The present invention relates to marking products and, more particularly, marking outer housing surfaces of electronic devices.
Consumer products, such as electronic devices, have been marked with different information for many years. For example, it is common for electronic devices to be marked with a serial number, model number, copyright information and the like. Conventionally, such marking is done with an ink printing or stamping process. Although conventional ink printing and stamping is useful for many situations, such techniques can be inadequate in the case of handheld electronic devices. The small form factor of handheld electronic devices, such as mobile phones, portable media players and Personal Digital Assistants (PDAs), requires that the marking be very small. In order for such small marking to be legible, the marking must be accurately and precisely formed. Unfortunately, however, conventional techniques are not able to offer sufficient accuracy and precision. Thus, there is a need for improved techniques to mark products.
The invention pertains to techniques or processes for providing markings on products. In one embodiment, the products have housings and the markings are to be provided on sub-surfaces of the housings. For example, a housing for a particular product can include an outer housing surface and the markings can be provided on a sub-surface of the outer housing surface, yet still be visible from the outside of the housing. Since the markings are beneath the surface of the housing, the markings are durable. The markings provided on products can be textual and/or graphic. The markings can be formed with high resolution. The markings are also able to be dark, even on plastic surfaces.
In general, the markings (also referred to as annotations or labeling) provided on products according to the invention can be textual and/or graphic. The markings can be used to provide a product (e.g., a product's housing) with certain information. The marking can, for example, be use to label the product with various information. When a marking includes text, the text can provide information concerning the product (e.g., electronic device). For example, the text can include one or more of: name of product, trademark or copyright information, design location, assembly location, model number, serial number, license number, agency approvals, standards compliance, electronic codes, memory of device, and the like). When a marking includes a graphic, the graphic can pertain to a logo, a certification mark, standards mark or an approval mark that is often associated with the product. The marking can be used for advertisements to be provided on products. The markings can also be used for customization (e.g., user customization) of a housing of a product.
The invention can be implemented in numerous ways, including as a method, system, device, or apparatus. Several embodiments of the invention are discussed below.
As a method for marking an article, one embodiment can, for example, include at least providing a base structure for the article, coating the base structure to provide a coating layer and an outer coating surface of the base structure, and subsequently altering surface characteristics of selective portions of an inner surface of the base structure.
As an electronic device housing, one embodiment can, for example, include at least a housing structure including at least an inner portion and an outer portion. In addition, to provide predetermined marking of the electronic device housing, a surface of the inner portion adjacent the outer portion has selectively altered surface regions. The selectively altered surface regions on the surface of the inner portion can be altered through the outer portion.
As an article, one embodiment can, for example, include a base polymer layer for the article a thick film coupled to the base polymer layer and covering an inner surface of the base polymer layer, and substantially black laser markings of selective portions of the inner surface of the base polymer layer.
As a method for marking an article, another embodiment can, for example, include at least: providing a plastic structure for at least a portion of the article; coating the plastic structure with an acrylic resin to provide a transparent protective coating on the plastic structure; and subsequently producing markings on the article, the marking being formed on the plastic structure and beneath the transparent protective coating, and the markings being visible through the transparent protective coating.
Other aspects and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
The invention pertains to techniques or processes for providing markings on products. In one embodiment, the products have housings and the markings are to be provided on sub-surfaces of the housings. For example, a housing for a particular product can include an outer housing surface and the markings can be provided on a sub-surface of the outer housing surface, yet still be visible from the outside of the housing. Since the markings are beneath the surface of the housing, the markings are durable. The markings provided on products can be textual and/or graphic. The markings can be formed with high resolution. The markings are also able to be dark, even on plastic surfaces.
In general, the markings (also referred to as annotations or labeling) provided on products according to the invention can be textual and/or graphic. The markings can be used to provide a product (e.g., a product's housing) with certain information. The marking can, for example, be used to label the product with various information. When a marking includes text, the text can provide information concerning the product (e.g., electronic device). For example, the text can include one or more of: name of product, trademark or copyright information, design location, assembly location, model number, serial number, license number, agency approvals, standards compliance, electronic codes, memory of device, and the like). When a marking includes a graphic, the graphic can pertain to a logo, a certification mark, standards mark or an approval mark that is often associated with the product. The marking can be used for advertisements to be provided on products. The markings can also be used for customization (e.g., user customization) of a housing of a product.
