Process for constructing compact longitudinal concrete

Information

  • Patent Grant
  • 4600459
  • Patent Number
    4,600,459
  • Date Filed
    Monday, August 26, 1985
    39 years ago
  • Date Issued
    Tuesday, July 15, 1986
    38 years ago
Abstract
A new and novel process for constructing longitudinal concrete members such as beams by providing a longitudinal sack like mold constructed from a pliable sheet or sheets having an open throat supported by an open rim frame in turn supported by a plurality of inverted "U" shaped supports spaced apart one from another while in a common straight alignment while the supports rest upon an equipment base. The concrete members being either removed from the sack like mold, or the member being a cast in place member with the mold acting as a casing or protective skin. The sack like mold being a hybrid sling because of being provided with a long under loop support on which the loop portion of the true sling rests.
Description
Claims
  • 1. A process for constructing a compact longitudinal first concrete member, the process using four consecutive steps of providing and using a partially suspended horizontal hybrid sling with an under loop bearing support, the hybrid sling acting as a mold confining fluid concrete, the hybrid sling having an open throat at its upper end attached to an open rim frame, the sling loop having a long central body portion between two end closures, the central body portion with its two attached end closures making a closed ended trough-like mold container used in constructing the first concrete member, the first step consists in providing a pliable sheet, the sheet being used in making the central body portion, the second step consists in providing rim support equipment for partially suspending the hybrid sling, the support equipment requiring a long narrow rectangular horizontal open rim frame, having two spaced apart parallel side rails terminating at short end cross rails while the rim frame is supported at a predetermined height above said under loop bearing support, by rim frame support equipment resting upon an equipment base, the support equipment consisting of a plurality of inverted "U" shaped supports spaced apart one from another along a common alignment centerline, each "U" support having two uprights spaced apart one from another at equal distances transverse to said alignment centerline, the uprights having upper ends interconnected by a cross-tie beam while having lower ends resting on said equipment base, the third step comprises assembling and attaching an end closure to each end of the sling portion, to create a closed end trough-like compartment having an upper rectangular pliable rim edge, the third step further consists in placing the trough-like compartment beneath the rim frame and attaching the rectangular pliable rim edge to the frame, while the hybrid sling central body portion hangs downward such that the bottom of its loop rests upon the under loop bearing support and where at the bottom of the loop is spread out evenly without wrinkles and creases, the fourth step consists of ingressing a first pour of fluid concrete through the open rim frame into the undistended closed ended hybrid sling whereby the thus confined fluid concrete provides fluid pressures distending the hybrid sling to produce uniform cross-sectional configurations along the length of the now distended hybrid sling, the fluid concrete upon gaining a set produces a long compact concrete member having the same cross-sectional configurations along its length.
  • 2. A process for constructing a compact longitudinal concrete member, the process entailing four consecutive steps, the first step providing a first and two second pliable sheets, the second step consisting of providing rim support equipment for the hybrid sling made from the pliable sheets, the third step consisting of assembling and attaching the first and second hybrid sling portions together at four common corner junctures to create a closed ended reusuable trough-like compartment, the fourth step consisting of ingressing a first pour of fluid concrete into the closed ended compartment wherein the fluid concrete upon gaining a set creates the first concrete member as set forth in claim 1 wherein; the second pliable sheets are cut at or adjacent to the four common corner junctures, the cut portions of the reusable trough like mold compartment thereafter being peeled from and separated from the first concrete member which is then removed from the compartment, the cut portions being reassembled again by application of an overlapping adhesive coated tape at each juncture cut, the bottom bearing closed ended hybrid sling is again reassembled as per original step 3 and reused as per original step 4 of claim 1 to construct a second compact concrete member.
