The present invention is directed to a process for designing and manufacturing a component that is resistant to cavitation erosion, and in particular to a process for designing and manufacturing a cavitation erosion resistant component using crystal plasticity finite element modeling.
Cavitation erosion (CE) is caused by the formation and collapse of vapor bubbles in a liquid near a metallic component surface. For example,
It is appreciated that CE can occur in equipment that processes, uses and/or is subjected to high pressure liquid. In addition, high pressure hydraulic pumps used in various industries, such as the automotive industry, have experienced a gradual increase in pressure requirements, and thus an increase in the susceptibility to CE. As such, there is an ever-increasing need for materials that provide improved CE resistance.
It is known from empirical studies, metallic materials with high hardness and low second phase precipitates have been found useful in CE susceptible environments. However, it is also known that the presence of second phase precipitates can enhance the hardness of a material and thus possibly provide increased CE resistance. However, in order to empirically determine whether or not which second phase precipitates can actually improve CE resistance, CE testing for each combination of metallic material with second phase precipitates would have to be conducted. The same is true for whether or not other microstructural features such as grain size, grain orientation, etc., can provide increased CE resistance. Yet such testing takes time and can be expensive. Therefore, a process for designing metallic materials for CE resistance which does not require empirical testing over a wide range of microstructural features would be desirable.
A process for designing and manufacturing a cavitation erosion (CE) resistant component is provided. The process includes selecting a base metallic material for use in a CE susceptible environment. In addition, the process includes conducting a uniaxial loading test on a sample of the selected material and then conducting atomic force microscopy (AFM) topography on a surface of the tested sample. The AFM topography provides a surface strain analysis of the surface of the tested sample.
The process also includes crystal plasticity finite element modeling (CPFEM) of uniaxial loading of an FEM sample for the selected material and using the CPFEM to obtain a surface strain characterization thereof. The AFM topography surface strain analysis is compared to the CPFEM surface strain characterization and a determination is made as to whether or not the comparison falls within a predetermined tolerance. In the event that the comparison does not fall within a predetermined tolerance, additional CPFEM is performed until the CPFEM surface strain characterization does agree with AFM topography surface strain analysis within the predetermined tolerance. In addition, optional neutron diffraction of the selected material during in situ uniaxial loading can be included in the process in order to provide lattice strain history and single crystal stiffness data on the selected material. Such additional data can be used in the CPFEM of uniaxial loading of the selected material in order to provide a more accurate surface strain characterization.
When the AFM topography surface strain analysis and the CPFEM surface strain characterization agree within the predetermined tolerance, the process conducts CPFEM of nanoindentation on an FEM sample of the selected material over a range of values for at least one microstructure parameter. The nanoindentation CPFEM over the range of values for the at least one microstructure parameter provides a plurality of hardness values, and possibly other material property values, as a function of the range of values for the at least one microstructural parameter. The plurality of hardness values are reviewed and a subset is selected which corresponds to improved CE resistance. In addition, a subrange of values for the at least one microstructure parameter that corresponds to the subset of hardness values is also selected. Once the subrange of values for the at least one microstructure parameter is selected and/or identified, the selected material is used to manufacture a component. In addition, the component has a microstructure with an average value of the at least one microstructure parameter that falls within the selected subrange of values.
The at least one microstructure parameter can be an average grain size, an average grain orientation, a presence of second phase precipitates, a type of second phase precipitate, an average size of a plurality of second phase precipitates, an average shape of a plurality of second phase precipitates, and an average particle number density of a plurality of second phase precipitates. In some instances, the nanoindentation CPFEM is performed over a range or iteration of at least two microstructure parameters, and optionally over a range of at least three microstructure parameters. In this manner, basic mechanical property data for a selected material is generated using a uniaxial loading test and AFM topography analysis, and such property data is used in CPFEM nanoindentation in order to obtain an optimum microstructure with respect to CE resistance. Furthermore, and as noted above, neutron diffraction of the selected material can be used to provide data in the CPFEM.