Exemplary embodiments of the invention are discussed below with reference to
The marking state machine 100 may include a plastic substrate formation state 102. At the plastic substrate formation state 102, a plastic substrate can be obtained or produced. For example, the plastic substrate can represent at least a portion of a housing surface of an electronic device. Next, the marking state machine 100 can transition to a protective surface state 104. At the protective surface state 104, a protective surface can be formed or applied to at least one surface of the plastic substrate. The protective surface can be used to protect the surface of the plastic substrate. For example, the protective surface can be a more durable surface than that of the surface of the plastic substrate. For example, the plastic substrate may comprise polycarbonate and the protective surface may comprise an ultraviolet light curable transparent acrylic resin coating. Next, the marking state machine 100 can transition to a sub-surface marking state 106. At the sub-surface marking state 106, marking can be produced on a sub-surface of the plastic substrate. In particular, the sub-surface marking can be performed on the plastic substrate below the protective surface. The protective surface is typically substantially translucent to allow the sub-surface marking to be visible through the protective surface. The marking can be provided with high resolution and can be protected. Since the marking is provided on a sub-surface, the marking is not only protected but also has the cosmetic advantage of not being perceptible of tactile detection on the surface.
Given that the outer surface 203 may typically be substantially translucent (e.g., clear), the sub-surface alterations 204 are visible by a user through the outer surface 203. Accordingly, the sub-surface alterations 204 can provide markings on the plastic substrate 200. Since the markings are provided by the sub-surface alterations 204, the markings may be protected by the coating layer 202 and by the outer coating surface 202.
Base structure 200 may comprise, and more particularly inner surface 206 of base structure 200 may comprise plastic or plastic polymers, for example polycarbonate. Base structure 200 may be, and more particularly inner surface 206 of base structure 200 may be substantially rigid.
Metal, or more particularly metal oxide or crystalline metal oxide (e.g. titanium dioxide) may be incorporated into the plastic, or with the plastic polymers, or into the polycarbonate. Base structure 200 may comprise, and more particularly inner surface 206 of base structure 200 may comprise metal, or metal oxide or crystalline metal oxide (e.g. titanium dioxide). Base structure 200 may be, and more particularly inner surface 206 of base structure 200 may be substantially opaque. Base structure 200 may have, and more particularly inner surface 206 of base structure 200 may have a substantially white appearance. Base structure 200 may have, and more particularly inner surface 206 of base structure 200 may have a lightness factor L* in a visible color space that is substantially greater than ninety.
For visual appearance discussions herein directed to lightness (or darkness) and chromaticness, such as appearance of housings or base structures, and appearance of selectively altered surface regions or markings on the housing and the like, appearance may be described using CIE 1976 L*a*b* (also known as CIELAB). This is a color space standard specified by the International Commission on Illumination (French Commission internationale de l'éclairage, hence its CIE initialism).
The three coordinates of the CIELAB standard represent: 1) the lightness factor magnitude of the color (L*=0 yields ultimate black and L*=100 indicates diffuse ultimate white, 2) its position between red/magenta and green (a*, negative values indicate green while positive values indicate red/magenta) and 3) its position between yellow and blue (b*, negative values indicate blue and positive values indicate yellow). Measurements in a format corresponding to the CIELAB standard may be made using a spectrophotometer, such as the COLOREYE™ XTH spectrophotometer, which was sold by GretagMacbeth™. Similar spectrophotometers are available from X-Rite™.
Coating layer 202 shown in
Coating layer 202, and more particularly outer coating surface 203 may be substantially nonporous. Further, the coating layer 202 may be a thick film 202. The thickness “t” of coating layer 202 may be sufficiently thick for substantially avoiding oxidation of the selectively altered surface regions 204, when the selectively altered surface regions 204 may be altered through the coating layer 202. For example, oxidation may be substantially avoided when the selectively altered surface regions 204 may be altered through the coating layer 202 by directing a laser output through the coating layer 202 to inner surface 206. The thickness dimension “t” of coating layer 202 may be within a range of approximately fifteen microns to approximately fifty microns. The thickness dimension “t” of coating layer 202 may be sufficiently thin for substantially avoiding laser attenuation. The thickness dimension “t” may be sufficiently thick so that the selectively altered surface regions 204 on inner surface 206 may be altered through the coating layer 202 without noticeable disturbance of the coating layer 202.
