Process for conditioning organic substrate surfaces

Information

  • Patent Grant
  • 5741545
  • Patent Number
    5,741,545
  • Date Filed
    Monday, April 22, 1996
    29 years ago
  • Date Issued
    Tuesday, April 21, 1998
    27 years ago
Abstract
Organic substrate surfaces, particularly of industrial polymers, are provided by fluorination or chlorination with corresponding layers so as to obtain certain properties; for the purpose of improving the application of a layer, the surfaces are exposed beforehand at temperatures between 25.degree. C. and 300.degree. C. to hydrogen or a gas containing at least 0.1% by volume of hydrogen.
Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a process for conditioning organic substrate surfaces.
For the purposes of the invention, the subsequent treatment processes are, in particular, the surface fluorination of polyolefins, particularly the industrial use of gas-phase fluorination in the barrier layer formation for plastic fuel containers of high density polyethylene (HDPE). Apart from fluorination, chlorination is also a suitable subsequent treatment process according to the present invention.
2. DISCUSSION OF BACKGROUND
According to the current state of the art, gas-phase fluorination of organic molecules for the purpose of replacing all carbon-hydrogen bonds as completely as possible by carbon-fluorine bonds is subject to the following limitations:
It generally succeeds only with very careful maintenance and control of the two most important reaction parameters, viz. fluorine concentration and reaction time.
The sometimes dramatic reaction of fluorine with organic substances has to be, on the one hand, moderated by means of very low fluorine concentrations at the beginning of the reaction so as to avoid undesired degradation and decomposition reactions, with very long reaction times having to be accepted; on the other hand, towards the end of the reaction care has to be taken that the reaction is as complete as possible, by using fluorine concentrations which are as high as possible. Consideration of the energy changes in the reaction of fluorine with organic substrates gives a simple explanation of this behavior:
F.sub.2 +RH.fwdarw.RF+HF .DELTA.H=-430 kJ mol.sup.-1
The energy liberated in this reaction is sufficient to break a C--C bond (350-370 kJ mol.sub.-1). Attempts are generally made to master this problem by greatly diluting the fluorine with an inert gas and by cooling the reactants. However, with increasing degree of substitution, i.e. as the reaction progresses, the molecules formed become evermore stable, so that for complete substitution evermore drastic reaction conditions have to be used (removal of cooling, undiluted fluorine). This leads to low product yields and selectivity.
In the industrial use of gas-phase fluorination, e.g. in the formation of barrier layers for plastic fuel containers of high density polyethylene (HDPE), one therefore deliberately refrains, taking economic aspects into account, from completely fluorinating the basic polymer skeleton even in the case of a high F.sub.2 excess, i.e. one strives for a compromise between avoiding degradation of the molecule and obtaining as high as possible a degree of fluorine substitution. The reaction can be described by the following overall equation (I),
--CH.sub.2 --CH.sub.2 --CH.sub.2 --+3F.sub.2 .fwdarw.--CH.sub.2 --CHF--CF.sub.2 --+3HF
However, a decisive step change in the thermal and chemical stability of an organic compound can only be achieved if virtually all carbon substituents are replaced by fluorine atoms. This can be seen from the property spectrum of PE, ETFE and PTFE, as shown in Table I:
TABLE I______________________________________Selected physical and chemical properties of HDPE, ETFE*and PTFE:Polymer/Property HDPE ETFE PTFE Unit______________________________________Melting range .about.130 .about.270 .about.340 .degree.C.Temperature range for <80 <150 <260 .degree.C.useDensity .about.0.94 .about.1.75 2.2 g/cm.sup.3Oxidation resistance moderate good excellentOxygen permeability 76 67 250 ##STR1##Methane permeability 56 -- 1.47 ##STR2##Permeability to water 1 0.11 0.03 g/m.sup.2 dvapor______________________________________ *Partially fluorinated thermoplastic (tetrafluoroethyleneethylene copolymer)
SUMMARY OF THE INVENTION
Accordingly, it is an object of the invention to provide a process for conditioning organic substrate surfaces, which avoids oxidative degradation and fragmentation reactions and improves the prerequisite properties for carrying out subsequent treatment processes. In particular, it should ensure the prerequisites for a quantitative fluorination reaction in accordance with equation (II), i.e. short reaction times and low fluorine concentrations.
--CH.sub.2 --CH.sub.2 --CH.sub.2 --+6F.sub.2 .fwdarw.--CF.sub.2 --CF.sub.2 --CF.sub.2 --+6HF (II)
This object is achieved according to the present invention by exposing the substrate surface of the organic substrate surface to be conditioned at a temperature between 25.degree. C. and 300.degree. C. to a gas containing hydrogen for improving subsequent treatment processes.





BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1a-1k are IR spectrum graphs showing the significant decrease in the C--H bands; and
FIGS. 2a-2d are ESCA spectrum graphs.