A process for designing and manufacturing a cavitation erosion (CE) resistant component is provided. The process provides a substantial improvement for material design related to cavitation erosion resistance and reduces time and cost related to the design and manufacture of anti-cavitation erosion equipment such as high pressure pumps.
The process can include determining operation conditions in a given industrial application that is susceptible to cavitation erosion. Such operation conditions can include a given liquid environment, pressure of the liquid environment, possible flow rate of the liquid environment, and the like. The process also includes selecting a material that may or may not be used in the liquid environment, such materials typically including steels, stainless steels, nickel alloys, aluminum alloys, titanium alloys, copper alloys, and the like. Once a given material or alloy is selected, a sample of the selected material, e.g. a tensile sample, is subjected to uniaxial loading such that the surface of the sample is subjected to surface strain. For example, 3-7% total strain is reached in order to provide clear slip traces but not excessive grain deformation. Thereafter, atomic force microscopy (AFM) topography of the surface of the tested sample is conducted and a surface strain analysis of the surface is produced using the results from the AFM topography.
Computer modeling of uniaxial loading of the selected material is performed and a surface strain characterization from the computer modeled uniaxial loading is produced. In some instances, the computer modeling is crystal plasticity finite element modeling (CPFEM) as is known to those skilled in the art. It is appreciated that the CPFEM includes a finite element model (FEM) of a uniaxial loading test sample, e.g. a tensile sample.
After the surface strain characterization produced by the CPFEM of the uniaxial loading of the selected material has been produced, it is compared with the AFM topography surface strain analysis produced from the actual uniaxial loading test on the selected material sample. In the event that the comparison falls within a predetermined tolerance, i.e. there is a desired agreement between the AFM topography surface strain analysis and the CPFEM surface strain characterization, CPFEM of nanoindentation of the selected material is executed. It is appreciated that the predetermined tolerance is a difference between the two techniques of less than or equal to 10%.
The CPFEM nanoindentation is conducted over a range of microstructure parameter values for the selected material. Stated differently, a single CPFEM nanoindentation is executed for a single microstructure parameter value that is within a range of predetermined and selected microstructure parameter values. As such, a plurality of CPFEM nanoindentation simulations are conducted for a plurality of microstructure parameter values. For example and for illustrative purposes only, a CPFEM nanoindentation of the selected material is executed for the material having an average grain size of 10 microns, then another CPFEM nanoindentation is executed for an average grain size of 15 microns, and the like until an entire range of average grain sizes are investigated or simulated with respect to the CPFEM nanoindentation.
A range of mechanical property data for the selected material is obtained as a function of the range of microstructure parameter values from the plurality of CPFEM nanoindentation simulations. In some instances, the range of mechanical property data is a plurality of hardness values, ductility values, etc., that are obtained as a function of the range of microstructure parameter values.
A subset of the mechanical property data is selected, along with a corresponding subrange of microstructure parameter values that produce the subset of mechanical property data. It is appreciated that the subset of mechanical property data can represent or be correlated with improved CE resistance and thus the corresponding subrange of microstructure parameter values provides a desired microstructure for the selected material that is CE resistant.
Once the subrange of microstructure parameter values has been selected, a component is manufactured from the selected material and the component has a microstructure that is characteristic of the subrange of microstructure parameter values. Stated differently, the microstructure of the component made from the selected material has an average microstructure parameter, e.g. an average grain size, that is within the selected and corresponding subrange of the microstructure parameter values. As such, the manufactured component has an improved CE resistance compared to a similar or identical component made from the same selected material but having a microstructure that falls outside the selected and corresponding subrange of microstructure parameter values.
In some instances, neutron diffraction is conducted during in situ uniaxial loading of an actual material sample from the selected material and the neutron diffraction allows for single crystal stiffness data on the selected material to be obtained. In addition, the single crystal stiffness data obtained via the neutron diffraction can be used in the CPFEM of the uniaxial loading and/or nanoindentation simulations.
