The present invention relates generally to detecting energy theft within an energy distribution system. More particularly, the present invention relates to systems and methods for detecting energy discrepancies in voltages and/or currents reported by different electric meters present in a distribution circuit, without requiring installation of additional hardware at the transformer.
Electricity theft is a problem that all electric utilities face. In fact, it is estimated that energy theft costs utilities billions of dollars annually, and these losses generally are passed along to customers in the form of higher rates. Unfortunately, electricity theft via fraud (meter tampering) or stealing (illegal connections) can also create situations that endanger lives and property.
An existing system and process for detecting energy theft includes first installing a meter at a distribution transformer. Energy theft is then detected if the energy measured at the transformer is greater than the aggregated energy reported by the electric meters installed at the different premises connected to the distribution transformer. This method is effective, but requires installation and maintenance of an extra meter for each distribution transformer.
Accordingly, there is a need in the art for systems and processes that effectively detect or identify potential energy theft, without the need for additional hardware implementation beyond the hardware (e.g., electric meters) installed at customer premises.
The exemplary embodiments herein describe a method that allows detection of energy theft solely based on the analysis of the information provided by the electric meters at the different customer premises connected to a transformer. The invention allows for such detection without the need for additional hardware installation.
In one aspect of the invention, a system is provided including a transformer, a first electric meter, and a second electric meter connected to a server. The first electric meter is connected to the transformer via a first electrical line, and the second electric meter is connected to the transformer via a second electrical line. The second electric meter is located a farther distance from the transformer than the first electric meter. The server determines the location of the first electric meter and the second electric meter with respect to the transformer. Once the location of the meters is determined, the server estimates the resistance along the electrical line located the farthest from the transformer (i.e., the second electrical line). The server may then calculate an expected voltage for the second electric meter based on the estimated resistance of the second electrical line. The server receives one or more actual voltage readings for the second electric meter and compares the expected voltage for the second electric meter with the one or more actual voltage readings for the second electric meter. The server can determine the existence of line loss along the second electrical line if there is a difference between the expected voltage and the actual voltage readings that is greater than a predetermined threshold.
In another aspect of the invention, the server may also estimate the resistance along the first electrical line. The server calculates an expected voltage for the first electric meter based on the estimated resistance of the second electrical line and the estimated resistance of the first electrical line. Actual voltage readings for the first electric meter are then received, and may be compared to the calculated expected voltage for the first electric meter. The server can determine the existence of line loss along the first electrical line if there is a difference between the expected voltage and the actual voltage readings that is greater than a predetermined threshold.
In yet another aspect of the invention, a process for detecting the existence of line loss in electric meters present in a distribution circuit is provided. The process includes determining, by a processor, the location of each of at least two meters with respect to a transformer of the distribution circuit, each of the meters in electrical communication with an electrical line. The process also includes estimating, by the processor, a resistance of the electrical line at the location of each of the at least two meters, starting with a line resistance farthest from the transformer. Once the resistances are estimated, the process continues by calculating estimated line voltages for at least one electric meter using the estimated line resistances. The process then includes receiving, by the processor, actual voltage readings for the at least one electric meter such that a comparison of the estimated line voltage with the actual voltage readings for the at least one electric meter may be made. Finally, the process includes determining, by the processor, the existence of line loss if one or more of the comparisons result in a difference that is greater than a predetermined threshold.
These and other aspects of the invention will be better understood by reading the following detailed description and appended claims.
All terms used herein are intended to have their ordinary meaning in the art unless otherwise provided.
An exemplary embodiment allows for energy theft detection in a distribution circuit. Typically, a distribution circuit carries electricity from a transmission system and delivers it to consumer locations. The distribution circuits described herein typically comprise a transformer, which reduces distribution voltage to the relatively low voltages (e.g., 1 kV) required by lighting and interior wiring systems. The transformer may be pole-mounted or set on the ground in a protective enclosure. In any event, the transformer is in electrical communication with any number of consumer locations via, for example, an “electrical service” or “service drop” connection (e.g., and electrical wire). Each consumer location typically comprises a meter to determine the amount of electricity consumed at the location.
