. Nov 1999 A
5999990 Sharrit et al. Dec 1999 A
6003143 Kim et al. Dec 1999 A
6011407 New Jan 2000 A
6014509 Furtek Jan 2000 A
6020758 Patel et al. Feb 2000 A
6020760 Sample et al. Feb 2000 A
6021490 Vorbach et al. Feb 2000 A
6023564 Trimberger Feb 2000 A
6023742 Ebeling et al. Feb 2000 A
6026481 New et al. Feb 2000 A
6034538 Abramovici Mar 2000 A
6035371 Magloire Mar 2000 A
6038650 Vorbach et al. Mar 2000 A
6038656 Martin et al. Mar 2000 A
6044030 Zheng et al. Mar 2000 A
6047115 Mohan et al. Apr 2000 A
6049222 Lawman Apr 2000 A
6049866 Earl Apr 2000 A
6052773 DeHon et al. Apr 2000 A
6054873 Laramie Apr 2000 A
6055619 North et al. Apr 2000 A
6058469 Baxter May 2000 A
6076157 Borkenhagen et al. Jun 2000 A
6077315 Greenbaum et al. Jun 2000 A
6081903 Vorbach et al. Jun 2000 A
6084429 Trimberger Jul 2000 A
6085317 Smith Jul 2000 A
6086628 Dave et al. Jul 2000 A
6088795 Vorbach et al. Jul 2000 A
6092174 Roussakov Jul 2000 A
6105105 Trimberger et al. Aug 2000 A
6105106 Manning Aug 2000 A
6108760 Mirsky et al. Aug 2000 A
6118724 Higginbottom Sep 2000 A
6119181 Vorbach et al. Sep 2000 A
6122719 Mirsky et al. Sep 2000 A
6125408 McGee et al. Sep 2000 A
6127908 Bozler et al. Oct 2000 A
6128720 Pechanek et al. Oct 2000 A
6130551 Agrawal et al. Oct 2000 A
6134166 Lytle et al. Oct 2000 A
6137307 Iwanczuk et al. Oct 2000 A
6145072 Shams et al. Nov 2000 A
6150837 Beal et al. Nov 2000 A
6150839 New et al. Nov 2000 A
6154048 Iwanczuk et al. Nov 2000 A
6154049 New Nov 2000 A
6157214 Marshall Dec 2000 A
6170051 Dowling Jan 2001 B1
6172520 Lawman et al. Jan 2001 B1
6173434 Wirthlin et al. Jan 2001 B1
6178494 Casselman Jan 2001 B1
6185256 Saito et al. Feb 2001 B1
6185731 Maeda et al. Feb 2001 B1
6188240 Nakaya Feb 2001 B1
6188650 Hamada et al. Feb 2001 B1
6198304 Sasaki Mar 2001 B1
6201406 Iwanczuk et al. Mar 2001 B1
6202182 Abramovici et al. Mar 2001 B1
6204687 Schultz et al. Mar 2001 B1
6211697 Lien et al. Apr 2001 B1
6212650 Guccione Apr 2001 B1
6215326 Jefferson et al. Apr 2001 B1
6216223 Revilla et al. Apr 2001 B1
6219833 Solomon et al. Apr 2001 B1
RE37195 Kean May 2001 E
6230307 Davis et al. May 2001 B1
6240502 Panwar et al. May 2001 B1
6243808 Wang Jun 2001 B1
6247147 Beenstra et al. Jun 2001 B1
6252792 Marshall et al. Jun 2001 B1
6256724 Hocevar et al. Jul 2001 B1
6260179 Ohsawa et al. Jul 2001 B1
6262908 Marshall et al. Jul 2001 B1
6263430 Trimberger et al. Jul 2001 B1
6266760 DeHon et al. Jul 2001 B1
6279077 Nasserbakht et al. Aug 2001 B1
6282627 Wong et al. Aug 2001 B1
6282701 Wygodny et al. Aug 2001 B1
6285624 Chen Sep 2001 B1
6286134 Click, Jr. et al. Sep 2001 B1
6288566 Hanrahan et al. Sep 2001 B1
6289440 Casselman Sep 2001 B1
6298472 Phillips et al. Oct 2001 B1
6301706 Maslennikov et al. Oct 2001 B1
6311200 Hanrahan et al. Oct 2001 B1
6311265 Beckerle et al. Oct 2001 B1
6321366 Tseng et al. Nov 2001 B1