The selectively altered surface regions 204, which may be laser markings, may have a substantially black appearance. It is theorized that using the coating layer 202 for substantially avoiding oxidation of the inner surface 206 of the base structure may play a role (along with laser operating parameters) in providing desirable darkness (low lightness) and low chromaticness magnitude in the substantially black appearance of the selectively altered surface regions 204. Study has shown that when laser operating parameters are selected for the substantially black appearance, desirable greater darkness (lower lightness) and desirable lower chromaticness magnitude are both achievable for sub-surface marking of inner surface 206, for example, using coating layer 206. The merit of this sub-surface marking achievement of greater darkness and lower chromaticness magnitude, for example, using coating layer 206, may be relative to an alternative scheme of marking an exposed plastic substrate, for example, uncovered by any metal free coating layer.
For example, using the coating layer 206 (and suitable laser operating parameters as discussed in further detail subsequently herein) the selectively altered surface regions 204 may have a lightness factor L* in a visible color space of substantially less than fifty, and may have a lightness factor L* in the visible color space of approximately thirty. The selectively altered surface regions 204 may have a chromaticness of a greenness-redness factor a* in the visible color space substantially within a range from approximately negative three to approximately positive three. The selectively altered surface regions 204 may have a chromaticness of a blueness-yellowness factor b* in the visible color space substantially within a range from approximately negative five to approximately positive five.
The plastic substrate 200 shown in
The marking is, in one embodiment, particularly well-suited for applying text and/or graphics to a housing of an electronic device. As noted above, the plastic substrate can represent a portion of a housing of an electronic device. Examples of electronic devices, namely, handheld electronic devices, include mobile telephones (e.g., cell phones), Personal Digital Assistants (PDAs), portable media players, remote controllers, pointing devices (e.g., computer mouse), game controllers, etc.
The marking process 300 can provide 302 a plastic structure (or more generally a base structure) for an article to be marked. The plastic structure can pertain to a plastic housing for an electronic device, such as a portable electronic device, to be marked. The plastic structure can be formed of one plastic layer. The plastic structure can also be formed of multiple layers of different materials, where at least one of the multiple layers is a plastic layer. The plastic structure and more particularly its surface may comprise polymers and may comprise polycarbonate. The plastic structure may be, and more particularly its surface may be substantially rigid. Metal, or more particularly metal oxide or crystalline metal oxide (e.g. titanium dioxide) may be incorporated into the plastic, or with the plastic polymers, or into the polycarbonate. The plastic structure, and more particularly its surface may be substantially opaque and may have a substantially white appearance.
After the plastic structure has been provided 302, a surface of the plastic structure can be coated 304 using a coating layer, so that the surface of the plastic structure may then provide an inner surface, which may be covered by the coating layer. Typically, the surface of the plastic structure to be coated 304 is an outer or exposed plastic surface of the plastic structure. Prior to coating 304, the outer or exposed surface typically represents an exterior surface of the plastic housing for the electronic device. After coating 304, the coating layer may provide an outer coating surface for the plastic structure, and the coating layer may cover the formerly exposed, but not now covered surface (i.e. inner surface) of the plastic structure.
For example, in one embodiment, the coating 302 may comprise spraying (or otherwise applying) an ultraviolet light curable transparent acrylic resin to cover the inner surface of the plastic structure. Suitable ultraviolet light curable transparent acrylic resins are available from manufacturers such as BASF Societas Europaea, Donbon Orgin Electric Company and Natoco Company Limited. The ultraviolet light curable transparent acrylic resin may further include peroxide UV photo-initiator, solvent and other additives to improve flow and/or leveling.
Composition of the coating layer may be substantially different, and more particularly composition of outer coating surface may be substantially different than composition of the base/plastic structure (and may be substantially different than composition of inner surface of the base/plastic structure.) The coating layer, and more particularly the outer coating surface may be substantially free of metal.
Once applied, the ultraviolet light curable transparent acrylic resin may be cured by exposure under a suitable strength ultraviolet lamp for a sufficient period of time. For example a 900 to 1,300 mJ/cm2 ultraviolet lamp may be employed. Once cured, the transparent acrylic resin may be substantially harder than hardness of base/plastic structure. The transparent acrylic resin may be substantially nonporous.
After coating 304 and curing, surface characteristics of selected portions of an inner surface of the plastic structure can be altered 306. The surface characteristics can be altered 306 using a laser, such as an ultraviolet wavelength laser. For example, one specific suitable laser is a one (1) Watt average power, ultraviolet wavelength multi-nanosecond pulsewidth laser operated at approximately 35 Kilohertz with a scan speed of approximately 500 millimeters per second. While such ultraviolet laser may provide many advantages, it may be more expensive than alternative lasers. Accordingly, examples of alternative lasers are infrared wavelength lasers and green lasers nanosecond pulsewidth lasers of nanosecond and/or picosecond pulse ranges. Following the block 306, the marking process 300 can end.
