This application is the U.S. national phase of International Application No. PCT/IB2017/055843 filed 26 Sep. 2017, which designated the U.S. and claims priority to IT Patent Application No. 102016000098423 filed 30 Sep. 2016, the entire contents of each of which are hereby incorporated by reference.
The present disclosure relates to solutions for designing a virtual sensor and to a corresponding virtual sensor. The solutions described herein are particularly useful for designing a virtual sensor that is able to estimate in real time emissions (NOx, PM, HC, CO, etc.) of heat engines in the automotive field.
Generation of exhaust gases deriving from the combustion of air and fuel (especially in diesel engines in which the fuel mixture is heterogeneous) depends upon many factors, such as high combustion temperature, high presence of oxygen in the combustion chamber, and long time of stay in these conditions. In addition to the products of complete combustion, also undesirable pollutant substances such as uncombusted hydrocarbons (HC), nitrogen oxides (NOx), carbon monoxide (CO), and particulate matter (PM) are emitted.
The emissions of pollutant substances have been limited for commercially available vehicles with the introduction in the last few decades of increasingly stringent standards, which force automobile manufacturers to develop solutions for abatement of substances of this sort, such as EGR (Exhaust-Gas Recirculation), SCR (Selective Catalytic Reduction), DOC (Diesel Oxidation Catalyst), and DPF (Diesel Particulate Filter). EGR is a system that enables recirculation of a portion of exhaust gases in the intake manifold of the engine. The above gases are inert gases that do not participate in combustion, thus reducing the amount of mixture useful for combustion itself. Consequently, by reducing the temperature in the chamber, there is a drop in the emission of NOx. DOC combines oxygen, uncombusted hydrocarbons (HC), and carbon monoxide (CO) into carbon dioxide and water vapour. DPF is a filter that has the purpose of physically filtering the particulate matter (PM). SCR enables, by means of injection of ammonia, conversion of NOx into nitrogen molecules and water.
The continuous improvement of systems for treatment of emissions requires accurate measurement information on the exhaust gases, which is used both for the abatement control systems and in order to evaluate the effective reduction of pollutant agents. For instance, for SCR control, two sensors for instantaneous measurement of NOx are typically used, positioned upstream and downstream of the SCR. However, there are various types of problems regarding these types of sensors, such as cost of the sensor and its installation, weight, periodic regeneration, ON time, and deterioration over time.
In order to overcome the above problems, considerable attention has been dedicated in the last few years to the possibility of providing solutions capable of estimating the variable of interest, which is measured by the physical sensor, using data and measurements of other variables of the combustion system, available in the engine control unit. These estimation methods, also referred to as “virtual sensors”, appropriately implemented in the engine control unit, or else on other hardware platforms (microprocessors, FPGAs, ASICs, etc.), can be used either as backup, in the case of malfunctioning or failure of the physical sensor, or to avoid the need for installation thereof, with a saving on costs for purchase and installation.
A large number of processes have been proposed in the last few years regarding methods and systems for estimation of emissions. These are based upon methodologies that are very different from one another and can be grouped into two major categories: the methods based upon chemical/physical laws (for example, Kalman models and filters) and those that use data-driven methods (for example, neural networks, wavelets, etc.). All these methods lead to an estimation of the variable of interest v(t) using a parametric-statistical setting, where the estimation {circumflex over (v)}(t) of v(t) is calculated as a nonlinear function of variables u1(t), . . . , um(t) available, for example via the engine control unit:
{circumflex over (v)}(ti)={circumflex over (ƒ)}({tilde over (r)}(ti))
with:
{tilde over (r)}(ti)=[ũ1(ti−Δt), . . . ,ũ1(ti−Δt), . . . ,ũm(ti−Δt), . . . ,ũm(ti−nΔt)] (1)
where ũ1, ũ2, . . . , ũm are the measured values of the variables available, for example in the engine control unit, possibly corrupted by disturbance, ti=i·Δt, where Δt is the sampling time, and n is the memory of the estimator.
The function {circumflex over (ƒ)} is chosen within an assigned family of parametric functions (p):
(p)={ƒp:p∈q} (2)
The choice of said families (p) depends upon the specific methodology used for designing the estimator. For instance, in the case where the estimator is obtained using a mathematical model based upon chemical/physical laws, the vector of parameters p of size q contains a number of parameters of the model, which depend upon the specific type of engine. In the case where a data-driven method is used, for example based upon neural networks, the parametric family may be described as:
where σj are the assigned base functions (exponentials, sigmoids, etc.). For instance, the document No. U.S. Pat. No. 6,882,929 describes a solution in which a NOx sensor is designed using an artificial neural network. Other solutions for the design/implementation and for a respective use of a virtual sensor are described in the documents Nos. EP 0 712 463 B1 and EP 0 877 309 B1.