6321373 Ekanadham et al. Nov 2001 B1
6338106 Vorbach et al. Jan 2002 B1
6341318 Dakhil Jan 2002 B1
6347346 Taylor Feb 2002 B1
6349346 Hanrahan et al. Feb 2002 B1
6353841 Marshall et al. Mar 2002 B1
6362650 New et al. Mar 2002 B1
6370596 Dakhil Apr 2002 B1
6373779 Pang et al. Apr 2002 B1
6374286 Gee Apr 2002 B1
6378068 Foster et al. Apr 2002 B1
6381624 Colon-Bonet et al. Apr 2002 B1
6389379 Lin et al. May 2002 B1
6389579 Phillips et al. May 2002 B1
6392912 Hanrahan et al. May 2002 B1
6398383 Huang Jun 2002 B1
6400601 Sudo et al. Jun 2002 B1
6404224 Azegami et al. Jun 2002 B1
6405185 Pechanek et al. Jun 2002 B1
6405299 Vorbach et al. Jun 2002 B1
6421808 McGeer Jul 2002 B1
6421809 Wuytack et al. Jul 2002 B1
6421817 Mohan et al. Jul 2002 B1
6425054 Nguyen Jul 2002 B1
6425068 Vorbach et al. Jul 2002 B1
6426649 Fu et al. Jul 2002 B1
6427156 Chapman et al. Jul 2002 B1
6430309 Pressman et al. Aug 2002 B1
6434642 Camilleri et al. Aug 2002 B1
6434695 Esfahani et al. Aug 2002 B1
6434699 Jones et al. Aug 2002 B1
6437441 Yamamoto Aug 2002 B1
6438747 Schreiber et al. Aug 2002 B1
6457116 Mirsky et al. Sep 2002 B1
6477643 Vorbach et al. Nov 2002 B1
6480937 Vorbach et al. Nov 2002 B1
6480954 Trimberger et al. Nov 2002 B2
6483343 Faith et al. Nov 2002 B1
6487709 Keller et al. Nov 2002 B1
6490695 Zagorski et al. Dec 2002 B1
6496971 Lesea et al. Dec 2002 B1
6504398 Lien et al. Jan 2003 B1
6507898 Gibson et al. Jan 2003 B1
6507947 Schreiber et al. Jan 2003 B1
6513077 Vorbach et al. Jan 2003 B2
6516382 Manning Feb 2003 B2
6518787 Allegrucci et al. Feb 2003 B1
6519674 Lam et al. Feb 2003 B1
6523107 Stansfield et al. Feb 2003 B1
6525678 Veenstra et al. Feb 2003 B1
6526520 Vorbach et al. Feb 2003 B1
6538468 Moore Mar 2003 B1
6538470 Langhammer et al. Mar 2003 B1
6539415 Mercs Mar 2003 B1
6539438 Ledzius et al. Mar 2003 B1
6539477 Seawright Mar 2003 B1
6542394 Marshall et al. Apr 2003 B2
6542844 Hanna Apr 2003 B1
6542998 Vorbach et al. Apr 2003 B1
6553395 Marshall et al. Apr 2003 B2
6553479 Mirsky et al. Apr 2003 B2
6567834 Marshall et al. May 2003 B1
6571381 Vorbach et al. May 2003 B1
6587939 Takano Jul 2003 B1
6598128 Yoshioka et al. Jul 2003 B1
6631487 Abramovici et al. Oct 2003 B1
6633181 Rupp Oct 2003 B1
6657457 Hanrahan et al. Dec 2003 B1
6658564 Smith et al. Dec 2003 B1
6665758 Frazier et al. Dec 2003 B1
6687788 Vorbach et al. Feb 2004 B2
6697979 Vorbach et al. Feb 2004 B1
6704816 Burke Mar 2004 B1
6708325 Cooke et al. Mar 2004 B2
6717436 Kress et al. Apr 2004 B2
6721830 Vorbach et al. Apr 2004 B2
6728871 Vorbach et al. Apr 2004 B1
6745317 Mirsky et al. Jun 2004 B1
6748440 Lisitsa et al. Jun 2004 B1
6751722 Mirsky et al. Jun 2004 B2
6754805 Juan Jun 2004 B1
6757847 Farkash et al. Jun 2004 B1
6757892 Gokhale et al. Jun 2004 B1
6782445 Olgiati et al. Aug 2004 B1
6785826 Durham et al. Aug 2004 B1
6802026 Patterson et al. Oct 2004 B1
