1. Field of the Invention
The invention is related to a paraffin isomerization catalyst, particularly to a sulfated zirconia catalyst with aluminum, platinum and low sulfate content. The catalyst has high catalytic activity and is useful for producing isoparaffin-rich product in the paraffin isomerization process using heptane or paraffin that comprises heptane as feedstock.
2. Description of the Prior Arts
It is often taken into consideration whether the octane number of gasoline fits the safety requirements upon refining fuels to produce gasoline. Generally, the octane number represents the resistance of gasoline against auto-ignition (also called “knocking”). The higher octane number of gasoline represents better knocking resistance. Heptane, one of the components of petroleum, has a high tendency to burn explosively, so it was given an octane number “0”. On the other hand, isooctane does not easily burn explosively, such that it was given an octane number “100”. The branched-chain alkane usually has a higher octane number than that of its normal alkane. Such catalysts can be used to precede alkane reformation, isomerization or other reactions to produce gasoline having high octane rating.
During paraffin isomerization processes, the major feed includes n-pentane (n-C5) and n-hexane (n-C6) with a small amount of n-heptane (n-C7). The catalysts are used to change normal alkanes to isomeric alkanes containing single side chain or multiple side chains through catalytic reactions in order to increase the octane number of gasoline. After the earliest paraffin isomerization system made by Neuitzescu and Dragan in 1933, which performed the isomerization of n-hexane and n-heptane using aluminum chloride catalysts at low temperature, the Friedel-Craft catalysts for paraffin isomerization was introduced. These kinds of catalysts are such liquid-state, homogeneous and acidic catalysts with high activity under low temperature; however, they are difficult to be separated from products and often make corrosion on equipment. A bifunctional catalyst, alumina-supported noble metal, which was developed in 1950, is a solid-state acidic catalyst containing transition metal. Due to the fact that the acidity of alumina is not strong enough, it is necessary for alumina catalysts to be added by silica or boron oxide in order to increase acidity and abate reaction temperature. It was found in the 1960s by Rabo et al. that large-porous acidic zeolite catalysts that have noble metal are thermally stable, having long lifetime along with good resistance against sulfur and nitrogen so that these zeolite catalysts [such as Y zeolite containing palladium (i.e. Pd/Y) or platinum (i.e. Pt/Y)] can make good use of isomerization processes of n-paraffin compounds. Mordenite catalysts containing platinum developed in 1970s have higher activity and selectivity of isoparaffin products than Pd/Y and Pt/Y and are widely used in manufacturing procedures.
A comparison of the following types of paraffin isomerization catalysts: chlorinated alumina, common zeolite, modern zeolite, and metal oxide is shown in Table 1, and these four catalysts described above all contain platinum. Alumina catalysts containing platinum namely Pt/Al2O3 (not shown in Table 1) solved the problems about difficult separation and apparatus corrosion, but they need considerably high operating temperature. The chlorinated alumina catalysts increase acidity of alumina thereof by using methane tetrachloride resulting in operable temperature between 130° C. and 150° C., and therefore overcome the drawback of high reaction temperature of the alumina catalysts; however, when using the chlorinated alumina catalysts in reaction, the feedstock must be supplied with chlorine frequently and kept away from water, sulfur and other oxygenates, or else it causes chloride corrosion on equipment. Furthermore, the lifetime of the chlorinated alumina catalysts is about 2 to 3 years and they are thereafter irreversibly depleted. The common zeolite catalysts have better resistance against sulfur and water but much weaker acidity than the chlorinated alumina catalysts. These properties of the common zeolite catalysts make high reaction temperature thereof up to between 260° C. and 280° C. According to the thermodynamic equilibrium distribution of n-C6 and n-C7, performing paraffin isomerization at low temperature can obtain more branched-chain alkanes such that the manufactured gasoline has higher octane rating. The modern zeolite catalysts still possess high reaction temperature between 250° C. and 280° C., though they have good sulfur and water resistance. The reaction temperature of the metal oxide (regarded as zirconia herein) catalysts is reduced by 60 to 70° C. as a result of their stronger acidity than that of the modern zeolite catalysts (Hua et al., Journal of Catalysis, 197, 406-413, 2001). Also, the resistance to sulfur and water of the metal oxide catalysts is higher than that of the chlorinated alumina catalysts. Thus, to improve properties and performance of the metal oxide catalysts is increasingly important in refinery economics.