In these methods, the estimated function {circumflex over (ƒ)} is obtained typically by choosing a specific value {circumflex over (p)} for the vector p typically calculated with the procedure described in what follows. It is assumed that there is a number N of data, whereby, in addition to the measured data , i=1, . . . , m for the available variables, measurements {tilde over (v)} of the variable of interest v are also obtained. To assign the value {circumflex over (p)} to the vector p, an appropriate estimation-error function J(p) is calculated. For instance, one of the most widely used is:
In general, the value {circumflex over (p)} for the vector of parameters p is hence chosen such that:
J({circumflex over (p)})=minqJ(p) (4)
These methods, however, present important critical features. The first important critical aspect is the calculation of the value {circumflex over (p)} for the vector of parameters p that will satisfy Eq. (4). For instance, typically, the function J(p) is a non-convex function and possibly presents a number of local minima. Consequently, minimisation of Eq. (4) is typically performed using iterative methods starting from an assigned initial value p0. These methods are not able to guarantee in all cases reaching of the absolute minimum of J(p) and may stop at a relative minimum, with the result that the estimation performance could be even significantly inferior than what can be obtained from the absolute minimum.
A second critical aspect is the choice of the parametric family (p). A fundamental problem is that of choosing the level of detail of the mathematical models in the case of methods based upon chemical/physical laws, or else the number of base functions in the case of data-driven methods. In both cases, this reflects upon the choice of the size q of the vector p. Values of q that are too small may lead to unacceptable errors. Values of q that are very large may lead to the danger of overfitting; i.e., the estimator obtained achieves acceptable errors only on the data used for deriving the estimator, but not for other data, even ones regarding normal operating conditions. In effect, there do not exist systematic methods for making this choice, which is consequently conducted in a basically empirical manner, frequently requiring even long design times.
A third important critical feature is the evaluation of the performance of the above methods in relation to the disturbance that may alter the measured variables ũl. Reliable evaluations are obtained only in very particular conditions (linearity, Gaussian disturbances, etc.), which are unlikely to arise in the estimation of complex phenomena as the ones involved in the combustion systems. In particular, in the case investigated here, an important aspect is that, on account of production spread, there may be differences between the data of some variables regarding different engines that are not easy to characterize in statistical terms. This spread may produce unacceptable deterioration in the performance of the virtual sensor designed. It would be important to design a “robust” estimator, capable of achieving acceptable performance even in the presence of production spread. However, this problem is not tackled by any method according to the prior art.
On account of these problems, none of the above methods appears to have achieved the capacity for estimating the emissions of heat engines with the necessary accuracy required by the operating conditions in which a commercially available vehicle has to work, as highlighted by the limited use on vehicles currently on the market.
The main object of one or more embodiments of the present disclosure is to overcome the limitations of the solutions proposed by the prior art.
In various embodiments, the above is obtained by providing a non-parametric estimation process, which avoids the problem of search for the appropriate parametric family of the estimator. Moreover, as regards the disturbances that act on the data used for estimation, it is possible to consider information that is better suited, as compared to the statistical information required in the prior art, to taking into account the production spread. In this way, it is possible to obtain directly a so-called “optimal” estimator, preventing the problems of parametric-statistical methods due to the fact that they might stop on local minima.
Moreover, in various embodiments, the experimental data are appropriately organised in such a way as to obtain a virtual sensor, referred to as “robustly optimal virtual sensor”, which minimises the effects on the estimation errors in the presence of the expected production spread on the data used for the estimate.
According to various embodiments, the above object is achieved by a process for designing a virtual sensor having the characteristics forming the subject of Claim 1. The claims also regard a corresponding virtual sensor, a system, and a computer-program product.
The claims form an integral part of the teaching provided in relation to the invention.
As mentioned previously, various embodiments of the present description regard a process for designing, i.e. producing, a virtual sensor that is able to estimate a variable of interest v as a function of a set of available variables ui, which typically comprises a plurality of variables.
