The present invention relates to a process for defiberizing pulp and a product for use therein. More specifically, the present invention relates to a process for defiberizing a strip of pulp comprising individual pulp sheets.
Pulp fibers are used in the manufacture of many fibrous products including, for example, diapers, feminine products, adult incontinence products, and paper products. The pulp fibers used to produce these products are supplied as rolled pulp or bale pulp. Rolled pulp is generally a continuous roll of a type of pulp known as fluff pulp. In comparison, bale pulp generally consists of a stack of individual pulp sheets. Two primary methods exist to process bale pulp and rolled pulp to obtain the individual fibers generally required to manufacture fibrous products. One method is an air-laid process where a defiberizer, such as a hammermill, interacts with the pulp to separate the individual fibers of the individual sheet or roll of pulp. The defiberizer exposes the fibers in the pulp while avoiding clumping and other adverse conditions that may cause apparent defects in an end product. The separate fibers are suspended in air and subsequently transferred to a forming surface such that an embryonic fibrous structure is formed. The other method used to produce fibrous structures is a wet-laid process. In a wet-laid process, pulp, typically in the form of individual sheets of pulp, is supplied to a device where the pulp is mixed with an aqueous solution to form a fibrous slurry. The fibrous slurry is then deposited onto a forming wire or belt such that an embryonic fibrous structure is formed.
Sheet pulp or fluff pulp may be used in both an air-laid process and a wet-laid process. In air-laid processes, fluff pulp or rolled pulp has been the primary choice among manufacturers. Fluff pulp is the preferred material in air-laid processes because of its structural characteristics, such as a lower moisture content and more uniform density. In addition, fluff pulp is supplied in roll form allowing for a continuous strip of pulp to be fed into the defiberizer without creating any interruption in the defiberizing process. An interruption is characterized by a break or inconsistency in laying down fibers on a forming surface. Avoiding an interruption is important to the quality of products produced by the process. For the above reasons, manufacturers using an air-laid process generally choose rolled pulp to produce fibrous products.
Further to the above, manufactures have usually avoided using bale pulp in air-laid processes because of interruptions in the defiberizing process. When dealing with short, individual sheets of pulp, it is often the case that one sheet of pulp is pulled into the defiberizer at a faster rate than a subsequent sheet of pulp can be fed into the defiberizer. This gap in feeding sheets of pulp into the defiberizer can create an interruption in the supply of individual fibers to a forming surface. The resulting interruption in the defiberization process ultimately may result in an inconsistent, varied product. An interruption for paper products, such as paper towels and tissues, could be immediately apparent to an end user. An interruption may also result in a product having inadequate absorbency or inferior softness.
Sheet pulp and rolled pulp are generally made of the same raw material. Despite this similarity, individual sheets of pulp offer some advantages over rolled pulp. Sheet pulp is less expensive than rolled pulp and can be transported and stored more easily than rolled pulp. The cost difference between rolled pulp and bale pulp is due in part to the process used to produce bale pulp, which is a less expensive process than that used to produce rolled pulp. In addition, bale pulp is produced by a large number of sources and, therefore, offers manufacturers more choice in suppliers and the ability to localize supply with the point of demand. In comparison, fluff pulp is a specialized grade of pulp that is produced by an expensive processes requiring large costly machinery. The expense of the equipment itself coupled with the expense to operate the equipment has resulted in relatively few suppliers of fluff pulp. As a result, fluff pulp represents a small percentage of the overall pulp market. Therefore, sheet pulp offers economic benefits over fluff pulp.