Table 1 shows comparison among the four types of paraffin isomerization catalysts (chlorinated alumina, common zeolite, modern zeolite, and metal oxide) (Wevda and Kohler, Catalysis Today, 81, 51-55, 2003)
aReactor outlet
bUnit outlet
The feed of paraffin isomerization processes usually contains n-C5, n-C6 and a small amount of n-C7. Various types of catalysts cannot effectively convert C5-C7 alkanes at the same time. Catalysts mostly have a high conversion rate of C5/C6 isomerization reactions; however, these catalysts also make considerably high cracking effect on C7 alkanes during isomerization resulting in carbon accumulation therein and catalyst degradation. Thus, it is necessary to limit the C7 content of the feed. As shown in Table 1, the C7 content is allowed to be only up to 5 vol %.
Using Pt-promoted sulfated zirconia catalysts (Pt/SZ catalysts) which have stronger acidity and need lower reaction temperature than zeolite catalysts for paraffin isomerization processes is beneficial to increase yield of isoparaffin with multiple side chains. Therefore, the gasoline products produced through Pt/SZ catalysts often have higher octane number. Pt/SZ catalysts also have higher resistance to water and sulfur than chlorinated alumina catalyst containing platinum (Pt/AlCl3 catalyst). For C5/C6 isomerization reaction, Pt/SZ catalysts possess superior properties compared with other kinds of catalysts; however, Pt/SZ catalysts can bring severe cracking effects on C7 alkanes upon C7 isomerization reaction.
Iglesia et al. performed such experiments on applying Pt/SZ catalysts in paraffin isomerization and found that the cracking/isomerization ratio of the products while using C7 alkanes as the feed was 40 times higher than using C5/C6 alkanes as the feed (Journal of Catalysis, 144, 238-253, 1993). As shown in Table. 2, Miyaji et al. made comparison of catalytic activity and isoparaffin Pd—WO3/ZrO2 catalysts, Pt—SO42−/ZrO2 catalysts and Pt/H-β zeolite catalysts, wherein Pt—SO42−/ZrO2 catalysts have lowest i-C7 selectivity (Applied Catalysis, 262, 143-148, 2004). Grau et al. impregnated AlCl3 with platinum, then mixed physically with sulfate zirconia catalysts in order to prevent platinum and the acidic groups of the sulfate zirconia catalysts from physical and chemical reactions, but the tendency and selectivity toward paraffin cracking are still much higher than that toward paraffin isomerization (Applied Catalysis, 172, 311-326, 1998). Bouchenafa-Saïb et al. used montmorillonite to modify the sulfated zirconia catalysts causing the reduction of the products made by C7 cracking, but the activity of the sulfated zirconia catalysts modified by montmorillonite also decreased and thus the reaction temperature increased by more than 80° C. The sulfated zirconia catalysts modified by montmorillonite needed a reaction temperature of up to 350° C. in order to achieve an overall conversion rate of 70% (Applied Catalysis, 259, 9-15, 2004).
In view of the prior art described above, some catalysts only have high catalytic activity for paraffin isomerization at high temperature, while other catalysts with high activity have high tendency to cause the cracking of C7 alkanes. Thus, these catalysts according to prior art may cause waste of energy and materials, catalyst degradation due to carbon accumulation as well as decrease of manufacturing efficiency. The sulfated zirconia catalysts mentioned above all contain a certain level of sulfur content resulting in strong acidity thereof. For n-heptane isomerization, such catalysts according to prior art still cannot have high activity and selectivity of isoparaffin products at low temperature and cannot avoid undesired cracking. Therefore, Catalysts with both high i-C7 selectivity and catalytic activity are urgently demanded at present.
