This application claims priority from DE Patent Application DE102014012316.2 filed on Aug. 19, 2014.
The invention relates to a process for cooling a hydrocarbon-rich fraction, in particular natural gas.
For the liquefaction of hydrocarbon-rich gas fractions, in particular natural gas, inter alia processes are employed in which the work-producing expansion of gases is utilized to generate refrigeration. To increase the thermodynamic efficiency, and thereby to reduce the specific energy consumption, more than one expansion turbine can be used. A shared characteristic of what are termed “multi-expander processes” is the separate provision of peak refrigeration (lowest refrigerant temperature) solely by sensible heat of a gas stream cooled by work-producing expansion and, independently thereof, the provision of the predominant part of the total required refrigeration output at a lower temperature level by using at least one further expansion turbine. Such expander processes are disclosed, for example, by U.S. Pat. No. 5,768,912, which discloses what is termed a double-N2 expander process, and also U.S. Pat. No. 6,412,302, which describes what is termed a N2—CH4 expander process.
The expander operated at the lowest temperature level, however, in this case only contributes at about 25%, typically less than 20%, to the total refrigeration output. As result, the majority of the cooling work remains with the warm expander or expanders, if more than two expanders are used.
The object of the present invention to specify a process for cooling a hydrocarbon-rich fraction, in particular natural gas, in which the refrigeration output can be distributed more evenly when two expanders are used,—in this case, the ratio is preferably 40/60 to 60/40—in order, at a given maximum size of the expanders, to increase the capacity of the liquefaction process without using parallel expanders. In addition, the use of separate refrigeration circuits, as described in the abovementioned U.S. Pat. No. 6,412,302, is to be rejected, in order to keep the capital costs low.
To achieve this object, a process is proposed for cooling a hydrocarbon-rich fraction, in particular natural gas, against a refrigerant circuit, in which
The process according to the invention for cooling a hydrocarbon-rich fraction now likewise has a warm expander and a cold expander, in which refrigerant substreams are work-producingly expanded. The cold expander, however, in contrast to the processes of the prior art, is no longer used for generating the peak refrigeration. The consequence is that the operating point of the cold expander is shifted in such a manner that the refrigeration output of the two expanders is now in the desired ratio between 40/60 and 60/40. At a given maximum size of the expanders, this permits the plant capacity to be increased in comparison with the processes of the prior art, without using parallel expanders.
According to a further advantageous embodiment of the process according to the invention, a mixture which, in addition to nitrogen and methane, comprises at least one further component from the group CO, Ar, O2, Kr, Xe, C2H4 and C2H6 is used as refrigerant, wherein nitrogen is present in a concentration of at least 50 mol %, preferably at least 60 mol %, and methane is present in a concentration of at least 10 mol %, preferably at least 20 mol %.
It is energetically advantageous to keep the suction pressure of the compressor responsible for compressing the refrigerant as high as possible. If it is desired to avoid liquid in the work-producingly expanded second refrigerant substream and simultaneously keep as much liquid as possible in the expanded third refrigerant substream, defined boundary conditions result, which are met optimally by the proposed refrigerant composition.
In a further development of the process according to the invention for cooling a hydrocarbon-rich fraction, it is proposed that the refrigerant is compressed to at least 5 bar, preferably to at least 10 bar, above the critical pressure. By means of this process procedure, a two-phase nature of the refrigerant in the high-pressure range is avoided, and the partial load capacity is improved.
The process according to the invention for cooling a hydrocarbon-rich fraction and also further advantageous embodiments of the same will be described in more detail hereinafter with reference to the exemplary embodiment shown in the FIGURE.
The hydrocarbon-rich gas fraction A that is to be cooled is cooled in the heat exchangers or heat exchanger zones E1, E2 and E3, and in the process optionally liquefied and subcooled or converted at a pressure above the critical pressure without a change of phase into a high-density fluid. In this case, the fraction that is to be liquefied is cooled (stream B) to the extent that, after the expansion in the valve V2 to a pressure of a maximum of 5 bar, preferably a maximum of 1.5 bar, predominantly liquid is formed, wherein the liquid fraction is at least 85 mol %, preferably at least 90 mol %.
The refrigeration circuit that serves to cool the hydrocarbon-rich fraction A, in addition to a single- or multistage compressor C1, has two expanders X1 and X2 and also an expansion valve V1. The refrigerant 1 circulating in this refrigeration circuit is compressed C1 in a multistage manner in the exemplary embodiment shown in
The refrigerant stream 7 that is cooled in this manner is then divided into a second substream 8 and a third substream 10. The second substream is work-producingly expanded in what is termed the cold expander X2, wherein pressure and temperature are selected in such a manner that during the work-producing expansion no liquid occurs. Again, there follows the expansion to a pressure slightly above the suction pressure of the compressor C1.
The third substream 10 is cooled in the second and third heat exchange zones E2 and E3 against the work-producingly expanded second substream 9 and against itself, to the extent that in the subsequent expansion of the cooled third substream 11 in the expansion valve V1, a liquid fraction of at least 90 mol %, preferably at least 95 mol %, is established.
The expanded two-phase substream 11 is then at least partly, preferably completely, vaporized in the third heat-exchange zone E3. At the warm end of the heat-exchange zone E3, the expanded second substream 9 is added thereto and the refrigerant stream thus formed is warmed up further in the second heat-exchange zone E3. Finally, the work-producingly expanded first substream 5 is added to this refrigerant stream 12 before the entire refrigerant stream, upstream of the fresh compression C1 thereof, is warmed up to ambient temperature in the heat-exchange zone E1.
The mechanical output of one or both expanders X1 and X2 can optionally be used to drive generators or to drive booster compressors which relieve the circuit compressor C1. The booster compressors can be arranged in series or parallel, or can be used upstream or downstream of the compressor C1.
Suitable heat exchangers E1, E2 and E3 are all types which permit a counterflow to the heat exchange. As shown in
If the gas fraction that is to be cooled contains (heavy) components which are unwanted in the end product, the cooled hydrocarbon-rich fraction B can be subjected to removal of said components, for example by deposition or scrubbing, between the heat exchanger (zones) E1 and E2.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 012 316 | Aug 2014 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
3919852 | Jones | Nov 1975 | A |
5768912 | Dubar | Jun 1998 | A |
6412302 | Foglietta | Jul 2002 | B1 |
20100122551 | Roberts | May 2010 | A1 |
20100154470 | Nilsen | Jun 2010 | A1 |
20110168377 | Alers | Jul 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20160054053 A1 | Feb 2016 | US |