Due to the benefits of using bale pulp, processes for defiberizing individual sheets of pulp have been developed to try to combat the problem of fiber interruption. For example, defiberizers have been developed for accepting numerous unattached sheets of pulp that have been laid against of one another; that is numerous sheets of pulp in shingled relation enter the defiberizer at one time. Another apparatus has been developed to defiberize a pulp sheet with two defiberizing mechanisms in angled relation so that the force exerted on the pulp sheet is not parallel to the machine direction, and the feed of the pulp sheet can be controlled more easily. Still another apparatus that has been developed shreds the sheets of pulp and stores the shredded pulp in a hopper to create a uniform supply of shredded pulp for defiberization. Another method involves folding the sheets of pulp, where the fold line is parallel to the machine direction, to create a sheet of uniform thickness to be fed into the defiberizer. Generally, the above-discussed processes keep the sheets of pulp essentially separate from one another, which could still result in an interruption of fibers. In other words, the individual sheets of pulp in the existing processes are not attached to one another.
One problem with the known processes is that feeding individual sheets of pulp into a defiberizer creates a non-uniform distribution of pulp fibers.
Accordingly, there is a need for a method and apparatus that is capable of transforming individual sheets of pulp into a strip of pulp that simulates a continuous roll of pulp being fed into a defiberizer.
The present disclosure fulfills the need described above by providing a process for defiberizing pulp and a strip of pulp used therein.
One solution to the problem described above with respect to a non-uniform distribution of pulp fibers is to attach two or more sheets of pulp together to form a strip of pulp before feeding the strip of pulp into a defiberizer.
In one embodiment, the present disclosure is directed, in part, to a process for defiberizing pulp, the process comprising the steps of: attaching a first individual pulp sheet to one or more second individual pulp sheets to form a strip of pulp; and feeding the strip of pulp into a defiberizer.
In another embodiment, the present disclosure is directed, in part, to a process for forming a strip of pulp, the process comprising the steps of: providing at least two individual pulp sheets and attaching at least two of the individual pulp sheets together to form a strip of pulp.
In yet another embodiment, the present disclosure is directed, in part, to a process for defiberizing pulp, the process comprising the steps of: providing a strip of pulp comprising two or more individual pulp sheets attached to one another; and feeding a strip of pulp into a defiberizer.
In still another embodiment, the present disclosure is directed, in part, to a strip of pulp suitable for defiberizing. The strip of pulp comprises a first individual pulp sheet attached to one or more second individual pulp sheets.
Accordingly, the present invention provides a process for defiberizing pulp, a strip of pulp used therein, and a process for forming a strip of pulp used therein.
Various non-limiting embodiments of the present disclosure will now be described to provide an overall understand of the principles of the structure, function, manufacture, and use of a strip of pulp and process for defiberizing individual sheets of pulp as disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the process for defiberizing individual sheets of pulp and the strip of pulp used therein as described herein and the accompanying drawings are non-limiting example embodiments and that the scope of the various embodiments of the present disclosure are defined solely by the claims. The features illustrated or described in connection with one embodiment can be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present disclosure.
“Fibrous structure” as used herein means a structure that comprises one or more fibers. In one example, a fibrous structure according to one embodiment means an orderly arrangement of fibers within a structure in order to perform a function. Non-limiting examples of fibrous structures include paper, fabrics (including non-woven), and fibrous absorbent pads (for example diapers or feminine hygiene products).
Non-limiting examples of processes for making fibrous structures include known wet-laid papermaking processes and air-laid papermaking processes. Such processes typically include steps of preparing a fiber composition in the form of a suspension in a medium, either wet, more specifically aqueous medium, or dry, more specifically gaseous, i.e. with air as a medium. The aqueous medium used for wet-laid processes is oftentimes referred to as a fiber slurry. The fibrous slurry is then used to deposit a plurality of fibers onto a forming wire or belt such that an embryonic fibrous structure is formed, after which drying and/or bonding the fibers together results in a fibrous structure. Further processing the fibrous structure may be carried out such that a finished fibrous structure is formed. For example, in typical papermaking processes, the finished fibrous structure is the fibrous structure that is wound on the reel at the end of papermaking, and may subsequently be converted into a finished product, e.g. a sanitary tissue product.