Table 2 shows comparison among the four types of paraffin isomerization catalysts below: Pd-10 wt % HSiW/SiO2, Pd-40 wt % HSiW/SiO2, Pd—H-β zeolite, Pt—SO42−/ZrO2, Pt/H-β zeolite and Pd—WO3/ZrO2 (Applied Catalysis, 262, 143-148, 2004)
aThe loading amount of Pd or Pt was 2 wt %.
bTotal flow rate(F): 20 ml (W/F = 20 gh mol−1).
cTotal flow rate (F): 10 ml (W/F = 40 gh mol−1).
d100 × n[Cn]/[total carbon atom], where [Cn] and [total carbon atom]indicate concentration of hydrocarbon having n carbon atoms and total carbons, respectively.
e2-MH, 3-MH and 3-EP refer to 2-and 3-methylhaxane, and 3-ethylpentane, respectively.
f2,2-DMP, 2,3-DMP, 2,4-DMP, 3,3-DMP and 2,2,3-TMB refer to 2,2-, 2,3-, 2,4-, and 3,3-dimethylpentanes, and 2,2,3-trimethylbutane, respectively.
U.S. Pat. No. 7,041,866 discloses a sulfated zirconia catalyst containing at least one of the platinum-group metal elements and optionally containing gallium, indium or ytterbium, etc. that provides the advantages of high activity, improved stability and increasing yields of converting light naphtha to desired and higher-octane isoparaffin products. However, the sulfur content of the catalyst is between 0.5 wt % and 5 wt % and the sulfur source is unknown.
U.S. Pat. No. 7,015,175 discloses a sulfated zirconia catalyst containing at least one of the platinum-group metal elements, and at least one of the lanthanide elements or ytterbium, yttrium, and optionally adding inorganic-oxide binder. The catalyst provides extra increased ring-opening activity, yet such catalyst must contains 0.01-10 wt % of the at least one of lanthanide elements or yttrium, etc.,
U.S. Pat. No. 6,448,198 discloses a method for manufacturing a sulfated zirconia catalyst. The catalyst produced by the method taught in the cited patent has a surface area more than 150 m2/g, a pore area not less than 0.2 cm3/g and an average pore diameter not less than 2 nm. The catalyst has higher activity while using n-hexanes as the feed of isomerization processes. However, the sulfur content of the catalyst described above is between 1 wt % and 10 wt % based on the weight of zirconium.
U.S. Pat. No. 6,037,303 discloses a method for manufacturing a sulfated zirconia catalyst having distinctive pore properties and superior acidity, which is made by only one step. The produced catalyst has a tetragonal phase structure and only a single-layered sulfate thereon. Also, the catalyst has at least 70% of its pores possessing apertures ranging from 1 nm to 4 nm. The catalyst has 1-3 wt % of sulfur and 0.1-3.0 wt % of platinum. However, the catalyst disclosed in this patent contains more sulfur content than the modified zirconia catalyst of the present invention without any Group IIIA (IUPAC 13) metal elements (such as aluminum and gallium).
To overcome the shortcomings, the present invention provides a modified zirconia catalyst and associated method to mitigate or obviate the aforementioned problems.
The purpose of the present invention is to provide a modified zirconia catalyst that contains aluminum and platinum with a low content of sulfate ions in order to improve the selectivity of isoheptane (i.e. i-C7 selectivity) during heptane isomerization.
Accordingly, the present invention provides a modified zirconia catalyst comprising zirconium oxide, sulfate ions, a first metal component and a second metal component, wherein the first metal component contains at least one of Group A (IUPAC 13) metal elements or a combination thereof at an amount of between 0.1 wt % and 15 wt % based on the weight of the catalyst, the second metal component contains a substance selected from the group consisting of platinum, platinum oxide, palladium, palladium oxide and a combination thereof at an amount of between 0.2 wt % and 3.0 wt % based on the weight of the catalyst, and the sulfate ions contain sulfur at an amount of less than 1.0 wt % based on the weight of the catalyst.
In another aspect, the present invention provides a method for manufacturing a modified zirconia catalyst comprising steps of:
In yet another aspect, the present invention provides a process for converting paraffin comprising the steps of:
It is known that the acidic strength of the sulfated zirconia catalysts containing platinum is higher than that of general zeolite catalysts and Pt/WOx-ZrO2 catalysts. Strong acidity allows paraffin isomerization reaction to perform at lower temperature. As shown in Table 1, the sulfated zirconia catalysts need to perform reaction at a lower temperature than the zeolite catalysts. According to the thermodynamic equilibrium diagram of n-hexane, n-heptane and the isomers thereof, low temperature can lead to more formation of isomers with side chain and thus increase the octane number of gasoline products and economize energy. However, the sulfated zirconia catalysts make severe cracking effects on n-heptanes (as shown in Table 2) resulting in the limited applications.