In one embodiment, the inventive methods require that at least two electric meters are present in the distribution circuit. Moreover, instantaneous current and voltage information should be available from all the delivery points (e.g., meters) within the transformer.
Equivalent Circuit
An exemplary residential distribution circuit in is illustrated in
The electricity distribution circuit is shown to experience a resistance along the main electricity distribution line. The resistance may be modeled or represented by any number of resistors (e.g., R1a, R1b, R4a and R4b). Additionally, the circuit experiences a resistance along each line feeding to the multiple locations, wherein such resistance may be represented by any number of resistors (e.g., R2a, R2b, R5a, R5b, R7a, and R7b).
Referring to
The resistance seen along the main electricity distribution line is represented by resistors R1 and R4, where R1=R1a=R1b and R4=R4a=R4b. Finally, the resistance along each line feeding to the multiple premises, is represented by resistors R2, R5, and R7, respectively, where R2=R2a=R2b; R5=R5a=R5b; and R7=R7a=R7b.
The exemplary electricity distribution circuit shown in
Data Analysis
Still referring to
To enable this analysis, all meters (M1, M2, M3) within a distribution circuit are configured to report instantaneous voltage (V1, V2, V3) and current (I1, I2, I3) samples periodically. For example, the meters may be programmed to report voltage and current readings at time intervals ranging from seconds to hours or even days. It will be appreciated that such samples may be manually determined or automatically determined.
To obtain snapshots in time of the different currents and voltages within the distribution circuit, all meters may be adapted to take their measurements simultaneously. Exemplary meters for use with the embodiments described herein are smart meters and retrofitted meters that include the necessary communications hardware and software including at least one microprocessor, radio, and memory.
Once the instantaneous voltage and current samples are procured, the analysis of the information may be completed in the following three steps:
1. Evaluation of the location of each meter within the distribution line
2. Evaluation of the resistance of the different lines
3. Verification of consistency in the reported voltages
In addition to circuitry and meters having the described measuring and reporting functionality, the system for performing the evaluation, verification and other steps of the data collection and analysis processes described herein includes at least a back-end processor programmed with software for implementing the processes. One skilled in the art recognizes that multiple processors, databases, servers, displays and the like may be used in various combinations to implement the invention. Additionally, meter data may be communicated to the back-end processor through wired, wireless or a combination of wired/wireless components and steps.
The methods described herein may be implemented within AMI, AMR, or Advanced Metering Management (AMM) technologies, including systems that measure, collect and analyze utility usage, from advanced devices such as electricity meters, through a network on request or a pre-defined schedule. Such infrastructure typically includes hardware, software, communications, customer-associated systems and meter data management software. The infrastructure collects and distributes information to customers, suppliers, utility companies and service providers.
The technology described herein may be incorporated into systems comprising mesh network technology. Mesh networks typically include at least one mesh gate and at least one mesh device, such as an electrical meter. The mesh gate may communicate with the meters over a mesh network. The mesh gate may also communicate with a server or processor over a wide area network. The mesh gate may form a mesh network with nearby meters and interface between the meters and the server.
Meter Location
To analyze the data, it is important for the system to know or determine the position of each meter (M1, M2, M3) relative to the transformer. In one embodiment, the meter position can be inferred by analyzing the voltages (V1, V2, V3) reported by each meter. The meter consistently reporting the highest voltage will typically be the closest to the transformer. The position of the other meters may then be determined based on their relative voltage.
However, depending on the resistance of the different lines and the current present on each line, it is possible that the voltage reported by a meter closer to the transformer may be less than the voltage reported by meters further down the distribution line. For this reason, in certain embodiments, the position of each meter may be determined statistically based on multiple samples. For example, any number of instantaneous voltage samples may be determined by the system for each meter. The average of the samples may be determined for each meter, and meter positions may be determined based on the average. In other embodiments, the position of each meter may be determined based on the respective median sample voltage of each meter. Of course, the location of the meters may simply be manually entered into the system by, for example, and operator. The operator may also update the meter position as new meters are installed or as older meters are removed.