Given the above, it is appreciated that micromechanical modeling and nanoindentation test modeling combined therewith provide a process for optimized material design and component fabrication for CE environments.
It is appreciated that CE can be reduced through equipment design, through the use of more erosion-resistant materials, and the like. In addition, increasing a material's hardness can increase its cavitation erosion resistance; however, a decrease in fabricability can be associated with such increase in hardness. Therefore, the instant disclosure provides a process for optimizing a selected material's microstructure in order to enhance the material's cavitation erosion resistance.
Looking now at
Turning now to
A uniaxial loading sample, e.g. a tensile sample, is made from the selected material at step 402. The sample is subjected to uniaxial loading at step 404, for example subjecting the sample to a strain of between 1% and 10%. In some instances, the sample is subjected to approximately 3% strain. In addition, the sample surface may or may not be polished down to a very high surface resolution or smoothness (e.g. down to 50 nm) and then chemically etched in order to view the sample surface microstructure before loading. After the sample has been subjected to uniaxial loading, an atomic force microscopy (AFM) topography of the sample surface is conducted at step 406 and a surface strain analysis using the AFM topography results is conducted at step 408. For example,
The number of displaced twin planes N can be compared to an alternative derivation based on the projected twin thickness tx, the twin plane normal n, and the interplane spacing d per the relationship:
It is appreciated that the true projected twin thickness tx is approximately equal to the apparent, i.e. measured, projected twin thickness tx, if h<<tx. Thus using AFM section topography data, two alternatively derived values of N can be determined and the difference between the two obtained. For example, the difference between the two differently derived number of displaced twin planes N can be within 10%, preferably within 5%, and more preferably within 2%. As such, the AFM measurement process is robust and can be used to calculate the number of slip dislocations responsible for a series of parallel slip bands present in a grain for a sample that has been subjected to the uniaxial loading at step 404.
The AFM topography can also be used for calculating shear for a given deformation system using individual surface steps along a given AFM section line as illustratively shown in
It is appreciated that the surface height changes caused by deformation systems in a given microstructure area can be scanned or determined by the AFM topography as illustrated in
In some instances, and although not required, neutron diffraction can be executed during the in situ uniaxial loading of the test sample at step 410. In the alternative, a separate uniaxial loading run or test can be conducted in which neutron diffraction on the sample is executed. In such instances when the neutron diffraction is conducted, single crystal stiffness data can be derived from the neutron diffraction results as is known to those skilled in the art.
At step 412, CPFEM of uniaxial loading of the selected material is conducted with an illustrative example of a finite element modeling (FEM) sample for the uniaxial loading simulations shown in
A surface strain characterization from the CPFEM of uniaxial loading for the selected material is conducted at step 414. Then, the results of the surface strain characterization at step 414 are compared with the surface strain analysis from AFM topography at step 408 at step 420. In the event that the comparison does not fall within a predetermined tolerance, the process returns to step 412 in which CPFEM uniaxial loading is executed with updated or revised model parameters. Such model parameters can include simulation parameters such as boundary conditions, mesh size, etc. and/or CPFEM parameters such as elastic stiffness, hardening parameters, slip strength and/or stress exponent. This cycle is completed until the surface strain characterization from the CPFEM at step 414 agrees with the surface strain analysis from AFM topography conducted at step 408 within the predetermined tolerance, at which time the process proceeds to step 427.
At step 422, a microstructure parameter value is selected and CPFEM of nanoindentation of the selected material having the selected microstructure parameter value is conducted at step 424. Step 424 can simulate nanoindentation in order to obtain mechanical property data such as hardness, elastic modulus, ductility and the like for the selected material having a given microstructure using indentation load-displacement data obtained during one cycle of loading and unloading.
A schematic representation of a typical load versus displacement curve obtained during the CPFEM simulation is shown in
As shown in
The procedure used to measure the hardness H and elastic modulus E is based on the unloading process shown schematically in
where ε is a constant that depends on the geometry of the indenter, e.g. ε=0.72 for a conical punch, ε=0.75 for a paraboloid of revolution which approximates a sphere at small depths, and ε=1.00 for a flat punch.