DETAILED DESCRIPTION
It has surprisingly been found that smooth quantitative reaction of elemental fluorine with a hydrocarbon can be achieved when the actual fluorination is preceded, according to the invention, by a treatment step with hydrogen or a hydrogen-containing gas mixture, hereinafter referred to as activation. Where a hydrogen-containing gas mixture is used the hydrogen part of the mixture would contain at least 0.1% by volume of hydrogen. For the industrially important area of gas-phase fluorination of polyethylene (PE) this means that the PE surface can be transformed into a structure analogous to polytetrafluoroethylene (PTFE). This has hitherto not been possible under economical reaction conditions. A fluorinated polyolefin surface treated in this way is, for example, not able to be wetted by water: It is thus distinguished in principle from previously known fluorination processes used in industry. The process principle of the present invention allows the application of hydrophobic fluoropolymers to industrial semifinished or finished products of polyolefins having a sometimes considerably improved chemical and physical property profile (see Table I). These treatment steps can be particularly advantageously carried out in the course of important processing steps for the shaping of plastics (extrusion, injection molding, blow molding, etc.).
Surprisingly, even at room temperature, activation of the substrate surface with hydrogen gives a significant increase in the C--F yield under otherwise constant reaction conditions. This is associated with a significantly improved permeation behavior toward fuels and their additives.
An analogous behavior of the polyolefin surface is found in the reaction with elemental chlorine: While treatment of the unactivated polyolefin surface with chlorine results in virtually no observable replacement of C--H bonds by C--Cl bonds, the preceding activation according to the present invention enables a significant rise in the C--Cl bond content to be observed. This is all the more surprising since the chlorination of hydrocarbons normally has a considerably higher activation energy than fluorination. The activation step obviously reduces the activation energy for this reaction to such an extent that the reaction can be carried out under economical reaction conditions (see Table II).
TABLE II__________________________________________________________________________ Activation Fluorination Loading C/FNo. Polymer p �bar! c �vol %! t �sec! T �.degree.C.! p �bar! c �vol %! t �sec! T �.degree.C.! �.mu.g/cm.sup.2 ! ratio__________________________________________________________________________1 HDPE -- -- -- -- -- -- -- -- -- --2 HDPE 8 12 60 195 -- -- -- -- -- --3 HD)PE -- -- -- -- 8 1 30 125 25 14 HDPE 8 12 60 195 8 1 30 125 87 1.95 HDPE 8 0.5 60 195 8 1 30 125 73 1.76 HDPE -- -- -- -- 0.9 10 600 50 27 17 HDPE 0.9 12 900 27 0.9 10 600 50 91 1.9Chlorination8 HDPE 2 100 30 1009 HDPE 8 12 60 195 2 100 30 100__________________________________________________________________________
The activation gives, even without subsequent treatment of the polymer surface, a significant improvement in the resistance of the substrate to oxidative degradation, as is virtually unavoidable, in particular, in the processing of industrial thermoplastics as a result of the action of atmospheric oxygen. By this means, on the one hand, a virtually undamaged surface is subsequently modified by a gas-phase reaction, on the other hand it makes possible higher processing temperatures in the production of industrial moldings, which in turn has a favorable effect on the achievable cycle of times and thus on the economics.
EXAMPLES
The invention is illustrated by the following examples:
Small hollow bodies of polyolefins are treated in an autoclave under defined reaction conditions with the appropriate gases or gas mixtures (see Table II).
The treated containers were subsequently characterized by IR spectroscopy using attenuated total reflection (ATR), with the aid of ESCA (Electron Spectroscopy for Chemical Analysis) and by means of elemental analysis (surface loading with F).
The significant decrease in or the "disappearance" of the C--H bands (CH stretching vibration at about 3000 cm.sup.-1 in the IR spectrum (FIG. 1) with simultaneous increase in the intensity of the C--F bands at about 1200 cm.sup.-1 impressively proves the chemical transformation achieved and the step change in properties associated therewith as shown in Table I. At the same time, the ESCA spectrum (FIG. 2) also becomes ever more similar to PTFE. The activated polymer surface (without subsequent treatment) has an absence of C.dbd.O and C.dbd.C absorption bands at about 1750 cm.sup.-1 in the IR spectrum, these groups being significant for oxidative degradation of the basic polymer skeleton.
Claims
  • 1. A process for conditioning organic substrate surfaces for improving a subsequent treatment process which comprises exposing the substrate surfaces, at temperatures between 25.degree. and 300.degree. C. to a hydrogen containing gas, wherein said organic substrate is a polyolefin and said subsequent treatment process is a fluorination step for producing fluorinated polyolefin surfaces not able to be wetted by water.
  • 2. The process of claim 1 wherein the polyolefin is polyethylene.
  • 3. A process for conditioning organic substrate surfaces for improving a subsequent treatment process, which comprises exposing the substrate surfaces at temperatures between 25.degree. and 300.degree. C. to a hydrogen containing gas, wherein said organic substrate is a hydrocarbon and said subsequent treatment process is a fluorination step comprising quantitative reaction of elemental fluorine with the hydrocarbon.
  • 4. The process of claim 3 wherein the fluorination is a gas-phase fluorination of polyethylene.
Priority Claims (1)
Number Date Country Kind
195 14 924.6 Apr 1995 DEX
US Referenced Citations (5)
Number Name Date Kind
3647613 Scotland Mar 1972
4264750 Anand et al. Apr 1981
4310564 Imada et al. Jan 1982
4764405 Bauman et al. Aug 1988
5527566 Schadt et al. Jun 1996
Foreign Referenced Citations (1)
Number Date Country
4309532 Nov 1992 JPX