In various embodiments, a design data-set Dd is acquired, which comprises a number N of measured values {tilde over (v)}(ti) of the variable of interest v and corresponding measured values ũi(ti) of the available variables ui. For this purpose, the values of the variable of interest v and of the available variables ui can be measured and stored, during one or more experimental tests with an actuator, such as an engine, using sensors capable of measuring such values (see also
In particular, in various embodiments, the design data-set Dd is modified in such a way as to add values of the variable of interest v and corresponding values of the available variables ui that do not correspond to measured values but that fall within the limit δ around measured values ũi(ti) of one or more available variables ui and/or within the limit η around measured values {tilde over (v)}(ti) of the variable of interest v.
In various embodiments, a Lipschitz function ƒ* with a respective Lipschitz constant (γ) is then selected, which is designed to estimate the variable of interest v(t) as a function of a number n of past values of each available variable ui.
In particular, in various embodiments, the aforesaid Lipschitz function ƒ* is chosen by executing the following steps one or more times for different numbers n.
At the start, a value for the Lipschitz constant γ is determined. Then, there are defined a maximum limit
In various embodiments, there is then determined an estimation error ε*(ƒ•) for each Lipschitz function ƒ•, and there is selected the Lipschitz function ƒ*, associated to which is a respective Lipschitz constant γ* and a respective number n*, that presents the minimum estimation error ε*(ƒ*(γ*, n*)).
In various embodiments, the selected Lipschitz function ƒ* is then implemented in an electronic circuit. Consequently, the electronic circuit (which corresponds to the virtual sensor) is configured for estimating (by means of the Lipschitz function selected) the variable of interest v as a function of the available variables ui.
For instance, in various embodiments, for this purpose the selected Lipschitz function ƒ* is approximated with a function ƒa made up of base functions, and the approximated Lipschitz function ƒa is implemented in the electronic circuit.
For instance, in various embodiments, the variable of interest v represents a type of emission of an internal-combustion engine, such as NOx emission, and the set of available variables ui comprises one or more of the following variables: fuel demand, engine r.p.m., engine torque, percentage opening of the EGR valve, percentage closing of the VGT turbine, temperature in the intake manifold, pressure in the intake manifold, pressure in the common rail, flow of exhaust gases in the exhaust manifold, temperature of the coolant, concentration of oxygen in the combustion chamber, absolute humidity, temperature in the combustion chamber, and pressure in the combustion chamber. For instance, in various embodiments, a further virtual sensor is used for estimating the temperature in the combustion chamber and/or the pressure in the combustion chamber. For this purpose, it is possible to design at least one second virtual sensor that is able to estimate a second variable of interest v, for example the temperature in the combustion chamber or the pressure in the combustion chamber, as a function of a second set of available variables. In the embodiment considered, the second variable of interest hence corresponds to one of the available variables ui in the set of available variables ui of the first virtual sensor. In various embodiments, the first virtual sensor and the second virtual sensor can be implemented also within one and the same electronic circuit.
Embodiments of the present description will now be described in detail with reference to the attached drawings, which are provided purely by way of non-limiting example and in which:
In the ensuing description, various specific details are illustrated aimed at enabling an in-depth understanding of the embodiments. The embodiments may be provided without one or more of the specific details, or with other methods, components, materials, etc. In other cases, known structures, materials, or operations are not illustrated or described in detail so that various aspects of the embodiments will not be obscured.
Reference to “an embodiment” or “one embodiment” in the framework of the present description is intended to indicate that a particular configuration, structure, or characteristic described in relation to the embodiment is comprised in at least one embodiment. Hence, phrases such as “in an embodiment” or “in one embodiment” that may be present in various points of the ensuing description do not necessarily refer to one and the same embodiment. Moreover, particular conformations, structures or characteristics may be combined in any adequate manner in one or more embodiments.
The references used herein are merely provided for convenience and hence do not define the sphere of protection or the scope of the embodiments.
As mentioned previously, the present description relates to solutions for designing a virtual sensor, such as a virtual sensor that is able to estimate one or more types of emission of an internal-combustion engine, for example NOx emission of a diesel engine.
In the embodiment considered, the system comprises an actuator 10 and a control unit 20 configured to drive the actuator 10 on the basis of one or more control signals. For instance, in the embodiment considered, the control unit 20 can drive the actuator 10 on the basis of one or more of the following control signals:
In general, there may also be provided one or more further sensors 34 configured for monitoring the behaviour of the actuator 10, which, however, are not used for control of the actuator 10.