It is desired to decrease the acidic strength and acid content of the catalysts to reduce cracking. In terms of sulfated zirconia catalysts, Föttinger and Katada et al. found that the sulfated zirconia catalysts with low sulfate content have poor activity, or are even inactive (Applied Catalysis, 284, 69-75, 2005; Journal of Physical Chemistry, B 104, 10321-10328, 2000). Also, Laizet et al. reported that catalysts used in n-hexanes isomerization must contain proper density of sulfate to perform high activity and selectivity of isoparaffin (Topics in Catalysis, 10, 89-97, 2000). Those references described above show that the sulfated zirconia catalysts containing platinum must have appropriate concentration of sulfate, otherwise sulfate content that is too low results in low, even none, activity of the catalysts. Nevertheless, one of the features of the invention is decreasing acidic strength of the catalyst by means of changing the source of sulfate ions and lowering sulfate content without diminishing activity. The modified zirconia catalyst in accordance with the invention can maintain high activity and increase selectivity of isoparaffin products. In addition, the present invention uses ammonium sulfate instead of sulfuric acid as the source of sulfate ions. Therefore, a sulfated zirconia catalyst decreasing the sulfate ions content and the acidic strength is provided in this invention. Another pioneering endeavor is adding appropriate amount of aluminum into the catalyst to modify the properties and improve the activity thereof.
Compared with the catalyst disclosed in the cited patents, the modified zirconia catalyst of the present invention lays specific emphasis on the sulfur source that the sulfur content of the modified zirconia catalyst of the present invention is less than 1.0 wt % and not need to contain any of lanthanide elements or yttrium disclosed by the cited patents. Furthermore, the modified zirconia catalyst of the present invention contains at least one of the Group A (IUPAC 13) metal elements (such as aluminum) to facilitate and maintain its activity. With regard to the modified zirconia catalyst of the present invention, the advantages include not only low sulfur content but also appropriate amount of aluminum (or gallium), which is beneficial to promote the catalytic activity thereof.
The modified zirconia catalyst of the present invention has the advantage of greatly improved i-C7 selectivity. When the modified zirconia catalyst of the present invention reaches an overall conversion rate of 70% in the isomerization reaction, the i-C7 selectivity can rise from 25% to 83% or more without decreasing the catalytic activity. Compared with the current commercial catalysts for paraffin isomerization, the modified zirconia catalyst of the present invention is provided with higher activity and better i-C7 selectivity, for example, under an overall conversion rate of 80% in the isomerization, the modified zirconia catalyst of the present invention can perform reaction at a reaction temperature 50° C. lower, which result in higher i-C7 selectivity than the commercial catalysts.
Accordingly, the present invention provides the modified zirconia catalyst having lower content of sulfate ions and uses ammonium sulfate as the source of the sulfate ions in order to decrease the acidic strength, improve the selectivity of i-C7 and thus lower the cracking level of n-heptanes during isomerization reaction as well as maintain high activity. Furthermore, adding proper amount of aluminum into the modified zirconia catalyst of the present invention can maintain stable activity thereof.
Other objectives, advantages and novel features of the invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
The present invention provides a modified zirconia catalyst comprising zirconium oxide, sulfate ions, a first metal component and a second metal component, wherein the first metal component contains at least one of Group A (IUPAC 13) metal elements or a combination thereof at an amount of between 0.1 wt % and 15 wt % based on the weight of the catalyst, the second metal component contains a substance selected from a group consisting of platinum, platinum oxide, palladium, palladium oxide and a combination thereof at an amount of between 0.2 wt % and 3.0 wt % based on the weight of the catalyst, and the sulfate ions contain sulfur at an amount of less than 1.0 wt % based on the weight of the catalyst.
In a preferred embodiment of the present invention, the amount of the first metal component is between 0.1 wt % and 10 wt % based on the weight of the catalyst.