Outer portion 402 may be substantially harder than hardness of inner portion 400 (and may be substantially harder than hardness of surface 406 of inner portion 400.) Composition of outer portion 402 may be substantially different than composition of inner portion 400 (and may be substantially different than composition of surface 406 of inner portion 400.) Outer portion 402 may be substantially free of metal. Outer portion 402 may be substantially nonporous.
After the outer portion 402 has been formed on the inner portion 400,
The laser 410 may include a galvanometer mirror or other arrangement for raster scanning a spot of the optical energy over the inner surface 406, so as to form the altered structures into a rasterized depiction of the marking indicia. Suitable pitch between raster scan lines of the scanning spot may be selected. For example, a suitable pitch may be a line spacing of about thirty (30) microns. Multiple passes of scan lines at various angled orientations of the scan lines may be employed to provide a hatching arrangement or the scan lines. For example, four scan line passes may be arranged at relative angles of zero, forty-five, ninety and one-hundred-thirty-five degrees. The laser may further include optics for contracting or expanding size of the spot of the optical energy, by focusing or defocusing the spot. Spot size of the optical energy for the nanosecond class laser mentioned previously herein may be approximately thirty (30) microns.
The outer portion 402 may be a thick film 402. The thickness of outer portion 402 may be sufficiently thick for substantially avoiding oxidation of selectively altered surface regions 404, when the selectively altered surface regions 404 may be altered through the outer portion 402 (for example, when the selectively altered surface regions 404 may be altered through the outer portion 402 by directing the output of laser 410 through the outer portion 402 to inner surface 406.) The thickness dimension of outer portion 402 may be sufficiently thin for substantially avoiding laser attenuation. The thickness dimension may be sufficiently thick so that the selectively altered surface regions 404 on surface 406 may be altered through the outer portion 402 without noticeable disturbance of the outer portion 402.
Thick film 604 may be substantially harder than hardness of base polymer layer 602 (and may be substantially harder than hardness of inner surface 606 of base polymer layer 602.) Composition of thick film 604 may be substantially different than composition base polymer layer 602 (and may be substantially different than composition of inner surface 606 of base polymer layer 602.) Thick film 604 may be substantially free of metal. Thick film 604 may be substantially nonporous. Thick film 604 may have a thickness dimension within a range of approximately fifteen microns to approximately fifty microns.
Next,
It is theorized that using the thick film 604 for substantially avoiding oxidation of inner surface 606 of the base polymer layer may play a role (along with laser operating parameters) in providing desirable darkness (low lightness) and low chromaticness magnitude in the substantially black appearance of laser markings 608. Using the thick film 604 (and suitable laser operating parameters as discussed in in detail previously herein) the substantially black laser markings 608 may have a lightness factor L* in a visible color space of substantially less than fifty, and may have a lightness factor L* in the visible color space of approximately thirty. The substantially black laser markings 608 may have a chromaticness of a greenness-redness factor a* in the visible color space substantially within a range from approximately negative three to approximately positive three. The substantially black laser markings 608 may have a chromaticness of a blueness-yellowness factor b* in the visible color space substantially within a range from approximately negative five to approximately positive five.
The marking processes described herein are, for example, suitable for applying text or graphics to a housing surface (e.g., an outer housing surface) of an electronic device. The marking processes are, in one embodiment, particularly well-suited for applying text and/or graphics to an outer housing surface of a portable electronic device. Examples of portable electronic devices include mobile telephones (e.g., cell phones), Personal Digital Assistants (PDAs), portable media players, remote controllers, pointing devices (e.g., computer mouse), game controllers, etc. The portable electronic device can further be a hand-held electronic device. The term hand-held generally means that the electronic device has a form factor that is small enough to be comfortably held in one hand. A hand-held electronic device may be directed at one-handed operation or two-handed operation. In one-handed operation, a single hand is used to both support the device as well as to perform operations with the user interface during use. In two-handed operation, one hand is used to support the device while the other hand performs operations with a user interface during use or alternatively both hands support the device as well as perform operations during use. In some cases, the hand-held electronic device is sized for placement into a pocket of the user. By being pocket-sized, the user does not have to directly carry the device and therefore the device can be taken almost anywhere the user travels (e.g., the user is not limited by carrying a large, bulky and often heavy device).