Resistance Estimation
Still referring to
Referring to
V6x=(R7*I3x)+V3x (1)
V6x=(R5*I2x)+V2x (2)
Using these equations, the relationship between resistances R5 and R7 may be expressed as follows:
A second sample (Sample y) may then be obtained to determine a second equation for R5:
Combining equations 3 and 4, the value of R7 may be expressed as:
Using the same technique, the resistance R5 can computed as follows:
Each following stage in the distribution circuit can be estimated using the same method described above. To obtain the same condition as above, the voltage and current of the distribution line are estimated using the resistances previously computed. For example, the corresponding samples of V6 and I6 may be computed using R7 as follows:
V6x=(R7*I3x)+V3x (7)
V6y=(R7*I3y)+V3y (8)
I6x=I2x+I3x (9)
I6y=I2y+I3y (10)
Referring to
The quality of this estimate depends on the precision of the measurements and the different currents present during these measurements—a higher current typically produces a more accurate estimate since measurement errors are smaller relative to the higher reading. For this reason, multiple sample sets may be used to produce multiple estimates which may then be averaged or from which the median value may be ascertained.
Typically, the samples used should be different to avoid a division by zero when computing the resistances. Accordingly, sample sets that produce a division by zero may be discarded.
Voltage Consistency
Once the location of each meter within the distribution circuit is known and the different resistances are estimated, each sample reported by the meters can be used to compare the voltage reported by the meters and the voltage computed based on the reference circuit.
For example, using the reference circuit defined by
V5=V1+(R2*I1) (13)
V6=V5−(R4*(I2+I3)) (14)
V2′=V6−(R5*I2) (15)
V3′=V6−(R7*I3) (16)
The percentage of discrepancy can be computed by comparing the voltage reported by the meter (V2, V3) and the voltage computed by the reference circuit (V2′, V3′):
Equations (17) and (18) are reflective of measured discrepancy with respect to M2 and M3, respectively.
Possible energy theft is signaled when the percentage of discrepancy is higher than a certain threshold. For example, if the percentage of discrepancy of the voltage reported by the meter and the voltage computed by the reference circuit exceeds about 50%, about 25%, about 10%, about 5%, about 1% or even about 0.5%, a possible energy theft may be occurring at the corresponding location in the distribution circuit. Accordingly, in one embodiment, if the percent discrepancy exceeds the threshold, the system may raise a flag or otherwise alert an operator. The operator may then investigate the discrepancy and correct the situation
For simplicity, the different equations presented have been based on the reference circuit shown in
Unless specifically stated otherwise as apparent from the foregoing discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, can refer to the action and processes of a data processing system, or similar electronic device, that manipulates and transforms data represented as physical (electronic) quantities within the system's registers and memories into other data similarly represented as physical quantities within the system's memories or registers or other such information storage, transmission or display devices.
The exemplary embodiments can relate to an apparatus for performing one or more of the functions described herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a machine (e.g. computer) readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs and magnetic-optical disks, read only memories (ROMs), random access memories (RAMs) erasable programmable ROMs (EPROMs), electrically erasable programmable ROMs (EEPROMs), magnetic or optical cards, or any type of media suitable for storing electronic instructions, and each coupled to a bus.
Some exemplary embodiments described herein are described as software executed on at least one processor, though it is understood that embodiments can be configured in other ways and retain functionality. The embodiments can be implemented on known devices such as a server, a personal computer, a special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element(s), and ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as a discrete element circuit, or the like. In general, any device capable of implementing the processes described herein can be used to implement the systems and techniques according to this invention.
