(Battoni et al. Laboratoire de Chimie et Biochimie Pharmacoloques et Toxicologiques, Univ. Rene Descartes, Paris, Fr., Act. Dioxygen Homogeneous Catal. Oxid [Proc. Int. Symp], 5th (1993), 449.* |
Yoon Jing Lee, Epoxidation of Olefins with H202 Catalyzed By An Electronegatively-substituted Iron Pdorphyrin Complex In Aprotic Solvent, Chemistry Letters, No. 8, pp. 837-838 (1998). |
Still, et al., Rapid Chromatographic Technique for Preparative Separation with Moderate Resolution, J. Org. Chem, 43: 2923 (1978). |
Felix, et al., Quinazolines and 1,4-Benzodiazepines. XLIII(1). Oxidations with Ruthenium Tetroxide, J. Heterocycl. Chem, 5: 731 (1968). |
Sulkowski, et al., The Formation and Subsequent Rearrangment of 7-Chloro-5-phenyl-3,1,4-benzoxadiazepin-2(1H)-one, J. Org. Chem., 27: 4424 (1962). |
Battioni, et al., Monooxygenase-like Oxidation of Hydrocarbons by H202 Catalyzed by Manganese Porphyrins and Imidazole: Selection of the Best Catalytic System and Nature of the Active Oxygen Species, J. Am. Chem. Soc., 110: 8462 (1988). |
Thellend, et al., Ammonium Acetate as a very Sime and Efficient Cocatalyst for Manganese Prophyrin-catalysed Oxgenation of Hydroarbons by Hydrogetn Peroxide, J. Chem. Soc., Chem. Comm., 1035 (1994). |
Ebel, V.S., et al., Analytik und Synthese wichtiger 3-Hydroxy-5-phenyl-1,4-benzodiazepin-2-on-Derivate, Arzneim.-Forsch., 29:1317 (1979). |
Rocha Gonsalves, et al., State of the art in the development of biomimetic oxidation catalysts, J. Mol. Catal. A: Chem., 113:209 (1996). |
Frohlic, L. et al., Moglichkeiten des Einsatze biomimetischer System zur Monooxygenierung von Wirk-und Arzneistoffen, Pharm. Ind. 59:803 (1997). |
Chorghade, M.S., et al., Metalloporphyrins as chemical mimics of cytochrome P-450 systems, Pure Appl. Chem. 68:753 (1996). |
Meunier, B., Metalloporphyrins and Versatile Catalysts for Oxidation Reactions and Oxidative DNA Cleavage, Chem Rev., 92:1411 (1992). |
Masumoto, H., Applications of Chemical Cytochrome P-450 Model Systems to Studies On Drug Metabolism, M. Drug Metab. Dispos, 19:768 (1991). |
Seddon, T., et al., Comparative Drug Metabolism of Diazepam in Hepatocytes Isolated From Man, Rat, Monkey and Dog, Biochem. Phjarmacol., 38:1657 (1989). |
Chenery, R.J., et al., Diazepam Metabolism in Cultured Hepatocytes from Rat, Rabbit, Dog, Guinea Pig, and Man, R. Drug Metab. Dispo., 15:312 (1987). |
Andrews, S.M., et al., The metabolism and disposition of [2-14C]diazepam in the streptozotocin-diabetic rat, Xenobitica 14:751 (1984). |
Schwandt, H.J., et al., Metabolic Rearrangements of 1,4-Benzodiazepine Derivatices, Xenobiotica 4:733 (1974). |
Ruelius, H.W., et al., Metabolism of Diazepam in Dogs: Transformation to Oxazepam, Arch. Biochem. Biophys., III:376 (1965). |
Schwartz, M.A., et al., Metabolism of Diazepam in Rat, Dog, and Man, J. Pharmacol. Exp. Ther., 149:423 (1965). |
Ogawa, A., et al., Benzotrifluoride: A Useful Alternative Solvent for Organic Reactions Currently Conducted in Dichloromethane and Related Solvents, J. Org. Chem., 62:450 (1997). |
Ono, S., et al., Human liver microsomal diazepam metabolism using cDNA-expressed cytochrome P450s: role of CYP2B6, 2C19 and the 3A subfamily, Xenobiotica, 26:1155 (1996). |
Dolphin D., et al., Polyhaloporphyrins: Usual Ligands for Metals and Metal-Catalyzed Oxidations, Acc. Chem. Res., 30:251 (1997). |