Using the relation above to approximate the vertical displacement of the contact periphery, it follows from the geometry shown in
Letting F(d) be an “area function” that describes the projected or cross-sectional area of the indenter at a distance d back from its tip, the contact area is provided by the relation:
A=F(hc) (6)
The area function is also known as the indenter shape function and must be carefully calibrated by independent measurements so that deviations from non-ideal indenter geometry are taken into account.
Once the contact area is determined, the hardness is estimated from the relation:
The elastic modulus follows from its relationship to contact area and the measured unloading stiffness (S) through the relation:
where Eeff is the effective elastic modulus defined by:
It is appreciated that the effective elastic modulus takes into account elastic displacements that occur in both the specimen and the indenter.
The hardness, elastic modulus, and/or ductility are obtained for the CPFEM nanoindentation for the one selected microstructure parameter value at step 426. At step 428, the process determines whether or not CPFEM of nanoindentation has been completed or simulated for a full range of microstructure parameter values. Once CPFEM nanoindentation has been completed for a full range of selected microstructure parameter values, the process proceeds to step 430 in which a desired subrange of microstructure parameter values corresponding to a desired subset of hardness, elasticity, and/or ductility values is selected and stored in a database. Finally, a component is manufactured from the selected material at step 432, with the component having a microstructure with a microstructure parameter that is within the desired subrange of microstructure parameter values selected in step 430.
In some instances, the CPFEM nanoindentation is performed for more than one type of microstructure parameter value. For example, the CPFEM nanoindentation simulations can be conducted for a range of average grain sizes for the selected material, a range of average grain orientation distributions, whether or not one or more types of second phase precipitates are present within the microstructure, the type of second phase precipitates that may be present, an average size distribution of second phase precipitates that may be present, an average shape distribution of second phase precipitates, an average particle number density of the second phase precipitates, and the like. It is appreciated that such simulations of CPFEM nanoindentation for a range of various microstructure parameters can limit or possibly eliminate the need for experimental testing of a selected material with different microstructures. Stated differently, the process disclosed herein greatly improves the design and manufacture of components used in cavitation erosion susceptible environments.
In order to better illustrate the teachings of the instant disclosure and yet not limit its scope in any manner, one or more examples of the process disclosed herein are provided below.
A 316 stainless steel alloy was selected for testing and modeling. The initial microstructure of a cold rolled sheet of the 316 alloy was obtained by electron backscattering diffraction (EBSD) inverse polling. The average grain size of the cold rolled sheet was approximately 10 microns and an interested area for testing within a gauge center of a tensile sample was set out or identified using four micro indentation marks. Uniaxial loading to an extent of approximately 3% total strain was performed on the sample and using a microscope with a magnification of 2000×, slip bands were clearly revealed and observed.
An AFM surface topography and line section analysis was conducted and the surface height change was obtained from the profile shown in
The 316 alloy is known to have a face centered cubic (FCC) crystal structure with 12 slip systems in the <110>{111} slip family. The lattice parameter for the 316 alloy is a=0.365 nanometers and the Burgers vector
By identifying the system related to each surface step along an AFM section line of length Xmn and accumulating the overall height change per system, the number of individual displacements occurring along the line Xmn was calculated according to the relationship (1). As noted above, the line section analysis was carried out on the whole surface area which was divided equally into 100 subareas with each of the subareas dimensioned to be 2.5 μm×2.5 μm. The shear strain according to Equation (3) was calculated for each subarea and then used to form a strain map of the entire area.
CPFEM uniaxial loading of the 316 alloy was also conducted using the FEM sample illustrated in
The calculated (hkl) lattice strain was a volume average of projected elastic strains in a subset of grains whose (hkl) plane normal was parallel to a diffraction vector Q. To improve the statistics of the CPFEM uniaxial loading simulation, grain orientations were assigned a difference of within 5 degrees relative to each <hkl> direction to ensure that between 1 and 2 percent of the total 500 grains could be selected for each <hkl> direction. The input material parameters for the CPFEM included stiffness values for C11, C12, and C44, which were the single crystal elastic constants for cubic materials. In addition, the stress exponent ‘n’, the initial hardening modulus h0, the initial slip strength τ0, the saturation slip strength τs, and the latent hardening parameter q were also provided.