It is to be appreciated that the various components of the technology can be located at distant portions of a distributed network and/or the internet, or within a dedicated secure, unsecured and/or encrypted system. Thus, it should be appreciated that the components of the system can be combined into one or more devices or co-located on a particular node of a distributed network, such as a telecommunications network. As will be appreciated from the description, and for reasons of computational efficiency, the components of the system can be arranged at any location within a distributed network without affecting the operation of the system. Moreover, the components could be embedded in a dedicated machine.
Furthermore, it should be appreciated that the various links connecting the elements can be wired or wireless links, or any combination thereof, or any other known or later developed element(s) that is capable of supplying and/or communicating data to and from the connected elements. The terms determine, calculate and compute, and variations thereof, as used herein are used interchangeably and include any type of methodology, process, mathematical operation or technique.
The invention described and claimed herein is not to be limited in scope by the specific embodiments herein disclosed since these embodiments are intended as illustrations of several aspects of the invention. Any equivalent embodiments are intended to be within the scope of this invention. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. All publications cited herein are incorporated by reference in their entirety.
The present application claims benefit of similarly titled U.S. provisional patent application Ser. No. 61/382,057 filed Sep. 13, 2010, which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4132981 | White | Jan 1979 | A |
4190800 | Kelly, Jr. et al. | Feb 1980 | A |
4204195 | Bogacki | May 1980 | A |
4254472 | Juengel et al. | Mar 1981 | A |
4322842 | Martinez | Mar 1982 | A |
4396915 | Farnsworth et al. | Aug 1983 | A |
4425628 | Bedard et al. | Jan 1984 | A |
4638314 | Keller | Jan 1987 | A |
4644320 | Carr et al. | Feb 1987 | A |
4749992 | Fitzemeyer et al. | Jun 1988 | A |
4792946 | Mayo | Dec 1988 | A |
4939726 | Flammer et al. | Jul 1990 | A |
5007052 | Flammer | Apr 1991 | A |
5056107 | Johnson et al. | Oct 1991 | A |
5077753 | Grau, Jr. et al. | Dec 1991 | A |
5079768 | Flammer | Jan 1992 | A |
5115433 | Baran et al. | May 1992 | A |
5117422 | Hauptschein et al. | May 1992 | A |
5130987 | Flammer | Jul 1992 | A |
5138615 | Lamport et al. | Aug 1992 | A |
5159592 | Perkins | Oct 1992 | A |
5216623 | Barrett et al. | Jun 1993 | A |
5276680 | Messenger | Jan 1994 | A |
5311581 | Merriam et al. | May 1994 | A |
5400338 | Flammer, III et al. | Mar 1995 | A |
5430729 | Rahnema | Jul 1995 | A |
5432507 | Mussino et al. | Jul 1995 | A |