Additional information on product marking as well as other manufacturing techniques and systems for electronic devices are contained in: (i) U.S. application Ser. No. 12/643,772, filed Dec. 21, 2009 and entitled “SUB-SURFACE MARKING OF PRODUCT HOUSINGS,” which is hereby incorporated herein by reference; and (ii) U.S. Provisional Patent Application No. 61/059,789, filed Jun. 8, 2008, and entitled “Methods and Systems for Manufacturing an Electronic Device,” which is hereby incorporated herein by reference.
This application also references: (i) U.S. Provisional Patent Application No. 61/121,491, filed Dec. 10, 2008, and entitled “Techniques for Marking Product Housings,” which is hereby incorporated herein by reference; (ii) U.S. patent application Ser. No. 12/358,647, filed Jan. 23, 2009, and entitled “Method and Apparatus for Forming a Layered Plastic Structure with an Coated Surface,” which is hereby incorporated herein by reference; and (iii) U.S. patent application Ser. No. 12/475,597, filed May 31, 2009, and entitled “Techniques for Marking Product Housings,” which is hereby incorporated herein by reference.
The various aspects, features, embodiments or implementations of the invention described above can be used alone or in various combinations.
Different aspects, embodiments or implementations may, but need not, yield one or more of the following advantages. One advantage of the invention may be that the markings are able to be dark (low lightness) with low chromaticness magnitude, even on plastic surfaces. Another advantage may be that desirable greater darkness (lower lightness) and desirable lower chromaticness magnitude are both achievable for sub-surface marking of an inner surface, for example, using a coating layer. Another advantage may be that greater darkness (lower lightness) and lower chromaticness magnitude markings may provide for greater visibility and/or higher contrast, particularly when the housing is substantially white. Another advantage may be that durable, high precision markings may be provided to product housings. As an example, the markings being provided on a sub-surface of a product housing that not only have high resolution and durability but also provide a smooth and high quality appearance. Another advantage is that the marking techniques are effective for surfaces that are flat or curved.
The many features and advantages of the present invention are apparent from the written description. Further, since numerous modifications and changes will readily occur to those skilled in the art, the invention should not be limited to the exact construction and operation as illustrated and described. Hence, all suitable modifications and equivalents may be resorted to as falling within the scope of the invention.
This application is a continuation patent application of U.S. patent application Ser. No. 13/619,208, filed Sep. 14, 2012 and titled “Process for Creating Sub-Surface Marking on Plastic Parts,” which is a nonprovisional patent application of and claims the benefit of U.S. Provisional Patent Application No. 61/669,565, filed Jul. 9, 2012 and titled “Process for Creating Sub-Surface Marking on Plastic Parts,” the disclosures of which are hereby incorporated herein by reference in their entireties. This application references U.S. application Ser. No. 12/643,772, filed Dec. 21, 2009 and entitled “SUB-SURFACE MARKING OF PRODUCT HOUSINGS,” which is hereby incorporated herein by reference, which claims priority benefit of U.S. Provisional Application No. 61/252,623, filed Oct. 16, 2009 and entitled “SUB-SURFACE MARKING OF PRODUCT HOUSINGS,” which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2647079 | Burnham | Jul 1953 | A |