  • 3. A process for constructing a compact longitudinal concrete member, the process comprising four consecutive steps, the first step providing a pliable sheet and two end closures, each end closure consisting of a rigid sheet having a periphery frame, the second step consisting of providing rim support equipment for the hybrid sling portion made from the pliable sheet, the third step consisting of assembling and attaching the hybrid sling portion to the two end closures by tacking the pliable sheet to the closures at four common corner junctures to create a closed ended reusable trough-like compartment, the fourth step consisting of ingressing a first pour of fluid concrete into the trough-like compartment wherein the fluid concrete distends the hybrid sling and upon gaining a set creates the first concrete member as set forth in claim 1 wherein; the hybrid sling portion at its four common juncture corners has all tacks removed, the thus disengaged portions of the reusable trough-like mold compartment thereafter being peeled from and separated from the first concrete member which is then removed from the disassembled compartment, the disassembled portions thereafter being reassembled again by reinserting the tacks at each juncture, thus the bottom bearing closed ended hybrid sling is again assembled as per original step 3, and reused as per original step 4 of claim 1 to construct a second compact concrete member.
  • 4. A process for constructing a compact longitudinal first concrete member by performing four consecutive steps of providing and using a partially suspended hybrid sling having an under loop bearing support as set forth in claim 1 wherein; said under loop bearing support and said rim support equipment base are positioned at one common vertical elevation.
  • 5. A process for constructing a compact longitudinal first concrete member by performing four consecutive steps of providing and using a partially suspended hybrid sling having an under loop bearing support as set forth in claim 1 wherein; said under loop bearing support is at a lower elevation than said rim support equipment base.
  • 6. A process for constructing a compact longitudinal first concrete member by performing four consecutive steps of providing and using a partially suspended hybrid sling having an under loop bearing support as set forth in claim 1 wherein; said under loop bearing support is at a higher elevation than said rim support equipment base.
  • 7. A process for constructing a compact longitudinal first concrete member by performing four consecutive steps of providing and using a partially suspended hybrid sling having an under loop bearing support as set forth in claim 1 wherein; said first pliable sheet has a breadth transverse to its length with a breadth first centerline extending throughout its length, a long narrow rectangular spreader-stiffener first board having one side coated with an adhesive and a second longitudinal centerline, thereafter the first board being placed underneath the first pliable sheet with the adhesive in contact with the sheet while the first and second centerlines are in a common alignment thereafter the first pliable sheet is brushed free from wrinkles and creases while being attached by the adhesive coating to the spreader-stiffener first board.
  • 8. A process for constructing a compact longitudinal first concrete member by performing four consecutive steps of providing and using a partially suspended hybrid sling having an under loop bearing support as set forth in claim 1 wherein; said first pliable sheet has a breadth transverse to its length with a breadth first centerline extending throughout its length, the first sheet also has two spaced apart second centerlines parallel one to another and parallel to the first centerline, two long narrow rectangular spreader-stiffener second boards each having a side coated with an adhesive while having a third centerline along its length, the second boards being positioned underneath the first pliable sheet with the adhesive in contact with the sheet and the second and third centerlines in a common alignment, thereafter the first pliable sheet is brushed free from wrinkles and creases while being adhesively attached to both of the two second spreader-stiffener boards.
  • 9. A process for constructing a compact longitudinal first concrete member by performing four consecutive steps of providing and using a partially suspended hybrid sling having an under loop bearing support, the sling loop being a long central body first portion between two end closure second portions as set forth in claim 1 wherein; first and second pliable sheets respectively have first and second breadths transverse to their lengths with respective first and second centerlines extending throughout their lengths, a first and two second narrow rectangular spreader-stiffener boards respectively have third and fourth centerlines, the first spreader-stiffener board is positioned underneath the first pliable sheet with the first and third centerlines in a common first alignment, thereafter the first pliable sheet is brushed free from wrinkles and creases then attached by attachment means to the spreader-stiffener first board, the two second spreader-stiffener boards are positioned each underneath a second pliable sheet with the second and fourth centerlines in a common second alignment, thereafter the two second pliable sheets are brushed free from wrinkles and creases when each second spreader-stiffener board is thereby attached by attachment means to its second pliable sheet.