For instance, in various embodiments, the actuator 10 is an internal-combustion engine. In this case, the control unit 20 is typically implemented within the engine control unit, and the reference parameter S1 could be the required value of engine r.p.m.
In various embodiments, at least one of the sensors 30, 32, and/or 34 is a virtual sensor 40; i.e., at least one of the signals S2, S3, and/or S4 corresponds to an estimate {tilde over (v)} of a variable of interest v.
In general, the virtual sensor 40 can be implemented within the control unit 20, for example in the form of a software module, or on a separate electronic board.
Consequently, as illustrated in
For instance, in various embodiments, the variable of interest v(t) that is to be measured is a type of emission produced by the engine 10, for example NOx. By way of example, appearing in the following table are variables that can be used in various embodiments for estimation of NOx:
Consequently, in general the virtual sensor 40, on the basis of the variables MQ, supplies in real time an estimate {tilde over (v)} of the variable of interest v, for example of engine emission, such as emission of uncombusted hydrocarbons (HC), nitrogen oxides (NOx), carbon monoxide (CO), or particulate matter (PM).
After an initial step 1000, a step 1002 is carried out of acquisition of data Dd for acquiring both the measured values MQ={(ũ1, ũ2, . . . , ũm} and the corresponding measured values {tilde over (v)} of the variable of interest v:
Dd={ũ1(ti),ũ2(ti), . . . ,ũm(ti),{tilde over (v)}(ti),i=1, . . . ,N} (5)
The acquisitions of the above reference data Dd may be made by means of experimental measurements on a testing actuator 10, either in the laboratory or during actual operation, or else by means of simulations of an accurate model of the actuator 10, or else in part experimentally and in part by simulation. For instance, in various embodiments, the reference data Dd are acquired using operating conditions that are typically considered for evaluating the performance of the actuator 10, for example of the engine and its emission levels. For instance, these conditions may comprise both dynamic tests (homologation cycles such as NEDC, WLTP, FTP, Artemis) and actual on-the-road tests, as well as stationary tests conducted on different possible engine operating points.
The set of reference data Dd is then used in a step 1004 for designing the virtual sensor 40. As will be described hereinafter, in various embodiments, the step 1004 comprises a step 1006 for computing a function ƒ• that is able to provide a robust estimate, i.e., with a guaranteed error limit even in the presence of variability of the variables ui due to the spread in the engine-production processes, an optimisation step 1008 for computing a function ƒ* that yields a robustly optimal estimate, which minimises the guaranteed error, and an optional approximation step 1010 for approximating the function ƒ* with a function ƒa with reduced computational complexity.
In various embodiments, the functions ƒ•, ƒ*, or ƒa may be used, in a step 1012, for implementing the virtual sensor 40. For instance, in various embodiments, step 1012 can automatically generate a source code that can be transferred onto the platform on which it will have to operate, such as a source code (for example, a C code) that can be compiled for the control unit 20 (for example, the engine control unit) or another microprocessor, or a VHDL/VERILOG code for programming of an FPGA or for implementation of an ASIC.
In general, as already mentioned in the section “Description of the prior art”, an estimator of the variable of interest v based upon the variables MQ may be represented as in Eq. (1). In various embodiments, unlike the technique used in the prior art, the functions ƒ•, ƒ*, or ƒa are not sought within an assigned parametric family, but rather within a non-parametric family (γ) of continuous Lipschitz functions. For instance, in various embodiments, the following family of functions is used:
(γ)={ƒ∈:|ƒ({circumflex over (r)}(t))−ƒ(ř(t))|≤γ∥{circumflex over (r)}(t)−ř(t)∥∞,∀{circumflex over (r)}(t),ř(t)∈Rb} (6)
where is the set of the continuous functions that operate in the space Rm×n.
The set Rb is the rectangular parallelepiped in the space Rm×n of minimum volume that contains the set Rd made up of all the regressors formed using the data of the data-set Dd and can be calculated as:
Consequently, the set Rb defines the space between the minimum and maximum measured values of the variables ũi, hence being automatically limited to the range of the values actually measured.