2812295 | Patrick | Nov 1957 | A |
2990304 | Cybriwsky et al. | Jun 1961 | A |
3080270 | Fritz | Mar 1963 | A |
3316866 | Shelton | May 1967 | A |
3526694 | Lemelson | Sep 1970 | A |
3615432 | Jenkins et al. | Oct 1971 | A |
3645777 | Sierad | Feb 1972 | A |
RE28225 | Heseltine et al. | Nov 1974 | E |
2346531 | Adachi et al. | Jan 1981 | A |
4247600 | Adachi et al. | Jan 1981 | A |
4269947 | Inata et al. | May 1981 | A |
4347428 | Conrad et al. | Aug 1982 | A |
4531705 | Nakagawa et al. | Jul 1985 | A |
4547649 | Butt et al. | Oct 1985 | A |
4564001 | Maeda | Jan 1986 | A |
4651453 | Doyle | Mar 1987 | A |
4686352 | Nawrot et al. | Aug 1987 | A |
4756771 | Brodalla et al. | Jul 1988 | A |
4822973 | Fahner | Apr 1989 | A |
2989325 | Mullaney | Jun 1990 | A |
4931366 | Mullaney | Jun 1990 | A |
4993148 | Adachi et al. | Feb 1991 | A |
5202013 | Chamberlain | Apr 1993 | A |
5215864 | Laakmann | Jun 1993 | A |
5224197 | Zanoni et al. | Jun 1993 | A |
5288344 | Peker et al. | Feb 1994 | A |
5417905 | Lemaire et al. | May 1995 | A |
5420575 | Cheraso | May 1995 | A |
5540867 | DeBello | Jul 1996 | A |
5645964 | Nohr et al. | Jul 1997 | A |
5719379 | Huang et al. | Feb 1998 | A |
5744270 | Pearlman et al. | Apr 1998 | A |
5789466 | Birmingham et al. | Aug 1998 | A |
5808268 | Balz | Sep 1998 | A |
5837086 | Leeb et al. | Nov 1998 | A |
5872699 | Nishii | Feb 1999 | A |
5925847 | Rademacher et al. | Jul 1999 | A |
5943799 | Xu et al. | Aug 1999 | A |
6007929 | Robertson et al. | Dec 1999 | A |
6101372 | Kubo | Aug 2000 | A |
6169266 | Hughes | Jan 2001 | B1 |
6325868 | Kim et al. | Dec 2001 | B1 |
6331239 | Shirota et al. | Dec 2001 | B1 |
6480397 | Hsu et al. | Nov 2002 | B1 |
6574096 | Difonzo et al. | Jun 2003 | B1 |
6590183 | Yeo | Jul 2003 | B1 |
6633019 | Gray | Oct 2003 | B1 |
6746724 | Robertson et al. | Jun 2004 | B1 |
6802952 | Hsu et al. | Oct 2004 | B2 |
6821305 | Yan | Nov 2004 | B2 |
6966133 | Krings et al. | Nov 2005 | B2 |
6996425 | Watanabe | Feb 2006 | B2 |
7065820 | Meschter | Jun 2006 | B2 |
7134198 | Nakatani et al. | Nov 2006 | B2 |
7181172 | Sullivan et al. | Feb 2007 | B2 |
7225529 | Wang | Jun 2007 | B2 |
7284396 | Barron et al. | Oct 2007 | B2 |
7459373 | Yoo | Dec 2008 | B2 |
7508644 | Cheung et al. | Mar 2009 | B2 |
7622183 | Shirai et al. | Nov 2009 | B2 |
7636974 | Meschter et al. | Dec 2009 | B2 |
7691189 | En et al. | Apr 2010 | B2 |
8192815 | Weber et al. | Jun 2012 | B2 |
8367304 | Heley et al. | Feb 2013 | B2 |
8379678 | Zhang et al. | Feb 2013 | B2 |
8379679 | Zhang et al. | Feb 2013 | B2 |
8451873 | Zhang | May 2013 | B2 |
8663806 | Weber et al. | Mar 2014 | B2 |
8761216 | Zhang | Jun 2014 | B2 |
8771919 | Wu | Jul 2014 | B2 |
8809733 | Scott et al. | Aug 2014 | B2 |
8842351 | Lawrence et al. | Sep 2014 | B2 |
8879266 | Jarvis et al. | Nov 2014 | B2 |
8893975 | Sanford et al. | Nov 2014 | B2 |
8993921 | Browning et al. | Mar 2015 | B2 |
9034166 | Tatebe et al. | May 2015 | B2 |
9089932 | Lim | Jul 2015 | B2 |
9132510 | Nashner et al. | Sep 2015 | B2 |
9133559 | Silverman | Sep 2015 | B2 |
9138826 | Harrison | Sep 2015 | B2 |
9173336 | Bhatia | Oct 2015 | B2 |
9185835 | Heley et al. | Nov 2015 | B2 |
9314871 | Nashner et al. | Apr 2016 | B2 |
