The present invention generally relates to coatings capable of use on components exposed to high temperatures, such as the hostile thermal environment of a gas turbine engine. More particularly, this invention is directed to methods and a system for applying a thermal barrier coating (TBC) with improved erosion resistance by intermediately removing overspray byproduct that accumulates during the application process.
The use of thermal barrier coatings (TBCs) on components such as combustors, high pressure turbine (HPT) blades, vanes and shrouds is increasing in commercial as well as military gas turbine engines. The thermal insulation provided by a TBC enables such components to survive higher operating temperatures, increases component durability, and improves engine reliability. TBCs are typically formed of a ceramic material and deposited on an environmentally-protective bond coat to form what is termed a TBC system. Bond coats are typically formed of an oxidation-resistant diffusion coating such as diffusion aluminide, platinum aluminide or an oxidation-resistant overlay coating such as MCrAlY (where M is iron, cobalt and/or nickel).
Various processes can be used to deposit TBC materials, including thermal spray processes such as air plasma spraying (APS), vacuum plasma spraying (VPS), low pressure plasma spraying (LPPS), and suspension plasma spraying (SPS). However, these spray processes may experience problems with overspray wherein the TBC materials are deposited on undesired surfaces of the coated component to form what is hereinafter referred to as an overspray byproduct. The overspray byproduct is only loosely adherent and is highly undesirable from the viewpoint of mechanical robustness, erosion resistance and thermal spalling resistance. This problem can be observed in SPS processes that use a feedstock comprising fine particles suspended in a liquid agent. The suspension is fed to a plasma spray torch in a controlled manner and injected into the plasma plume for deposition onto a substrate. The particles typically, but not necessarily, have a median diameter in the range about 0.4 micrometers to about 2 micrometers, which may be significantly smaller than powder media typically used with other conventional thermal spray processes. The liquid agent typically is a solution of water, alcohol, or similar solvent mixed with an additive, for example, ethanol at about 10 percent by weight, using polyethyleneimine as a dispersant (at 0.2 percent by weight of the solids). In a typical SPS process, the plasma spray torch motion and spraying routine are traditionally programmed to provide the desired thickness distribution in the resultant coating without regard for overspray byproduct build up.
A vane segment 10 of a gas turbine engine is represented in
As further explanation, an SPS process is represented in
In previous methods of TBC deposition, the overspray byproduct 22 is either tolerated or regions prone to overspray byproduct 22 were covered prior to the spraying process with a material such as a barrier tape, cover, or mask. Continuing the deposition process while retaining the overspray by product reduces the robustness of the TBC 20. While covering the overspray-affected regions prior to the spraying process can be an effective method of avoiding the problem, it can be difficult to efficiently implement such a method into a continuous fabrication process. Another disadvantage is that it is difficult to select materials that can be utilized for purposes of covering the potential overspray regions which also have thermal stability at the temperatures involved in the thermal spray processes.
Accordingly, there is a need for a method of applying TBCs to components that is capable of avoiding or limiting the problems associated with overspray byproduct buildup. A need exists to remove the byproduct in such a way that the process lends itself to an efficient continuous coating operation resulting in increased throughput.
The present invention provides methods and a system for applying a ceramic coating, for example, a thermal barrier coating (TBC), that entails intermediately removing overspray byproduct that accumulates during the application process.
According to a first aspect of the invention, a method includes depositing a ceramic coating on a first portion of a component and unintentionally depositing an overspray byproduct on a second portion of the component. A removal agent is then applied to the second portion of the component to remove overspray byproduct thereon, after which the ceramic coating is deposited onto at least the second portion of the component. According to a preferred aspect of the invention, the coating is deposited using a suspension plasma spray technique, and the removal agent is dry ice that is sprayed onto the second portion of the component.
According to a second aspect of the invention, a system is provided that includes a suspension plasma spraying apparatus configured to deposit a ceramic coating onto a first portion of a component and means for applying a removal agent to a second portion of the component that has an overspray byproduct thereon.
A third aspect of the invention is the fabrication of a structural component that has a thermal barrier coating deposited using a suspension plasma spraying process and intermittently removing the overspray byproduct by using a removal agent, leading to the advantage that the structural component has superior properties relative to components wherein the overspray byproduct is not removed.
A technical effect of the invention is that an overspray byproduct can be removed from a surface prior to depositing a coating layer thereon, and thereby prevent or at least reduce problems associated with overspray byproduct build up.
Another technical effect of the invention is that a structural component with superior erosion resistance and thermal spalling resistance is produced by depositing a thermal barrier coating using a suspension plasma spraying process that includes intermittent removal of overspray byproduct.