5453977 | Flammer, III et al. | Sep 1995 | A |
5459727 | Vannucci | Oct 1995 | A |
5463777 | Bialkowski et al. | Oct 1995 | A |
5465398 | Flammer | Nov 1995 | A |
5467345 | Cutter, Jr. et al. | Nov 1995 | A |
5471469 | Flammer, III et al. | Nov 1995 | A |
5479400 | Dilworth et al. | Dec 1995 | A |
5488608 | Flammer, III | Jan 1996 | A |
5515369 | Flammer, III et al. | May 1996 | A |
5515509 | Rom | May 1996 | A |
5528507 | McNamara et al. | Jun 1996 | A |
5544036 | Brown, Jr. et al. | Aug 1996 | A |
5553094 | Johnson et al. | Sep 1996 | A |
5570084 | Retter et al. | Oct 1996 | A |
5572528 | Shuen | Nov 1996 | A |
5596722 | Rahnema | Jan 1997 | A |
5608721 | Natarajan et al. | Mar 1997 | A |
5608780 | Gerszberg et al. | Mar 1997 | A |
5623495 | Eng et al. | Apr 1997 | A |
5659300 | Dresselhuys et al. | Aug 1997 | A |
5673252 | Johnson et al. | Sep 1997 | A |
5696501 | Ouellette et al. | Dec 1997 | A |
5717718 | Rowsell et al. | Feb 1998 | A |
5719564 | Sears | Feb 1998 | A |
5726644 | Jednacz et al. | Mar 1998 | A |
5727057 | Emery et al. | Mar 1998 | A |
5737318 | Melnik | Apr 1998 | A |
5740366 | Mahany et al. | Apr 1998 | A |
5748104 | Argyroudis et al. | May 1998 | A |
5757783 | Eng et al. | May 1998 | A |
5758331 | Johnson | May 1998 | A |
5761083 | Brown, Jr. et al. | Jun 1998 | A |
5767790 | Jovellana | Jun 1998 | A |
5774660 | Brendel et al. | Jun 1998 | A |
5812531 | Cheung et al. | Sep 1998 | A |
5822309 | Ayanoglu et al. | Oct 1998 | A |
5844893 | Gollnick et al. | Dec 1998 | A |
5874903 | Shuey et al. | Feb 1999 | A |
5880677 | Lestician | Mar 1999 | A |
5892758 | Argyroudis | Apr 1999 | A |
5894422 | Chasek | Apr 1999 | A |
5896097 | Cardozo | Apr 1999 | A |
5898387 | Davis et al. | Apr 1999 | A |
5898826 | Pierce et al. | Apr 1999 | A |
5901067 | Kao et al. | May 1999 | A |
5903566 | Flammer, III | May 1999 | A |
5914672 | Glorioso et al. | Jun 1999 | A |
5914673 | Jennings et al. | Jun 1999 | A |
5920697 | Masters et al. | Jul 1999 | A |
5926531 | Petite | Jul 1999 | A |
5933092 | Ouellette et al. | Aug 1999 | A |
5953371 | Rowsell et al. | Sep 1999 | A |
5963146 | Johnson et al. | Oct 1999 | A |
5963457 | Kanoi et al. | Oct 1999 | A |
5974236 | Sherman | Oct 1999 | A |
5986574 | Colton | Nov 1999 | A |
5987011 | Toh | Nov 1999 | A |
5991806 | McHann, Jr. | Nov 1999 | A |
6014089 | Tracy et al. | Jan 2000 | A |
6018659 | Ayyagari et al. | Jan 2000 | A |
6026133 | Sokoler | Feb 2000 | A |
6028522 | Petite | Feb 2000 | A |
6044062 | Brownrigg et al. | Mar 2000 | A |
6058355 | Ahmed et al. | May 2000 | A |
6061609 | Kanoi et al. | May 2000 | A |
6073169 | Shuey et al. | Jun 2000 | A |
6075777 | Agrawal et al. | Jun 2000 | A |
6078785 | Bush | Jun 2000 | A |
6084867 | Meier | Jul 2000 | A |
6088659 | Kelley et al. | Jul 2000 | A |
6097703 | Larsen et al. | Aug 2000 | A |
6108699 | Moiin | Aug 2000 | A |
6118269 | Davis | Sep 2000 | A |