  • 10. A process for constructing a compact longitudinal first concrete member by performing four consecutive steps of providing and using a partially suspended hybrid sling having an under loop bearing support as set forth in claim 1 wherein; said under loop bearing support has a longitudinal second centerline being the centerline of both the under loop bearing support and the centerline of a narrow strip of the top surface of the under loop bearing support, which narrow strip is coated with an adhesive coating, said first pliable sheet has a breadth transverse to its length with a breadth first centerline extending throughout its length, the first pliable sheet being positioned on top of the under loop bearing support with its first centerline in a common first alignment with the second centerline, thereafter the first pliable sheet is brushed free from wrinkles and creases while being adhesively attached to the narrow strip portion of the top surface of the under loop bearing support.
  • 11. A process for constructing a compact longitudinal first concrete member by performing four consecutive steps of providing and using a partially suspended hybrid sling having an under loop bearing support as set forth in claim 1 wherein; the closed ended trough-like compartment created by performing step 3 has all interior surfaces coated by an adhesive prior to performance of step 4 wherein the confined fluid concrete during its concrete setting interval is partially protected from a too rapid setting action by an impervious wrapping at the sides and bottom of the first concrete member, upon the fluid concrete gaining a slow set the first concrete member is wrapped on two sides and its bottom by a weather resisting permanent cast in place casing, said pliable sheet in addition to confining fluid concrete, provides a curing aid during the concrete setting interval and thereafter provides a weather resisting casing.
  • 12. A process for constructing a compact longitudinal first concrete member by performing four consecutive steps of providing and using a partially suspended hybrid sling having an under loop bearing support as set forth in claim 1 wherein; the closed ended trough-like compartment created by performing step 3 has all interior surfaces coated with a first adhesive prior to performance of step 4 wherein the confined fluid concrete during its concrete setting interval is partially protected from a too rapid setting action by an impervious first wrapping at the sides and bottom of the first concrete member, upon the fluid concrete gaining a slow set, thereafter a long rectangular third pliable sheet is coated with an adhesive, then placed over the top surface of the member with the third sheets extended edges folded over the top corners of the member to overlap top portions of the sides of the member, thereby providing the concrete member with a complete weather resisting permanent cast in place casing on all member surfaces, the pliable sheet in addition to confining fluid concrete provides a curing aid during the concrete setting internal and thereafter provides a weather resisting casing.
  • 13. A process for constructing a compact longitudinal first concrete beam member by performing four consecutive steps of providing and using a partially suspended hybrid sling having an under loop support as set forth in claim 1 wherein; the third step also provides a preassembled combination reinforcement and spreader means together with it being lowered down to the bottom of the closed ended trough-like compartment, the combination means consists of a plurality of long reinforcing rods with transversely attached support chairs and spreader straps, each strap having a straight central first portion between curved end portions, each chair having a straight central second portion with transversely projecting support legs having leg ends, when positioned at the bottom of the trough-like compartment the chair leg ends are in contact with the bottom of the loop portion of the hybrid sling while also resting through the intermediate sling upon the under loop bearing support.
  • 14. A process for constructing a compact longitudinal first concrete beam member by performing four consecutive steps of providing and using a partially suspended hybrid sling having an under loop bearing support as set forth in claim 1 wherein; the third step also provides a preassembled reinforcement means together with its placement within the closed ended trough-like compartment, the reinforcement means consisting of a plurality of long reinforcing rods with a plurality of transversely attached chairs having a straight central portion with transversely projecting support legs, each leg having an end which when positioned at the bottom of the trough-like compartment is in contact with the loop portion of the hybrid sling while also resting through the intermediate sling upon the under loop bearing support.