It is appreciated that the slip strength τ0 is related to the macroscopic yield strength of a polycrystal by a Taylor factor, which is about 3 for an FCC material. The CPFEM uniaxial loading predicted a critical resolved shear stress of approximately 150 megapascals (MPa) at room temperature. The simulation also demonstrated that latent hardening behavior played an important role in the evolution of intergranular strains. However, and given that no significant hardening is known to occur for the 316 alloy, the other plastic parameters were chosen to fit the experimental data shown in
To capture the surface deformation behavior for SUS316 after tensile loading and compare with the surface strain calculated from the AFM-based method, another tensile model with a quasi-3D mesh based on the microstructure obtained from the EBSD measurements was used. The mesh was developed by distributing nodes along straight grain boundary traces, planar surface meshing of enclosed grains, and expansion by 10 microns into the third dimension. This third dimension was evenly divided into 10 elements. As such, all grain boundaries were perpendicular to the surface in the approximation/simulation.
To replicate the constraint in the bulk material, the simulated microstructure was placed in a rectangular pen-like container. The container was simulated using the Von Mises plasticity model in order to increase computation efficiency as noted above. Crystallographic orientations were assigned to the simulated microstructure patch according to the EBSD measurements through specifying local material coordinates. Tensile loading was applied on one side of the microstructure patch.
The cumulative shear strains Σαγα over all the slip systems calculated by the CPFEM simulations and the AFM topography analysis are compared in
After the comparison showed the agreement between simulation and experiments, CPFEM nanoindentation of the selected material was executed for a range of microstructures. The CPFEM nanoindentation simulations provided a plurality of hardness, elasticity, and/or ductility values as a function of different microstructure parameters and parameter values which then allowed for a selection of a desired subset of hardness, elasticity, and ductility values known to provide increased cavitation erosion resistance. Along with the selection of the subset of hardness, elasticity, and/or ductility values, the corresponding subrange of microstructure parameter values was also selected. Stated differently, a unique set or subrange of microstructure parameters for the 316 alloy was determined. It is appreciated that the component would have an increased CE resistance compared to a component made from the 316 alloy having a microstructure that falls outside the subrange of microstructure parameters determined by the CPFEM nanoindentation simulations.
With respect to the simulations, the CPFEM was performed on a computer as illustrated in
It is appreciated that the above described embodiments and examples are for illustrative purposes only and do not limit the scope of the invention in any way. Changes, modifications, and the like will be apparent to those skilled in the art and yet fall within the scope of the invention. As such, it is the claims and all equivalents thereof that define the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
4588440 | Simoneau | May 1986 | A |
4751046 | Simoneau | Jun 1988 | A |
5514326 | Menon et al. | May 1996 | A |
6470706 | Engdahl | Oct 2002 | B1 |
20080135750 | Kley | Jun 2008 | A1 |
20130252337 | Yang | Sep 2013 | A1 |
20140261918 | Jin | Sep 2014 | A1 |
20160018334 | Tomar | Jan 2016 | A1 |
Entry |
---|
Caccese, V. , Light, K. H. and Berube, K.A.(2006) ‘Cavitation erosion resistance of various material systems’, Ships and Offshore Structures, 1 : 4, 309-322, maybe found at: http://www.tandfonline.com/doi/abs/10.1533/saos.2006.0136. |
W.C. Oliver “Measurement of Hardness and Elastic Modulus by Insturmented Indentation: Advances in Understanding and Refinements to Methodology”, Journal of Materials Research dated Sep. 23, 2003. |
Number | Date | Country | |
---|---|---|---|
20170031351 A1 | Feb 2017 | US |