20010030002 | Zheng et al. | Oct 2001 | A1 |
20020058737 | Nishiwaki et al. | May 2002 | A1 |
20020097440 | Paricio et al. | Jul 2002 | A1 |
20020109134 | Iwasaki et al. | Aug 2002 | A1 |
20020130441 | Robinson et al. | Sep 2002 | A1 |
20020160145 | Bauhoff | Oct 2002 | A1 |
20030006217 | Dance | Jan 2003 | A1 |
20030024898 | Natsume et al. | Feb 2003 | A1 |
20030074814 | Krings et al. | Apr 2003 | A1 |
20030191223 | Waterkamp | Oct 2003 | A1 |
20030225189 | Fuller | Dec 2003 | A1 |
20040000490 | Chang | Jan 2004 | A1 |
20050023022 | Kriege et al. | Feb 2005 | A1 |
20050034301 | Wang | Feb 2005 | A1 |
20050115840 | Dolan | Jun 2005 | A1 |
20050127123 | Smithers | Jun 2005 | A1 |
20050158576 | Groll | Jul 2005 | A1 |
20050159533 | Nabeshima et al. | Jul 2005 | A1 |
20050263418 | Bastus Cortes | Dec 2005 | A1 |
20060007524 | Tam | Jan 2006 | A1 |
20060055084 | Yamaguchi et al. | Mar 2006 | A1 |
20060066771 | Hayano et al. | Mar 2006 | A1 |
20060105542 | Yoo | May 2006 | A1 |
20060225918 | Chinda et al. | Oct 2006 | A1 |
20070018817 | Marmaropoulos et al. | Jan 2007 | A1 |
20070045893 | Asthana et al. | Mar 2007 | A1 |
20070053504 | Sato et al. | Mar 2007 | A1 |
20070262062 | Guth | Nov 2007 | A1 |
20070275263 | Groll | Nov 2007 | A1 |
20080152859 | Nagal | Jun 2008 | A1 |
20080165485 | Zadesky et al. | Jul 2008 | A1 |
20080166007 | Hankey | Jul 2008 | A1 |
20080241478 | Costin et al. | Oct 2008 | A1 |
20080274375 | Ng et al. | Nov 2008 | A1 |
20080295263 | Meschter et al. | Dec 2008 | A1 |
20080299408 | Guo et al. | Dec 2008 | A1 |
20080311369 | Yokoyama et al. | Dec 2008 | A1 |
20080311370 | Yokoyama et al. | Dec 2008 | A1 |
20090017242 | Weber et al. | Jan 2009 | A1 |
20090019737 | Moreno | Jan 2009 | A1 |
20090091879 | Lim | Apr 2009 | A1 |
20090104949 | Sato et al. | Apr 2009 | A1 |
20090136723 | Zhao | May 2009 | A1 |
20090190290 | Lynch et al. | Jul 2009 | A1 |
20090194444 | Jones | Aug 2009 | A1 |
20090197116 | Cheng et al. | Aug 2009 | A1 |
20090236143 | Nakamura | Sep 2009 | A1 |
20090260871 | Weber et al. | Oct 2009 | A1 |
20090305168 | Heley et al. | Dec 2009 | A1 |
20090310470 | Yrjonen | Dec 2009 | A1 |
20100015578 | Falsafi et al. | Jan 2010 | A1 |
20100061039 | Sanford et al. | Mar 2010 | A1 |
20100065313 | Takeuchi et al. | Mar 2010 | A1 |
20100159273 | Filson et al. | Jun 2010 | A1 |
20100159274 | Filson et al. | Jun 2010 | A1 |
20100183869 | Lin et al. | Jul 2010 | A1 |
20100209721 | Irikura et al. | Aug 2010 | A1 |
20100209722 | Irikura et al. | Aug 2010 | A1 |
20100209731 | Hamano | Aug 2010 | A1 |
20100294426 | Nashner | Nov 2010 | A1 |
20100300909 | Hung | Dec 2010 | A1 |
20110008618 | Weedlun | Jan 2011 | A1 |
20110048755 | Su et al. | Mar 2011 | A1 |
20110051337 | Weber et al. | Mar 2011 | A1 |
20110089039 | Nashner | Apr 2011 | A1 |
20110089067 | Scott et al. | Apr 2011 | A1 |
20110123737 | Nashner et al. | May 2011 | A1 |
20110186455 | Du et al. | Aug 2011 | A1 |
20110193928 | Zhang et al. | Aug 2011 | A1 |
20110193929 | Zhang et al. | Aug 2011 | A1 |
20110194574 | Zhang et al. | Aug 2011 | A1 |
20110155901 | Hum et al. | Oct 2011 | A1 |
20110253411 | Hum et al. | Oct 2011 | A1 |
20110315667 | Reichenback et al. | Dec 2011 | A1 |
20120043306 | Howerton et al. | Feb 2012 | A1 |
20120081830 | Yeates et al. | Apr 2012 | A1 |
20120100348 | Brokhyser et al. | Apr 2012 | A1 |
20120141752 | Wu | Jun 2012 | A1 |
20120248001 | Nashner | Oct 2012 | A1 |
20120275130 | Hsu et al. | Nov 2012 | A1 |
20120275131 | Hsu et al. | Nov 2012 | A1 |