6122603 | Budike, Jr. | Sep 2000 | A |
6124806 | Cunningham et al. | Sep 2000 | A |
6134587 | Okanoue | Oct 2000 | A |
6137423 | Glorioso et al. | Oct 2000 | A |
6150955 | Tracy et al. | Nov 2000 | A |
6169979 | Johnson | Jan 2001 | B1 |
6172616 | Johnson et al. | Jan 2001 | B1 |
6195018 | Ragle et al. | Feb 2001 | B1 |
6218953 | Petite | Apr 2001 | B1 |
6233327 | Petite | May 2001 | B1 |
6239722 | Colton et al. | May 2001 | B1 |
6240080 | Okanoue et al. | May 2001 | B1 |
6246677 | Nap et al. | Jun 2001 | B1 |
6246689 | Shavitt | Jun 2001 | B1 |
6249516 | Brownrigg et al. | Jun 2001 | B1 |
6298053 | Flammer, III et al. | Oct 2001 | B1 |
6300881 | Yee et al. | Oct 2001 | B1 |
6304556 | Haas | Oct 2001 | B1 |
6311105 | Budike, Jr. | Oct 2001 | B1 |
6338087 | Okanoue | Jan 2002 | B1 |
6362745 | Davis | Mar 2002 | B1 |
6363057 | Ardalan et al. | Mar 2002 | B1 |
6366217 | Cunningham et al. | Apr 2002 | B1 |
6369719 | Tracy et al. | Apr 2002 | B1 |
6369769 | Nap et al. | Apr 2002 | B1 |
6373399 | Johnson et al. | Apr 2002 | B1 |
6396839 | Ardalan et al. | May 2002 | B1 |
6400949 | Bielefeld et al. | Jun 2002 | B1 |
6407991 | Meier | Jun 2002 | B1 |
6415330 | Okanoue | Jul 2002 | B1 |
6430268 | Petite | Aug 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6457054 | Bakshi | Sep 2002 | B1 |
6480497 | Flammer, III et al. | Nov 2002 | B1 |
6480505 | Johansson et al. | Nov 2002 | B1 |
6492910 | Ragle et al. | Dec 2002 | B1 |
6509841 | Colton et al. | Jan 2003 | B1 |
6522974 | Sitton | Feb 2003 | B2 |
6535498 | Larsson et al. | Mar 2003 | B1 |
6538577 | Ehrke et al. | Mar 2003 | B1 |
6553355 | Arnoux et al. | Apr 2003 | B1 |
6577671 | Vimpari | Jun 2003 | B1 |
6606708 | Devine et al. | Aug 2003 | B1 |
6618578 | Petite | Sep 2003 | B1 |
6618772 | Kao et al. | Sep 2003 | B1 |
6628764 | Petite | Sep 2003 | B1 |
6633823 | Bartone et al. | Oct 2003 | B2 |
6636894 | Short et al. | Oct 2003 | B1 |
6650249 | Meyer et al. | Nov 2003 | B2 |
6653945 | Johnson et al. | Nov 2003 | B2 |
6657552 | Belski et al. | Dec 2003 | B2 |
6665620 | Burns et al. | Dec 2003 | B1 |
6671635 | Forth et al. | Dec 2003 | B1 |
6675071 | Griffin, Jr. et al. | Jan 2004 | B1 |
6681110 | Crookham et al. | Jan 2004 | B1 |
6681154 | Nierlich et al. | Jan 2004 | B2 |
6684245 | Shuey et al. | Jan 2004 | B1 |
6691173 | Morris et al. | Feb 2004 | B2 |
6697331 | Riihinen et al. | Feb 2004 | B1 |
6710721 | Holowick | Mar 2004 | B1 |
6711166 | Amir et al. | Mar 2004 | B1 |
6711409 | Zavgren, Jr. et al. | Mar 2004 | B1 |
6714787 | Reed et al. | Mar 2004 | B2 |
6718137 | Chin | Apr 2004 | B1 |
6725281 | Zintel et al. | Apr 2004 | B1 |
6728514 | Bandeira et al. | Apr 2004 | B2 |
6747557 | Petite et al. | Jun 2004 | B1 |
6747981 | Ardalan et al. | Jun 2004 | B2 |
6751445 | Kasperkovitz et al. | Jun 2004 | B2 |
6751455 | Acampora | Jun 2004 | B1 |
6751672 | Khalil et al. | Jun 2004 | B1 |