The rationale for the previous choices stems from the following considerations. The actuator 10, for example the engine, which represents an emission-generation system, may, in general, be described by a system of nonlinear state equations of appropriate order n, of which the variables ui are in part the inputs and in part the measured outputs. If the variable of interest v (for example, the emission) is a continuous Lipschitz function of the state variables and can be estimated from a knowledge of the variables ui, then, from the general theory of observability of nonlinear systems, there exists a function ƒ0 such that, for an appropriate value of γ,
v(t)=ƒ0(r(t)),ƒ0∈(γ) (8)
The function ƒ0 is in general not known, and in various embodiments an estimate thereof is directly derived from the experimental data. It may be noted that the family of functions (γ) where estimation functions ƒ• and ƒ* are sought is constituted by functions that, operating on measurements ui corrupted by disturbances that are not known but are limited by a value δ≥|ui−ũi|, yield estimation errors that (as will be illustrated hereinafter) are limited by the amount γδ.
In various embodiments, this property is used in step 1004 for computing the functions ƒ• and ƒ* that enable so-called robust and robustly optimal estimators to be obtained, capable of supplying a low or even minimum estimation error that can be obtained in the various operating conditions in which the estimator will have to operate and in the presence of disturbances on the measurements ui that, on account of production spread, are not known but are smaller in modulus than δ.
Moreover, the performance of any {circumflex over (ƒ)}∈(γ) chosen cannot be evaluated simply by verifying that {circumflex over (ƒ)} yields on the data-set Dd errors |{tilde over (v)}(ti)−{tilde over (v)}(ti)|, with i=1, . . . , N, that are “small”. In fact, it is possible to find estimation functions that yield small or even zero errors on the data-set Dd, but that can present very poor performance when they operate on data-sets Dv other than Dd, which are referred to as “validation sets”:
Dv={ũ1(ti),ũ2(ti), . . . ,ũm(ti),{tilde over (v)}(ti),i=N+1, . . . ,M} (9)
In general, the data contained in the data-set Dd do not yield information on the behaviour of the function {circumflex over (ƒ)} outside of the data-set Rb defined in Eq. (7). In fact, two estimation functions {circumflex over (ƒ)}a, {circumflex over (ƒ)}b ∈(γ) such that {circumflex over (ƒ)}a(r)={circumflex over (ƒ)}b(r), ∀r∈Rb may have very different values for r∉Rb. Consequently, in various embodiments, the validation sets are chosen in such a way that Rv⊂Rb, where Rv is the set of the regressors formed using the data of the data-set Dv. In what follows, v is hence defined as the set of all the possible sets Dv such that Rv⊂Rb.
In various embodiments, for assigning functions {circumflex over (ƒ)}∈(γ), variability δ of the measurements, and accuracy η of the measurement of v during the experimental tests, an error ε({circumflex over (ƒ)}) is calculated such that, for any {tilde over (r)}(t)∈Rb formed by the data of any Dv∈v, the following applies:
|v(t)−{circumflex over (v)}(t)|=|v(t)−{circumflex over (ƒ)}({tilde over (r)}(t))|≤ε({circumflex over (ƒ)}) (10)
In fact, from Eq. (8), we have:
|v(t)−{circumflex over (v)}(t)|=|ƒ0(r(t))−{circumflex over (ƒ)}({tilde over (r)}(t))|≤|ƒ0(r(t))−ƒ0({tilde over (r)}(t))|+|ƒ0({tilde over (r)}(t))−{circumflex over (ƒ)}({tilde over (r)}(t))| (11)
Moreover, the limit |ui−ũi|≤δ implies that:
∥r(t)−{tilde over (r)}(t)∥∞≤δ (12)
Consequently, from Eqs. (8) and (12), it follows that
|ƒ0(r(t))−ƒ0({tilde over (r)}(t))|≤γ∥r(t)−{tilde over (r)}(t)∥∞≤γδ (13)
Hence from Eqs. (11) and (13) we have
|v(t)−{circumflex over (v)}(t)|≤γδ+|ƒ0({tilde over (r)}(t))−{circumflex over (ƒ)}({tilde over (r)}(t))| (14)
Consequently, in various embodiments, design of the virtual sensor 40 is based upon the fact that the function ƒ0 is not known, but it is known that ƒ0∈(γ) and is such that
|{tilde over (v)}(t)−ƒ0({tilde over (r)}(t))|≤|{tilde over (v)}(t)−ƒ0(r(t))|+|ƒ0(r(t))−ƒ0({tilde over (r)}(t))|≤η+γδ∀{tilde over (r)}(t)∈Rb (15)
For instance,
ƒ0∈FFS (16)
where FFS={ƒ∈(γ): |{tilde over (v)}(ti)−ƒ({tilde over (r)}(ti))|≤η+γδ, i=n, . . . , N}.