In a preferred embodiment of the present invention, the source of the sulfate anions comprises ammonium sulfate, sulfuric acid, other compounds containing sulfate ions or a combination thereof, and more particularly is ammonium sulfate.
In a preferred embodiment of the present invention, the first metal component comprises a substance selected from the group consisting of aluminum, gallium and a combination thereof, and more particularly is aluminum.
In a preferred embodiment of the present invention, the second metal component is platinum.
In a preferred embodiment of the present invention, the zirconium oxide is ZrO2.
In a preferred embodiment of the present invention, the BET specific surface area of the catalyst ranges from 50 m2/g to 130 m2/g.
In another aspect, the present invention provides a method for manufacturing a modified zirconia catalyst comprising steps of:
In a preferred embodiment of the present invention, the first metal precursor contains a substance selected from a group consisting of aluminum compound, gallium compound, other compounds containing at least an element of Group A and a combination thereof, and more particularly is aluminum compound.
In a preferred embodiment of the present invention, the second metal precursor contains a substance selected from a group consisting of platinum compound, palladium compound and a combination thereof, and more particularly is platinum compound.
In a preferred embodiment of the present invention, the zirconium oxide precursor contains a substance selected from a group consisting of ZrOCl2, ZrO(NO3)2, ZrOSO4, ZrO(OH)NO3 and a combination thereof, or other alternative compounds, and more particularly is ZrOCl2.
In yet another aspect, the present invention provides a process for converting paraffin comprising the steps of:
The following examples serve to illustrate certain specific embodiments of the present invention. These examples should not, however, be construed as limiting the scope of the invention as set forth. There are many possible other variations that those of ordinary skill in the art will recognize, which are within the scope of the invention.
Ten different examples are provided below and sorted into three groups: (1) comparative examples 1 to 3 show preparation of sample catalysts according to prior art by impregnation with different contents of sulfate at presence of a certain content of platinum without adding aluminum for reference to and comparison with the invention; (2) examples 1 to 3 show preparation of sample catalysts according to the invention by impregnation with different contents of sulfate at presence of a certain content of platinum; (3) examples 4 to 7 show preparation of sample catalysts according to the invention by impregnation with different contents of sulfate at presence of a certain content of platinum. These sample catalysts produced in examples 1 to 7 all contain aluminum and can be regarded as a series of comparison of the modified zirconia catalyst of the present invention, wherein the sample catalyst made in example 5 is the best embodiment.
The sample catalyst is made by the following steps:
The sample catalyst is made by the steps as described in comparative example 1, except that step (v) is impregnating the dried precipitates in the ammonium sulfate solution to obtain sulfated precipitates such that the sulfated precipitates has a sulfate ion content of 3.0 wt % based on the weight of the dried precipitates. The sample catalyst made in this example is denoted as 0.3Pt/3.0SZ.
The sample catalyst is made by the steps as described in comparative example 1, except that step (v) is impregnating the dried precipitates in the ammonium sulfate solution to obtain sulfated precipitates such that sulfated precipitates has a sulfate ion content of 9.0 wt % based on the weight of the dried precipitates. The sample catalyst made in this example is denoted as 0.3Pt/9.0SZ.
The sample catalyst is made by the following steps:
The sample catalyst is made by the steps as described in example 1, except that step (v) is impregnating the dried precipitates in the ammonium sulfate solution to obtain sulfated precipitates such that the sulfated precipitates has a sulfate ion content of 3.0 wt % based on the weight of the dried precipitates. The sample catalyst made in this example is denoted as 0.3Pt/3.0SZA.
The sample catalyst is made by the steps as described in example 1, except that step (v) is impregnating the dried precipitates in the ammonium sulfate solution to obtain sulfated precipitates such that the sulfated precipitates has a sulfate ion content of 9.0 wt % based on the weight of the dried precipitates. The sample catalyst made in this example is denoted as 0.3Pt/9.0SZA.