6802206 Kurecka et al. Oct 2004 B2
6803787 Wicker, Jr. Oct 2004 B1
6820188 Stansfield et al. Nov 2004 B2
6829697 Davis et al. Dec 2004 B1
6847370 Baldwin et al. Jan 2005 B2
6868476 Rosenbluth et al. Mar 2005 B2
6871341 Shyr Mar 2005 B1
6874108 Abramovici et al. Mar 2005 B1
6886092 Douglass et al. Apr 2005 B1
6901502 Yano et al. May 2005 B2
6928523 Yamada Aug 2005 B2
6961924 Bates et al. Nov 2005 B2
6975138 Pani et al. Dec 2005 B2
6977649 Baldwin et al. Dec 2005 B1
7000161 Allen et al. Feb 2006 B1
7007096 Lisitsa et al. Feb 2006 B1
7010667 Vorbach et al. Mar 2006 B2
7028107 Vorbach et al. Apr 2006 B2
7038952 Zack et al. May 2006 B1
7043416 Lin May 2006 B1
7210129 May et al. Apr 2007 B2
7216204 Rosenbluth et al. May 2007 B2
7237087 Vorbach et al. Jun 2007 B2
7249351 Songer et al. Jul 2007 B1
7254649 Subramanian et al. Aug 2007 B2
7340596 Crosland et al. Mar 2008 B1
7346644 Langhammer et al. Mar 2008 B1
7350178 Crosland et al. Mar 2008 B1
7382156 Pani et al. Jun 2008 B2
7595659 Vorbach et al. Sep 2009 B2
7650448 Vorbach et al. Jan 2010 B2
20010001860 Beiu May 2001 A1
20010003834 Shimonishi Jun 2001 A1
20010010074 Nishihara et al. Jul 2001 A1
20010018733 Fujii et al. Aug 2001 A1
20010032305 Barry Oct 2001 A1
20020013861 Adiletta et al. Jan 2002 A1
20020038414 Taylor et al. Mar 2002 A1
20020045952 Blemel Apr 2002 A1
20020083308 Pereira et al. Jun 2002 A1
20020103839 Ozawa Aug 2002 A1
20020124238 Metzgen Sep 2002 A1
20020138716 Master et al. Sep 2002 A1
20020143505 Drusinsky Oct 2002 A1
20020144229 Hanrahan Oct 2002 A1
20020156962 Chopra et al. Oct 2002 A1
20020165886 Lam Nov 2002 A1
20030001615 Sueyoshi et al. Jan 2003 A1
20030014743 Cooke et al. Jan 2003 A1
20030046607 May et al. Mar 2003 A1
20030052711 Taylor et al. Mar 2003 A1
20030055861 Lai et al. Mar 2003 A1
20030056085 Vorbach Mar 2003 A1
20030056091 Greenberg Mar 2003 A1
20030056202 May et al. Mar 2003 A1
20030061542 Bates et al. Mar 2003 A1
20030062922 Douglass et al. Apr 2003 A1
20030086300 Noyes et al. May 2003 A1
20030093662 Vorbach et al. May 2003 A1
20030097513 Vorbach et al. May 2003 A1
20030123579 Safavi et al. Jul 2003 A1
20030135686 Vorbach et al. Jul 2003 A1
20030192032 Andrade et al. Oct 2003 A1
20040015899 May et al. Jan 2004 A1
20040025005 Vorbach et al. Feb 2004 A1
20040078548 Claydon et al. Apr 2004 A1
20040168099 Vorbach et al. Aug 2004 A1
20040199688 Vorbach et al. Oct 2004 A1
20050066213 Vorbach et al. Mar 2005 A1
20050144210 Simkins et al. Jun 2005 A1
20050144212 Simkins et al. Jun 2005 A1
20050144215 Simkins et al. Jun 2005 A1
20060230096 Thendean et al. Jun 2006 A1
20060230094 Simkins et al. Oct 2006 A1
20090085603 Paul et al. Apr 2009 A1
Foreign Referenced Citations (124)
Number Date Country
42 21 278 Jan 1994 DE
44 16 881 Nov 1994 DE
38 55 673 Nov 1996 DE
196 51 075 Jun 1998 DE
196 54 593 Jul 1998 DE
196 54 595 Jul 1998 DE
196 54 846 Jul 1998 DE