Consequently, the minimum limit that may be obtained from Eq. (14) for assigned function {circumflex over (ƒ)}∈(γ) is
where the function sup yields the supremum.
From Eq. (17) it hence follows that for any function {circumflex over (ƒ)}∈(γ), the estimate {circumflex over (v)}(t)={circumflex over (ƒ)}({tilde over (r)}(t)) presents, for any validation set Dv∈v, errors limited by ε*({circumflex over (ƒ)}) in a robust way, i.e., for all the operating conditions considered in any set Dv∈v, including those due to production spread that lead to disturbances on the measurements ui falling within the range δ. As will be described hereinafter, the error ε*({circumflex over (ƒ)}) is hence smaller if also in the data-set Dd data are present that reflect the variability of the range δ. Consequently, in various embodiments, the data-set Dd is modified by entering therein data of some tests in which the range of the disturbances has been explored.
In various embodiments, in step 1006 a function ƒ•(γ) is hence determined such as to minimise for the assigned value of γ the limit of the estimation error:
ε*(ƒ•(γ))≤ε*({circumflex over (ƒ)}),∀{circumflex over (ƒ)}∈(γ)
The function ƒ•(γ) is determined as described in what follows, on the basis of the “set-membership” theory, as described, for example, in the paper by Milanese, M., Novara, C., “Set membership identification of nonlinear systems”, Automatica, 40, pp. 957-975, 2004.
In particular, in various embodiments, a maximum value
Likewise, a minimum value ƒ(r(t)) is obtained for the variable v as a function of the regressor currently measured {tilde over (r)}(t):
ƒ(r(t))=maxi=n, . . . ,N({tilde over (v)}(ti)−η−γδ−γ∥r(t)−{tilde over (r)}(ti)∥∞) (19)
In various embodiments, the virtual sensor 40, in particular the processing unit 400, is configured for estimating the value v*(t) as the mean value between the maximum value
v*(t)=ƒ•(r(t))=[ƒ(r(t))+
Consequently, the maximum error ε* of the function ƒ• is limited to
ε*(ƒ•)=[ƒ(r(t))+
The function ƒ• is a function of the Lipschitz constant γ and of the memory n of the estimator, the dependence of which will be expressed only if necessary and which must be chosen in such a way that the set FFS is not empty. For instance, a condition that is necessary and sufficient for this set not to be empty is the following:
In various embodiments, in step 1006 the virtual sensor 40 is designed with a given n, and the minimum Lipschitz constant γ*(n) that satisfies Eq. (22) is calculated as follows:
γ*(n)=minγ:
Hence, each pair of values n, γ*(n) is such that FFS is not empty.
In various embodiments, the previous step 1006 is then repeated for other values of n in such a way as to choose a value n* such that:
n*=arg minnε*(ƒ•(γ*(n))) (24)
where the error ε* can be calculated in step 1008 in accordance with Eq. (21), as follows:
ε*(ƒ•(γ*,n))=supr∈R
In various embodiments, there are hence chosen n=n* and γ=γ* that enable calculation of the function ƒ*=ƒ•(γ*, n*), which yields a robustly optimal estimator, i.e., one such that ε*(ƒ*) is the minimum estimation error that can be guaranteed for any validation data-set Dv∈v.
Calculation of Eq. (23) is quite easy, whereas calculation of Eq. (25) is more complex, and it is substantially possible to use the method described in the paper by Milanese, M., Novara, C., “Computation of local radius of information in SM-IBC identification of non-linear systems”, J. Complexity 23, pp. 937-951, 2007.
In various embodiments, in step 1012 the following data are stored in the memory 402:
Moreover, in various embodiments, the virtual sensor 40 is configured for receiving the current regressor ŕ(t) and computing the maximum value
Consequently, in various embodiments, the estimator ƒ* depends upon the experimental data included in the design data-set Dd, upon η, γ, δ, and upon the memory n of the estimator. In general, the memory n of the estimator may even be a vector; i.e., each available variable ũi could have a respective memory ni. In this case, the step 1006 could hence be repeated for various combinations of values ni, once again choosing in step 1008 the combination that presents the minimum error, as shown in Eq. (25).