  • 15. A process for constructing a compact longitudinal first concrete beam member by performing four consecutive steps of providing and using a partially suspended hybrid sling having an under loop bearing support as set forth in claim 1 wherein; the third step provides a preassembled combination reinforcing with spreader means with leg supports together with its placement within the closed ended trough-like compartment, the combination means consists of a plurality of long reinforcing rods with a plurality of transversely attached spreader straps with attached support legs, each strap having a straight central first portion between curved end portions, each straight central portion having attached two transversely projecting legs resting through the bottom of the hybrid sling on top of the under loop bearing support.
Parent Case Info

This application is a continuation-in-part application of application Ser. No. 360,346 filed Mar. 22, 1982 and now abandoned. My new and novel process for constructing a compact concrete member derives both its novelty and vast scope of usefulness from the process means itself and also from the inherent qualities of the new and novel materials utilized in performing the new process. The concrete members mentioned in the above paragraph are intended to be directed chiefly to long compact concrete beams. Although with reservation of the knowledge that my process can be directed to constructing other compact concrete members such as columns piles, street curbs, walls and the like, compact beams will be conveniently utilized as examples. Since it is expedient to select one common well know species of concrete member as an example in describing and explaining my invention it should be understood that my invention has a broader scope than the chosen example illustrates. The basic first object of my invention is to reduce the cost of constructing long compact concrete members such as beams by drastically reducing their forming costs by reducing both form construction labor and material costs. My new process uses form materials cheaper than those materials presently used. My new process requires very few junctures between interconnecting form elements; whereas present day form construction requires a multitude of junctures between interconnecting form parts. Any juncture between form parts required in my process is made by a quick cheap manual operation requiring no special skills or tools. The basic first object of my invention is further enhanced since my process uses a reusable partially suspended horizontal hybrid sling mold, which mold is easily and quickly stripped away from a concrete first member cast within the hybrid sling mold, and thereafter requires a minimal amount of labor to return the mold to its original condition in which again a second concere member can again be formed. A second important object of my invention is possible because of the inherent qualities of the materials used in my new process. This second object of my invention is to improve the curing environment for concrete members by depositing fluid concrete into an impervious elongated partially suspended horizontal hybrid sling, wherein the thus confined fluid concrete is isolated from contact with the atmosphere and weather. This confinement will produce a desirable longer concrete time setting interval with resulting higher strength being imparted to the concrete. The basic second object of my invention is further enhanced since my process uses an impervious elongated partially suspended horizontal hybrid sling with an under loop support as a mold, now concrete members such as concrete beams can be constructed out-of-doors because the impervious pliable sheet construction of the mold will protect the confined fluid concrete from the weather such as wind and rain, with a simple expedience of covering only the top of the confined concrete. The basic second object of my invention is further enhanced since my process uses an impervious elongated partially suspended horizontal sling with an under loop support as a mold. This sling because of its impervious nature can be placed in water saturated soil or even below the ground water level or below the top surface of a body of water and thereafter filled with fluid concrete 6 which will be isolated from the water by the impervious mold. This inherent quality of the material used in my new process expands the environment conditions under which my process can be utilized. A basic third object of my invention is to utilize my process as a means for constructing longitudinal compact concrete beams and similar members suitable for exterior use because of being provided with an impervious casing protection from wind, rain and snow. Such members or beams cannot be considered as new beams but can only be considered as members or beams having acquired new qualities because of the process by which they are made. In summation my new process provides for more economical construction for concrete members, of higher strength because of improved curing environment, constructed under both favorable and adverse environmental situations, in reusable molds, while the member itself is suitable for either interior or exterior use, while also being adaptable for precast, poured in place or a combination of precast and poured in place construction. Other objects and advantages of my invention will be apparent from the following description taken in conjunction with the accompanying drawings wherein like parts are referred to by like reference characters and in which like reference characters refer to like parts: and wherein:

US Referenced Citations (4)
Number Name Date Kind
692331 Neracher Feb 1902
3066376 Pennell, Jr. Dec 1962
3479704 Reed Nov 1969
3792830 Dashen et al. Feb 1974
Continuation in Parts (1)
Number Date Country
Parent 360346 Mar 1982