197 04 044 Aug 1998 DE
197 04 728 Aug 1998 DE
197 04 742 Sep 1998 DE
198 22 776 Mar 1999 DE
198 07 872 Aug 1999 DE
198 61 088 Feb 2000 DE
199 26 538 Dec 2000 DE
100 28 397 Dec 2001 DE
100 36 627 Feb 2002 DE
101 29 237 Apr 2002 DE
102 04 044 Aug 2003 DE
0 208 457 Jan 1987 EP
0 211 360 May 1987 EP
0 428 327 May 1991 EP
0 463 721 Jan 1992 EP
0 477 809 Apr 1992 EP
0 485 690 May 1992 EP
0 497 029 Aug 1992 EP
0 539 595 May 1993 EP
0 638 867 Aug 1994 EP
0 628 917 Dec 1994 EP
0 678 985 Oct 1995 EP
0 686 915 Dec 1995 EP
0 707 269 Apr 1996 EP
0 726 532 Aug 1996 EP
0 735 685 Oct 1996 EP
0 835 685 Oct 1996 EP
0 746 106 Dec 1996 EP
0 748 051 Dec 1996 EP
0 926 594 Jun 1999 EP
1 102 674 Jul 1999 EP
1 061 439 Dec 2000 EP
1 102 674 May 2001 EP
1 115 204 Jul 2001 EP
1 146 432 Oct 2001 EP
0 696 001 Dec 2001 EP
0 398 552 Nov 2002 EP
1 669 885 Jun 2006 EP
2 752 466 Feb 1998 FR
2 304 438 Mar 1997 GB
58-58672 Apr 1983 JP
01-229378 Sep 1989 JP
2-130023 May 1990 JP
2-226423 Sep 1990 JP
8-250685 Sep 1993 JP
5-265705 Oct 1993 JP
5-276007 Oct 1993 JP
6-266605 Sep 1994 JP
07-086921 Mar 1995 JP
7-154242 Jun 1995 JP
8-148989 Jun 1995 JP
8-44581 Feb 1996 JP
08069447 Mar 1996 JP
08-101761 Apr 1996 JP
8-102492 Apr 1996 JP
8-221164 Aug 1996 JP
9-27745 Jan 1997 JP
09-294069 Nov 1997 JP
11-184718 Jul 1999 JP
11-307725 Nov 1999 JP
2000-076066 Mar 2000 JP
2000-181566 Jun 2000 JP
2001-201066 Jul 2000 JP
2000-311156 Nov 2000 JP
2001-500682 Jan 2001 JP
2001-167066 Jun 2001 JP
2001-510650 Jul 2001 JP
2002-0033457 Jan 2002 JP
05-509184 Dec 2003 JP
3-961028 Aug 2007 JP
WO9004835 May 1990 WO
WO9011648 Oct 1990 WO
WO9201987 Feb 1992 WO
WO9311503 Jun 1993 WO
WO9406077 Mar 1994 WO
WO9408399 Apr 1994 WO
WO9500161 Jan 1995 WO
WO9526001 Sep 1995 WO
WO9810517 Mar 1998 WO
WO9826356 Jun 1998 WO
WO9828697 Jul 1998 WO
WO9829952 Jul 1998 WO
WO9831102 Jul 1998 WO
WO9835294 Aug 1998 WO
WO9835299 Aug 1998 WO
WO9900731 Jan 1999 WO
WO9900739 Jan 1999 WO
WO9912111 Mar 1999 WO
WO9932975 Jul 1999 WO
WO9940522 Aug 1999 WO
WO9944120 Sep 1999 WO
WO9944147 Sep 1999 WO
WO0017771 Mar 2000 WO
WO0038087 Jun 2000 WO
2000045282 Aug 2000 WO
WO0049496 Aug 2000 WO
WO0077652 Dec 2000 WO
WO0155917 Aug 2001 WO
WO0213000 Feb 2002 WO
WO0221010 Mar 2002 WO
WO0229600 Apr 2002 WO
W00250665 Jun 2002 WO
WO02071196 Sep 2002 WO
WO0271248 Sep 2002 WO
WO0271249 Sep 2002 WO
WO02103532 Dec 2002 WO
WO03017095 Feb 2003 WO
WO03023616 Mar 2003 WO
WO03025781 Mar 2003 WO
WO03032975 Apr 2003 WO
WO0332975 Apr 2003 WO
WO0336507 May 2003 WO
WO03036507 May 2003 WO
WO 03091875 Nov 2003 WO
WO2004053718 Jun 2004 WO
WO2004114128 Dec 2004 WO
WO2005045692 May 2005 WO
Related Publications (1)
Number Date Country
20060031595 A1 Feb 2006 US
Continuations (3)
Number Date Country
Parent 10265846 Oct 2002 US
Child 11246617 US
Parent 09613217 Jul 2000 US
Child 10265846 US
Parent 08947002 Oct 1997 US
Child 09613217 US