In various embodiments, the limit η on the errors of the method of measurement of the variable v can be chosen from the data of accuracy of the instrument for measuring v used during the experimental tests, and the limit δ can be derived from the information on the perturbations of the measurements ũi resulting from process spread involved in (mass) production of the actuator 10, for example of the engine, and from the different operating conditions of the actuator 10. In general, the limit δ may even be a vector; i.e., each available variable ũi could have a respective limit δi. However, one or more available variables ũi can be normalized in such a way as to use the same limit δ.
As explained previously, in various embodiments, the design data-set Dd is modified in such a way as to reflect the limit η on the errors of the method of measurement of the variable v and/or the limit δ on the disturbances of the data of the variables ui.
For instance, as illustrated in
For example, in various embodiments, four additional data are added for each measured datum PMi={tilde over (r)}(ti), {tilde over (v)}(ti)] in the data-set Dd; namely,
PVi1=[{tilde over (r)}(ti)+δ,{tilde over (v)}(ti)+η]
PVi2=[{tilde over (r)}(ti)+δ,{tilde over (v)}(ti)−η]
PVi3=[{tilde over (r)}(ti)−δ,{tilde over (v)}(ti)+η]
PVi4=[{tilde over (r)}(ti)−δ,{tilde over (v)}(ti)−η]
The above additional data PV are subsequently considered as measured data PM, i.e., the subsequent design step 1004 treats indistinctly the measured data PM and the additional data PV in the data-set Dd.
In this way, the estimator takes into account the fact that there may be data with equal errors δ, thus improving the characteristics of robustness of the estimator.
The virtual sensor 40 that directly implements the set-membership solution ƒ*(γ*, n*) described previously is a robustly optimal solution, which, however, could require computing times and occupation of memory that are not compatible with the performance of the hardware platform on which it has to operate in real time.
In various embodiments, the optional step 1010 thus provides a procedure that enables an approximation ƒa of ƒ* to be obtained, evaluating balancing between degradation of the accuracy of the estimate and reduction of the computing times and of occupation of memory.
For instance, in various embodiments, an approximating function ƒa is sought such that
where {tilde over (r)}(ti) are the values of the regressors obtained from the measured data in the data-sets Dd, and μ is an assigned level of precision.
In various embodiments, the approximating function ƒa is chosen of the form:
ƒa(r)=Σi=1M
where ϕi(r) are assigned continuous Lipschitz functions of r, in a high number to enable approximation of vast classes of functions, such as polynomials, sinusoidal functions, exponentials, etc.
In particular, Eqs. (26) and (27) differ from those of the prior art, since the approximated function ƒa(r) is not calculated as a function of the measured values {tilde over (v)}(ti), but the corresponding estimate ƒ*({tilde over (r)}(ti)) is used, which hence takes into consideration also the limit η on the errors of the method of measurement of the variable v and the limit δ on the disturbances of the data of the variables ui.
In various embodiments, in order to prevent phenomena of overfitting, approximated functions ƒa are sought with the minimum number of ai≠0 that will in any case guarantee the assigned level μ of precision to be achieved. This problem is in general an NP-hard problem, so that typically its solution cannot be obtained in computing times that are acceptable for the problems considered in this description. However, it is possible to use approximate solutions proposed in the literature that are such as to lead to a number of elements ai≠0, which, even though it is not equal to the minimum number that guarantees the assigned level μ of precision to be achieved, is in general much smaller than MS; see, for example, the paper by Novara C., Fagiano L., Milanese M., “Sparse Set Membership Identification of Nonlinear Functions”, 50th IEEE Conference on Decision and Control, Orlando, 2011, and the references appearing therein.
For instance, in various embodiments, a two-step convex optimisation is used.
We define:
In various embodiments, the following optimisation problem is first solved for the initial vector a1:
setting the following constraint:
In the first step, the vector a1 is thus obtained by solving a convex-optimisation problem, which in general yields a large number of coefficients ai1=0, even though it is not guaranteed that this number is the maximum one possible.
In various embodiments, the optimal vector a* is then calculated with the following optimisation algorithm:
Consequently, in the second step only a part of the elements of a1 are progressively included in the vector a* as long as Eq. (26) applies. In this way, it is possible to obtain a vector a* the nonzero elements of which are typically in a number m*, which is considerably smaller than that of the initial solution a1. Consequently, the function ƒa*(r)=Σi=1m ai*ϕi(r) yields estimates that differ in the level μ chosen from the estimate provided by the optimally robust estimator ƒ*, with computing times and occupation of memory that may be significantly lower.
