The invention relates to a process for eliminating mercury and possibly arsenic from a hydrocarbon feed, comprising a step for distilling the feed and then (a) at least one two-step mercury capture stage (a catalytic decomposition step and a mercury adsorption step) carried out on at least one of the distillation cuts, and (b) at least one gas or liquid phase demercurisation step carried out on at least one of the cuts.
Liquid condensates (by-products from gas production) and certain crude oils are known to contain a variety of metallic trace compounds, usually in the form of organometallic complexes. Such metallic compounds are usually poisons for the catalysts used in processes for transforming such cuts into commercial products. Mercury is particularly toxic to the activity of precious metals present and it is also highly corrosive towards aluminium parts, seals and welds.
It is thus advantageous to purify feeds for sending to processes for transforming condensates or crudes to avoid entraining mercury and possibly arsenic Purification of the feed upstream of treatment processes can protect the whole of the facility.
The Applicant has already proposed a process for eliminating mercury from hydrocarbons acting as feeds for a variety of treatment processes. The Applicant's U.S. Pat. No. 4,911,825 describes the importance of capturing mercury and possibly arsenic using a two-step process. The first step consists of bringing the feed, in the presence of hydrogen, into contact with a catalyst comprising at least one metal selected from the group formed by nickel, cobalt, iron and palladium. The mercury is not (or is only slightly) captured by the catalyst but it is activated on that catalyst so as to be captured in a second step by a mass comprising sulphur or sulphur-containing compounds.
In a further example, the Applicant's French patent application FR-A-92 14224 describes a two-step process as described above but with a step for distilling the feed after the first step. The metallic mercury from the first step is then distributed into different cuts, and the light fractions are enriched and are then treated with a metallic mercury adsorption mass, as described above.
In a still further example, Japanese patent JP-103377 describes a process comprising a first feed heat treatment step carried out at a temperature of more than 200° C. to decompose all of the mercury species present in the feed to mercury metal, which is then adsorbed onto a metal sulphide.
The Applicant's U.S. Pat. No. 4,094,777 describes a process for capturing mercury in its metal form, in the gas or liquid phase using an adsorbent mass constituted by a metal sulphide.
The present invention enables the above techniques to be used in combination. Instead of directly treating the feed with one or other of the methods described above, it has been discovered that by first distilling the feed to obtain a variety of cuts, the mercury (and any arsenic) is distributed differently in these cuts. In general, the metallic mercury is more concentrated in the lightest cut(s), while the mercury compounds (mainly organometallic compounds) are concentrated in the heaviest cut(s) while the sludge is essentially in the heaviest cut.
Thus, the invention provides a first step for distilling the treated feed, at temperatures in the range between the initial point and the end point of the feed in question. These temperatures are in the range 20° C. to 600° C. Unlike that described in JP-103377, the aim here is not to decompose the orgyanomercuric compounds into mercury metal, but to distil into a variety of cuts, which, however, can decompose a good proportion thereof.
Thus, prior fractionation of the above feeds to be demercurised can concentrate a large proportion of the metallic mercury in the lightest cuts. An increase in the mercury concentration has been observed in the light cuts after the fractionation step, the mercury being obtained by decomposition of organometallic mercury compounds or by thermal decomposition of sludges in which mercury is present. A reduction in the mercury concentration has been observed in the heaviest cuts, to the benefit of the lightest cuts, which are enriched in mercury.
More precisely, a particular distribution of mercury in the distillation effluents has now been discovered. The transformation of various mercury compounds to elemental mercury by the distillation step leads to a substantial increase in the mercury concentration in the light cuts and to a reduction in the concentration of metallic mercury in the heavy cuts. This change in the mercury distribution is completely unexpected since the boiling point of mercury metal is 356° C., and the mercury should be concentrated in the heavy fraction. However, distillation cannot decompose all of the species of mercury to metallic mercury, thus non-metallic mercury species remain in concentrated form in the intermediate cuts.
Further, this distillation step has the advantage of concentrating particles in suspension, known as sludge and formed from solid mineral compounds (silica . . . ) and/or heavy hydrocarbons in the condensed form, in the heaviest portion of the distillate, in which the mercury which was present in the metallic form or organometallic form has been decomposed under the effect of temperature.
The invention thus concerns a process for eliminating mercury and possibly arsenic from a hydrocarbon feed, the process comprising.
The distilled feed was a condensate with respective mercury and arsenic contents of 500 and 200 ppb and a sludge content of 2000 ppm (containing 1% to 5% of mercury). The feed was distilled into five cuts and the mercury and arsenic distributions are shown in
An accurate analysis of the mercury species present in these different cuts produced the following distribution:
Demercurisation of these cuts thus requires installing a simple metallic mercury adsorber for the cuts containing metallic mercury, as described in the present invention In contrast, the heaviest cuts (>100° C.), which cuts contain organometallic mercury compounds but also arsenic (see
Further, after distillation, the sludge present in the feed, also containing mercury, is found in the heaviest cut (>170° C. in the example) and is also completely demercurised.
The following example used the method of Example 1 to distil a further condensate, containing only mercury but in an amount of 1500 ppb. The distribution of mercury in the different cuts is shown in FIG. 3.
Analysis of the mercury compounds in the different cuts showed the exclusive presence of metallic mercury. Installing a simple mercury adsorber in each of these cuts produced a demercurisation efficiency of more than 99%.
Number | Date | Country | Kind |
---|---|---|---|
00 00248 | Jan 2000 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
4911825 | Roussel et al. | Mar 1990 | A |
5062948 | Kawazoe et al. | Nov 1991 | A |
5384040 | Mank et al. | Jan 1995 | A |
5401392 | Courty et al. | Mar 1995 | A |
5601701 | Cameron et al. | Feb 1997 | A |
5989506 | Markovs | Nov 1999 | A |
6033556 | Didillon et al. | Mar 2000 | A |
6149799 | Raybaud et al. | Nov 2000 | A |
Number | Date | Country |
---|---|---|
2 644 472 | Sep 1990 | FR |
2 698 372 | May 1994 | FR |
Number | Date | Country | |
---|---|---|---|
20020139721 A1 | Oct 2002 | US |