“Fiber” as used herein means an elongate particle having an apparent length greatly exceeding its apparent width, i.e. a length to diameter ratio of at least about 10. A “fiber” is an elongate particle as described above that exhibits a length of less than 5.08 cm (2 in.). Fibers are typically considered discontinuous in nature. Non-limiting examples of fibers include pulp fibers such as wood pulp fibers and synthetic staple fibers such as polyester fibers. The fibers may be monocomponent or multicomponent, such as bicomponent fibers.
In an illustration of one embodiment, “fiber” refers to papermaking fibers. Papermaking fibers may include cellulosic fibers commonly known as wood pulp fibers. Applicable wood pulps include chemical pulps, such as Kraft, sulfite, soda, and sulfate pulps, as well as mechanical pulps including, for example, groundwood, thermomechanical pulp and chemically modified thermomechanical pulp. Chemical pulps, however, may be preferred since they impart a superior tactile sense of softness to tissue sheets made therefrom. Pulps derived from both deciduous trees (hereinafter, also referred to as “hardwood”) and coniferous trees (hereinafter, also referred to as “softwood”) may be utilized. The hardwood and softwood fibers can be blended, or alternatively, can be deposited in layers to provide a stratified web. U.S. Pat. No. 4,300,981 and U.S. Pat. No. 3,994,771 are incorporated herein by reference for the purpose of disclosing layering of hardwood and softwood fibers. Also applicable to an embodiment are fibers derived from recycled paper, which may contain any or all of the above categories as well as other non-fibrous materials such as fillers and adhesives used to facilitate the original papermaking.
In addition to the various wood pulp fibers, other cellulosic fibers such as cotton linters, rayon, lyocell, and bagasse can be used in an embodiment. Other sources of cellulose in the form of fibers or capable of being spun into fibers include grasses and grain sources.
“Pulp sheet” as used herein means a composite of individual pulp fibers that have been arranged together as a result of a pulping process. In one example, as is known by those of ordinary skill in the art, a bale of pulp comprises multiple individual pulp sheets in a stack. A pulping process is any process by which plant material (wood, grass, straw etc.) is reduced to a fibrous mass. It is achieved by rupturing bonds within plant structures. It can be accomplished mechanically, thermally, chemically or some combinations of these treatments. For avoidance of doubt, clearly low density (for example less than 0.15 g/cm3) fibrous structures, such as fibrous structures produced by a papermaking process (individual plies thereof or finished products) used in bath tissue, paper towels, and/or facial tissue, are not considered pulp sheets for purposes of the present invention.
“Attach” and/or “attaching” as used herein means connecting (for example, joining, linking and/or fastening together) two or more materials, such as two or more individual pulp sheets together. Further, attach and/or attaching means connecting by more than surface frictional engagement due to normal forces experienced between adjacent surfaces of two materials disposed in overlapping relation. In one example, the attached two or more individual pulp sheets are connected together such that separation of the individual pulp sheets from one another by forces applied by a defiberizer upon the connected individual pulp sheets is prevented. In one example, two or more individual pulp sheets that are attached to one another resist separating from one another when the forces applied by a defiberizer in the machine direction are greater than about 0.1 kgf (kilogram force) and/or greater than about 0.5 kgf and/or greater than about 1 kgf and/or greater than about 2 kgf and/or greater than about 5 kgf and/or greater than about 10 kgf.
“Machine Direction” or “MD” as used herein means the direction parallel to the flow of the pulp sheet into the defiberizer. The machine direction is typically parallel to the movement of any transfer device that transfers and/or transports a pulp sheet and/or strip of pulp to a defiberizer. More specifically, the MD means the direction in which an individual sheet of pulp is transferred from a stack of pulp sheets to an inlet of a defiberizer. In one example, one or more pulp sheets enter the inlet of the defiberizer in the machine direction of the defiberizer.
“Cross Machine Direction” or “CD” as used herein means the direction perpendicular to the MD.