20130075126 | Nashner et al. | Mar 2013 | A1 |
20130083500 | Prest et al. | Apr 2013 | A1 |
20130129986 | Heley et al. | May 2013 | A1 |
20140134429 | Weber et al. | May 2014 | A1 |
20140186654 | Zhang | Jul 2014 | A1 |
20140363608 | Russell-Clarke et al. | Dec 2014 | A1 |
20140367369 | Nashner et al. | Dec 2014 | A1 |
20140370325 | Nashner et al. | Dec 2014 | A1 |
20150093563 | Runge et al. | Apr 2015 | A1 |
20150132541 | McDonald et al. | May 2015 | A1 |
20150176146 | Browning et al. | Jun 2015 | A1 |
20160229941 | Kuranari et al. | Aug 2016 | A1 |
20180009200 | Heo et al. | Jan 2018 | A1 |
Number | Date | Country |
---|---|---|
1362125 | Aug 2002 | CN |
1306526 | Mar 2007 | CN |
201044438 | Feb 2008 | CN |
101204866 | Jun 2008 | CN |
102173242 | Sep 2011 | CN |
19523112 | Jun 1996 | DE |
102005048870 | Apr 2007 | DE |
0031463 | Jul 1981 | EP |
0114565 | Aug 1984 | EP |
0121150 | Oct 1984 | EP |
0234121 | Sep 1987 | EP |
0633585 | Jan 1995 | EP |
0997958 | May 2000 | EP |
2399740 | Dec 2011 | EP |
2488369 | Mar 2014 | EP |
788329 | Dec 1957 | GB |
S57149491 | Sep 1982 | JP |
H0313331 | Jan 1991 | JP |
H03138131 | Jun 1991 | JP |
H03203694 | Sep 1991 | JP |
H06126192 | May 1994 | JP |
H06212451 | Aug 1994 | JP |
H06320104 | Nov 1994 | JP |
H07204871 | Aug 1995 | JP |
2000000167 | Jan 2000 | JP |
2002370457 | Dec 2002 | JP |
2003055794 | Feb 2003 | JP |
2005022924 | Jan 2005 | JP |
2006138002 | Jun 2006 | JP |
2008060240 | Mar 2008 | JP |
2008087409 | Apr 2008 | JP |
2008296539 | Dec 2008 | JP |
WO 9853451 | Nov 1998 | WO |
WO 0077883 | Dec 2000 | WO |
WO 0115916 | Mar 2001 | WO |
WO 0134408 | May 2001 | WO |
WO 2006124279 | Nov 2006 | WO |
WO 2007088233 | Aug 2007 | WO |
WO 2008092949 | Aug 2008 | WO |
WO 2009051218 | Apr 2009 | WO |
WO 2010095747 | Aug 2010 | WO |
WO 2010111798 | Oct 2010 | WO |
WO 2010135415 | Nov 2010 | WO |
WO 2011047325 | Apr 2011 | WO |
Entry |
---|
The SciCron Technologies website accessed on Jan. 25, 2022 at https://www.sctech.com/sp-09-pencil-hardness (Year: 2022). |
The Kronos 2310 Product Datasheet accessed online at https://kronostio2.com/en/component/jdownloads/send/49-kronos-2310/278-kronos-2310 on Jan. 25, 2022 (Year: 2022). |
Annerfors et al., “Nano Molding Technology on Cosmetic Aluminum Parts in Mobile Phones,” Division of Production and Materials Engineering, LTH, 2007. |
Chang, “Lasers Make Other Metals Look Like Gold,” New York Times, nytimes.com, 2 pgs., Jan. 31, 2008. |
Hajdu, “Chapter 7,” William Andrew Publishing from www.knovel.com, pp. 193-206, 1990. |
Shah,Vishu, Handbook of Plastics Testing and Failure Analysis, John Wiley & Sons, Inc., Third Edition, Jun. 14, 2006. |
“Database EPI” Week 201107 Thomas Scientific, London, GB; AN 2010-Q46184, 1 page, Nov. 17, 2010. |
“Marking Lasers: Marking without Limitations”, Trumpf Inc., pp. 1-36, Sep. 10, 2007. |
“Thermal Shock Resistant Conformal Coating”, Product Data Sheet, Dymax Corporation, pp. 1-2., Jul. 9, 2007. |
“UV-Curing Sheet Adhesives”, ThreeBond Technical News, 8 pages, Issued Jul. 1, 2009. |
International Search Report for International Patent Application No. PCT/US2013/046427, dated Jul. 30, 2013. |
Written Opinion for International Patent Application No. PCT/US2013/046427, dated Jul. 30, 2013. |
Number | Date | Country | |
---|---|---|---|
20180345708 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
61669565 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13619208 | Sep 2012 | US |
Child | 16055639 | US |