The sample catalyst is made by the steps as described in example 1, except that step (v) is impregnating the dried precipitates in the ammonium sulfate solution to obtain sulfated precipitates such that the sulfated precipitates has a sulfate ion content of 3.0 wt % based on the weight of the dried precipitates, and altering the amount of platinum impregnation such that the platinum content of the sample catalyst is 1.0 wt % based on the weight of the calcined 3.0SZA catalyst. The sample catalyst made in this example is denoted as 1.0Pt/3.0SZA.
The sample catalyst is made by the steps as described in example 1, except that step (v) is impregnating the dried precipitates in the ammonium sulfate solution to obtain sulfated precipitates such that the sulfated precipitates has a sulfate ion content of 3.0 wt % based on the weight of the dried precipitates, and altering the amount of platinum impregnation such that the platinum content of the sample catalyst is 1.5 wt % based on the weight of the calcined 3.0SZA catalyst. The sample catalyst made in this example is denoted as 1.5Pt/3.0SZA.
The sample catalyst is made by the steps as described in example 1, except that step (v) is impregnating the dried precipitates in the ammonium sulfate solution to obtain sulfated precipitates such that the sulfated precipitates has a sulfate ion content of 3.0 wt % based on the weight of the dried precipitates, and altering the amount of platinum impregnation such that the platinum content of the sample catalyst is 2.0 wt % based on the weight of the calcined 3.0SZA catalyst. The sample catalyst made in this example is denoted as 1.0Pt/3.0SZA.
The sample catalyst is made by the steps as described in example 1, except that step (v) is impregnating the dried precipitates in the ammonium sulfate solution to obtain sulfated precipitates such that the sulfated precipitates has a sulfate ion content of 3.0 wt % based on the weight of the dried precipitates, and altering the amount of platinum impregnation such that the platinum content of the catalyst is 2.5 wt % based on the weight of the calcined 3.0SZA catalyst. The sample catalyst made in this example is denoted as 2.5Pt/3.0SZA.
The components and BET specific surface areas of the sample catalysts described above are measured via methods known by people with ordinary skill in the art, and the measurement data are shown in Table 3. The series of “yPt/xSZ catalysts” used herein includes 0.3Pt/1.5SZ catalyst, 0.3Pt/3.0SZ catalyst and 0.3Pt/9.0SZ catalyst; the series of “yPt/xSZA catalysts” used herein comprises 0.3Pt/1.5SZA catalyst, 0.3Pt/3.0SZA catalyst, 0.3Pt/9.0SZA catalyst, 1.0Pt/3.0SZA catalyst, 1.5Pt/3.0SZA catalyst, 2.0Pt/3.0SZA catalyst and 2.5Pt/3.0SZA catalyst
The sample catalysts as described above are used in n-paraffin (such as n-hexanes and/or n-heptanes) isomerization. The steps, parameters and results of n-paraffin isomerization are described in detail below. In this part, a commercial C5/C6 catalyst (marketed by SINOPEC) is used as the control.
I. Steps of the n-Paraffin Isomerization Reaction
II. Analysis and Comparison of Each Catalyst Sample Used in the n-Paraffin Isomerization Reaction while the Feed is n-Hexane and/or n-Heptane
The overall conversion rate (% conversion), the i-C7 selectivity, the n-C6 conversion rate and isoparaffin yield of those sample catalysts during isomerization processes are calculated.
As shown in
In the case of same amount of sulfate impregnation, the activity of the yPt/xSZA catalysts is obviously greater than the yPt/xSZ catalysts. At the same overall conversion rate, the yPt/xSZA catalysts need a reaction temperature about 60° C. lower than that of the yPt/xSZ catalysts. The activity of the yPt/xSZA catalysts is rising with the increase of the sulfate content, for example, the activity of the 0.3Pt/3.0SZA catalyst is higher than that of 0.3Pt/1.5SZA catalyst, and the reaction temperature of 0.3Pt/3.0SZA catalyst is about 55° C. lower than that of 0.3Pt/1.5SZA catalyst under the same conversion rate.
As shown in
The application is a divisional application of U.S. patent application Ser. No. 13/241,605, filed on Sep. 23, 2011, and entitled “MODIFIED ZIRCONIA CATALYSTS AND ASSOCIATED METHODS THEREOF”. The content of the prior application is incorporated herein by its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 13241605 | Sep 2011 | US |
Child | 14056176 | US |