As used herein, the articles “a” and “an” when used herein, for example, “an anionic surfactant” or “a fiber” is understood to mean one or more of the material that is claimed or described.
All percentages and ratios are calculated by weight unless otherwise indicated. All percentages and ratios are calculated based on the total composition unless otherwise indicated.
In one embodiment, referring to
In one embodiment, as shown in
In one embodiment, as shown in
In one embodiment, the transfer device 34 may move the first individual pulp sheet 46 and the second individual pulp sheet 48 so that the overlap portion 40 and/or abutted portion 44 pass through an attaching operation comprising, for example an attaching mechanism 16 capable of attaching the first individual pulp sheet 46 to one or more second individual pulp sheets 48. Non-limiting examples of attaching operations comprise subjecting the overlap portion 40 and/or abutted portion 44 to a crimping, needle-punching, sewing, and/or embossing operation. The attaching operation may include mechanically attaching adjacent individual pulp sheets and/or adhering adjacent individual pulp sheets together. Non-limiting examples of a mechanical attachment, which will be addressed in more detail below, may comprise sewing, dovetailing, mechanically entangling, needle punching, and interleaving.
As shown in the
In one embodiment, for example, the apparatus 10 shown in
In one embodiment, as shown in
In one embodiment, a strip of pulp 18 as shown in
A strip of pulp 18 may be configured in numerous ways. The following discusses various example embodiments for a strip of pulp 18. As discussed above, the individual pulp sheets 14 that create a strip of pulp 18 may be attached by an adhesive or mechanical attachment. A strip of pulp 18 may vary in thickness along its dimensions or it may be of relatively uniform thickness across its dimensions depending on the desired configuration of the individual pulp sheets 14. A variation in thickness of a strip of pulp 18 may result in a defiberizer 22 producing a variable volume of defiberized fibers 26, but the defiberizer 22 can still produce a substantially continuous flow of defiberized fibers 26 thereby avoiding any interruptions in the substantially continuous flow of defiberized fibers 26 exiting the defiberizer 22 via the outlet 30. In addition, in one embodiment, the width of the strip of pulp 18 in the CD should not exceed the width in the CD of the inlet 32 of the defiberizer 22.
In one embodiment, referring to
In one embodiment, as shown in
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, referring to
In one embodiment, referring to
As shown in
In one embodiment, referring to
In one embodiment, one or more strips of pulp 18 may be assembled on different process lines and subsequently transferred to a common transfer device 34. For example, a first individual pulp sheet 46 may be attached to one or more second individual pulp sheets 48 to form a strip of pulp 18. In addition, a third individual pulp sheet 50 may be attached to one or more fourth individual pulp sheets 52 to form one or more second strips of pulp 54. The strip of pulp 18 and the one or more second strips of pulp 54 may be formed independently of one another and transferred to a common position, such as on a transfer device 34. The strip of pulp 18 may be positioned on at least a portion of one or more second strips of pulp 54 to form a combined strip of pulp 56. In one embodiment, the strip of pulp 18 may not be attached to one or more second strips of pulp 54 to form the combined strip of pulp 56. In another embodiment, the strip of pulp 18 may be attached to one or more second strips of pulp 54 to form the combined strip of pulp 56. In another example embodiment, the combined strip of pulp 56 may be formed such that at least one edge 38 of the strip of pulp 18 is substantially parallel to both the MD and at least one edge 38 of one or more second strips of pulp 54. In an example embodiment, the combined strip of pulp 56 may be formed such that at least one edge 38 of the strip of pulp 18 is substantially planar to at least one edge 38 of one or more second strips of pulp 54. In various embodiments, the combined strip of pulp 56 may have a thickness greater than two individual pulp sheets 14. The strip of pulp 18 and one or more second strips of pulp 54 may be formed in any of the previously discussed configurations and any additional configuration that would be known to one of ordinary skill in the art.