Other aspects and advantages of this invention will be further appreciated from the following detailed description.
In a conventional spray process, a plasma gun motion is programmed to provide the desired thickness distribution in the resultant coating without regard to overspray build-up. In the case of an SPS process performed on vanes of a gas turbine engine (or other turbomachine), the inner and outer bands and fillets of the vane act to hold the overspray and cause it to get entrapped in the sprayed coating. By segmenting the spray program and coating only a section of the vane at a time, and then removing the overspray, the performance of the coating can be dramatically improved.
In
Several experiments were conducted to confirm the advantages of the process and bring out the process details. In a first experiment, a vane assembly was sprayed with a ceramic material. Examples of suitable ceramic materials include yttria-stabilized zirconia (YSZ), which belongs to a class of materials that show erosion resistance and resistance to thermal spalling. Referring to
In another experiment, a segment of a vane assembly was sprayed according to the same spraying routine used in the first experiment. However, dry ice entrained in compressed air was used as a removal agent and was blasted over the inner band at a pressure of about 60 psi (about 415 kPa) to remove overspray byproduct after the spraying passes of the outer band. Unlike in previous experiments where no attempt was made to remove the overspray byproduct, the center of the airfoil of the segment exhibited a clean region relatively free of the overspray byproduct. The test segment was then fully coated utilizing intermittent steps for removal of undesired overspray byproduct. Tests conducted to verify the erosion resistance and spalling resistance of the TBC deposited integrating the overspray byproduct removal method into the process showed superior performance over the segments where no attempt was made to remove the overspray byproduct.
From these investigations, it was concluded that by following spraying stages of an SPS process with intermediate steps of removal operation utilizing dry ice, an overspray byproduct can be successfully removed.
By segmenting the spray routine and coating only a section of the segment 10 (such as the outer band 16 and fillet) at one time, then removing the overspray byproduct 22 with dry ice, the SPS process produces an improved microstructure of the TBC 20 and thus a more erosion-resistant coating. Furthermore, the removal operation may be implemented in-situ without having to stop the spray process, so that it does not adversely affect cycle time of the SPS process. It should be noted further that spray processes other than SPS can lend themselves to the described methods of intermedially removing the overspray byproduct 22. Since the function of the dry ice is providing an impact that is optimized for removing the overspray without affecting the integrity of the coating in other areas and the surface characteristics of the uncoated surfaces, other removal agents can include, for example, water jet, compressed air, and fine abrasive particles of an oxide, for example, aluminum oxide, entrained in a gaseous medium.
It should be noted that for effective removal of the overspray byproduct 22, the removal agent should be forceful and/or abrasive enough to remove the overspray byproduct 22 yet gentle enough not to disturb any metallic bond coat present on the surfaces to be coated and any surface conditioning performed on the bond coat to prepare its surfaces for TBC deposition. Accordingly, process parameters, such as pressure for the compressed air or dry ice entrained in air, and particle sizes where applicable, should be carefully chosen to effect the desired results. For example, when alumina particles are used as abrasive removal agent, a preferred average particle size is in the range of 150-200 micrometers. Further, the removal agent itself should be easily removable. In the case of compressed air and water jet, removal of the removal agent itself is automatic. In the case of air or other gaseous media containing abrasive particles, such as aluminum oxide particles, a subsequent step of removing any remaining particles may be necessary. It is important that no extraneous ingredients or other contaminants are introduced into the final TBC 20 as result of the process steps involved in the removal of the overspray byproduct 22.
In the example of coating a segment of a vane assembly it can be seen from
While the invention has been described in terms of a specific embodiment, it is apparent that other forms could be adopted by one skilled in the art. For example, the system could differ in appearance and construction from the embodiment shown in the Figures, the functions of each component of the system could be performed by components of different construction but capable of a similar (though not necessarily equivalent) function, processing parameters such as temperatures and durations could be modified, and appropriate materials and/or components could be substituted for those noted. Accordingly, it should be understood that the invention is not limited to the specific embodiment illustrated in the Figures. Therefore, the scope of the invention is to be limited only by the following claims.
This application claims the benefit of U.S. Provisional Application No. 61/666,834, filed Jun. 30, 2012, the contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5723078 | Nagaraj et al. | Mar 1998 | A |
6132520 | Schilbe et al. | Oct 2000 | A |
8262802 | Garry et al. | Sep 2012 | B2 |
20050059321 | Bublath et al. | Mar 2005 | A1 |
20090074588 | Scott | Mar 2009 | A1 |
20090226626 | Gupta et al. | Sep 2009 | A1 |
20100254820 | Maly et al. | Oct 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20150140284 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61666834 | Jun 2012 | US |