In various embodiments, the input variables have been modified in such a way as to simulate not only the different operating conditions but also the process spread involved in mass-production of the engine. For instance, in various embodiments, the inputs concerned by the aforesaid perturbations used as inputs of the virtual sensor 40 are ũ3 (engine torque with a perturbation of ±5%), ũ6 (temperature in the intake manifold with a perturbation of ±3° C.), and ũ7 (pressure in the intake manifold with a perturbation of ±40 mbar).
In the embodiment considered, the number of experimental data that constitute the design data-set Dd is N=105.
Using the design process described previously for implementation on a 32-bit board with a clock frequency of 120 MHz, the estimator ƒ* obtained with the set-membership procedure requires an occupation of memory of 5 MB and a computing time necessary for estimation of v*, at each sampling period Δt=1 s, of 780 ms.
Instead, to obtain an estimation function ƒa that approximates ƒ* by evaluating balancing between precision μ, computing times, and occupation of memory, in step 1010 an approximating function has been chosen as in Eq. (27) with a number of polynomial base functions MS=N. In fact, the smaller the value of μ, the more closely ƒa approximates ƒ*, but also the occupation of memory and the computing time increase, since the number m* of bases used increases. Choosing, for example, μ=0.05 a function ƒa with m*=103 has been obtained, which, on the board considered, requires an occupation of memory of 15 KB, and a computing time of 6 ms.
In particular, to overcome technological problems of physical sensors for detecting the temperature and pressure in the combustion chamber, the physical sensor for detecting the temperature in the combustion chamber and/or the physical sensor for detecting the pressure in the combustion chamber have/has been replaced with virtual sensors 40d and 40e. Consequently, in various embodiments, the virtual sensor 40c may in actual fact comprise three virtual sensors:
In various embodiments, the virtual sensors 40a, 40b, 40d, and/or 40 can be designed following the process described previously, i.e., on the basis of the set-membership procedure and possibly its consequent approximation.
It may be noted that the estimators 40d and 40e use as inputs variables that are in any case available in real time. In fact, in general, also the sensors 40d and 40e can be designed as a function of the available variables ú1, . . . ü12. For instance, in various embodiments, the virtual sensor 40d that is able to estimate the temperature {circumflex over (T)} in the combustion chamber is designed only as a function of the variables ũ2 (engine r.p.m.), ũ3 (engine torque), and ũ4 (percentage opening of the EGR valve). Instead, in various embodiments, the virtual sensor 40e that is able to estimate the pressure {circumflex over (p)} in the combustion chamber is designed only as a function of the variables ũ1 (fuel demand), ũ2 (engine r.p.m.), and ũ7 (pressure in the intake manifold).
Hence, in the embodiment considered, the entire virtual sensor 40c (
Various embodiments of the present disclosure hence regard a virtual sensor 40 (for example, the virtual sensor 40c) configured for estimating a variable of interest v and comprising:
In particular, in various embodiments, the first and second virtual sensors use at least in part the same available variables ui.
Moreover, it would also be possible to design the second virtual sensor first and use, for design of the first virtual sensor, values already estimated with the second virtual sensor.
Of course, without prejudice to the principle of the invention, the details of construction and the embodiments may vary widely with respect to what has been described and illustrated herein purely by way of example, without thereby departing from the scope of the present invention, as defined by the ensuing claims.
Number | Date | Country | Kind |
---|---|---|---|
102016000098423 | Sep 2016 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2017/055843 | 9/26/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/060847 | 4/5/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
20030105575 | Haskara | Jun 2003 | A1 |
20030216855 | Liang et al. | Nov 2003 | A1 |
20050022789 | Palma et al. | Feb 2005 | A1 |
20100050025 | Grichnik et al. | Feb 2010 | A1 |
20140012791 | Grichnik et al. | Jan 2014 | A1 |
20180266354 | Landolsi | Sep 2018 | A1 |
Entry |
---|
Lipschitz Continuity, Convexity, Subgradients (Marco Tulio Ribeiro), (Apr. 2, 2015), (retrieved from the Internet on Apr. 14, 2020). |
International Search Report and Written Opinion of the ISA for PCT/IB2017/055843, dated Jan. 19, 2018, 14 pages. |
Number | Date | Country | |
---|---|---|---|
20200032731 A1 | Jan 2020 | US |