The attaching operation may include mechanically attaching adjacent individual pulp sheets and/or adhering adjacent individual pulp sheets together. Non-limiting examples of a mechanical attachment may comprise sewing, dovetailing, mechanically entangling, and/or interleaving.
In one embodiment, mechanically attaching comprises sewing. Sewing a first individual pulp sheet 46 to one or more second individual pulp sheets 48 may involve additional material such as a piece of thread. Such additional material may be present throughout a defiberizing process and ultimately in a product. In one embodiment, the additional material used for attaching the sheets of pulp is of a structure and/or characteristic so as to avoid creating clumping issues in the defiberizer 22 and/or discrepancies and/or defects in a product, such as a fibrous structure, incorporating the defiberized fibers 26. Clumping, generally, refers to a dense group or groups of fibers that become entangled in the defiberizer 22. Clumping is generally undesirable for paper products, such as facial tissue, paper towels, and bath tissue, because clumps may lead to inconsistencies in properties and/or visible variations in a product, such as a fibrous structure, incorporating the defiberized fibers 26. In addition, the additional material should minimize changes in the quality or characteristics of the product. In one embodiment, the additional material used to attach the individual pulp sheets 14 may comprise, for example, a dissolvable thread or a fibrous thread as commonly used in industrial sewing applications, such as nylon, polypropylene and/or cellulose, for example cotton.
In one embodiment, the individual pulp sheets 14 may be attached by mechanically entangling as shown in
In one embodiment, attaching two or more individual pulp sheets 14 together by adhering can comprise gluing and/or taping a first individual pulp sheet 46 to one or more second individual pulp sheets 48. Analogous to the above with respect to mechanically attaching, the adhesive material (glue) may consist of a material which avoids creating clumping issues in the defiberizer 22 and/or discrepancies and/or defects in a product, such as a fibrous structure, incorporating the defiberized fibers 26 for the same reasons described above. In addition, the adhesive material should minimize changes in the quality or characteristics of the product. Non-limiting examples of adhering may comprise taping and gluing. In one embodiment, two or more individual pulp sheets may be attached together by tape. A non-limiting example of a suitable tape is commercially available from 3M or Anchor Continental. In another embodiment, two or more individual pulp sheets 14 may be attached together by a glue, for example a water-based glue. Non-limiting examples of suitable glues are commercially available from H. B. Fuller under the trade names WB-4955M, WB-4989 and WB-4997, Henkel under the brand name Adhesin® and National Starch & Chemical Company.
In one embodiment, the individual pulp sheets 14 may be attached by interleaving a first individual pulp sheet 46 with one or more second individual pulp sheets 48 and a third individual pulp sheet 50, as shown in
In one embodiment, two or more pulp sheets are attached to one another using a material that is acceptable for inclusion in a product into which the defiberized fibers 26 are ultimately incorporated.
In another embodiment, the attaching operation comprises a step of controlling the moisture level of the pulp sheets prior to and/or during and/or post the attaching operation. In one embodiment, the moisture level of the pulp sheets prior to and/or during the attaching operation is greater than 5% and/or greater than 6% and/or greater than 8% and/or greater than 10% by weight of the pulp sheet.
In another embodiment, the strip of pulp 18 may be assembled with multiple attachments. For example, the first individual pulp sheet 46 may be adhered to the one or more second individual pulp sheets 48, and the one or more second individual pulp sheets 48 may be mechanically attached to the third individual pulp sheet 50. More specifically, the first individual pulp sheet 46 may be glued to the one or more second individual pulp sheets 48, and the one or more second individual pulp sheets 48 may be sewn to the third individual pulp sheet 50. Any type of attachment as described above may be used in conjunction with other types of attachment to assemble a strip of pulp 18.
The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm.”
Every document cited herein, including any cross referenced or related patent or application is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
This application claims the benefit of U.S. Provisional Application No. 61/521,539, filed Aug. 9, 2011.
Number | Date | Country | |
---|---|---|---|
61521539 | Aug 2011 | US |