6772052 | Amundsen et al. | Aug 2004 | B1 |
6775258 | van Valkenburg et al. | Aug 2004 | B1 |
6778099 | Mayer et al. | Aug 2004 | B1 |
6785592 | Smith et al. | Aug 2004 | B1 |
6798352 | Holowick | Sep 2004 | B2 |
6801865 | Gilgenbach et al. | Oct 2004 | B2 |
6826620 | Mawhinney et al. | Nov 2004 | B1 |
6829216 | Nakata | Dec 2004 | B1 |
6829347 | Odiaka | Dec 2004 | B1 |
6831921 | Higgins | Dec 2004 | B2 |
6836737 | Petite et al. | Dec 2004 | B2 |
6839775 | Kao et al. | Jan 2005 | B1 |
6842706 | Baraty | Jan 2005 | B1 |
6845091 | Ogier et al. | Jan 2005 | B2 |
6859186 | Lizalek et al. | Feb 2005 | B2 |
6865185 | Patel et al. | Mar 2005 | B1 |
6885309 | Van Heteren | Apr 2005 | B1 |
6891838 | Petite et al. | May 2005 | B1 |
6900738 | Crichlow | May 2005 | B2 |
6904025 | Madour et al. | Jun 2005 | B1 |
6904385 | Budike, Jr. | Jun 2005 | B1 |
6909705 | Lee et al. | Jun 2005 | B1 |
6914533 | Petite | Jul 2005 | B2 |
6914893 | Petite | Jul 2005 | B2 |
6946972 | Mueller et al. | Sep 2005 | B2 |
6954814 | Leach | Oct 2005 | B1 |
6963285 | Fischer et al. | Nov 2005 | B2 |
6967452 | Aiso et al. | Nov 2005 | B2 |
6970434 | Mahany et al. | Nov 2005 | B1 |
6970771 | Preiss et al. | Nov 2005 | B1 |
6975613 | Johansson | Dec 2005 | B1 |
6980973 | Karpenko | Dec 2005 | B1 |
6982651 | Fischer | Jan 2006 | B2 |
6985087 | Soliman | Jan 2006 | B2 |
6995666 | Luttrell | Feb 2006 | B1 |
6999441 | Flammer, III et al. | Feb 2006 | B2 |
7009379 | Ramirez | Mar 2006 | B2 |
7009493 | Howard et al. | Mar 2006 | B2 |
7010363 | Donnelly et al. | Mar 2006 | B2 |
7016336 | Sörensen | Mar 2006 | B2 |
7020701 | Gelvin et al. | Mar 2006 | B1 |
7042368 | Patterson et al. | May 2006 | B2 |
7046682 | Carpenter et al. | May 2006 | B2 |
7053767 | Petite et al. | May 2006 | B2 |
7054271 | Brownrigg et al. | May 2006 | B2 |
7062361 | Lane | Jun 2006 | B1 |
7064679 | Ehrke et al. | Jun 2006 | B2 |
7072945 | Nieminen et al. | Jul 2006 | B1 |
7079810 | Petite et al. | Jul 2006 | B2 |
7089089 | Cumming et al. | Aug 2006 | B2 |
7102533 | Kim | Sep 2006 | B2 |
7103511 | Petite | Sep 2006 | B2 |
7106044 | Lee, Jr. et al. | Sep 2006 | B1 |
7119713 | Shuey et al. | Oct 2006 | B2 |
7126494 | Ardalan et al. | Oct 2006 | B2 |
7135850 | Ramirez | Nov 2006 | B2 |
7135956 | Bartone et al. | Nov 2006 | B2 |
7137550 | Petite | Nov 2006 | B1 |
7143204 | Kao et al. | Nov 2006 | B1 |
7145474 | Shuey et al. | Dec 2006 | B2 |
7170425 | Christopher et al. | Jan 2007 | B2 |
7185131 | Leach | Feb 2007 | B2 |
7188003 | Ransom et al. | Mar 2007 | B2 |
7197046 | Hariharasubrahmanian | Mar 2007 | B1 |
7200633 | Sekiguchi et al. | Apr 2007 | B2 |
7209840 | Petite et al. | Apr 2007 | B2 |
7215926 | Corbett et al. | May 2007 | B2 |
7222111 | Budike, Jr. | May 2007 | B1 |
7230544 | Van Heteren | Jun 2007 | B2 |
7231482 | Leach | Jun 2007 | B2 |
7248181 | Patterson et al. | Jul 2007 | B2 |
7248861 | Lazaridis et al. | Jul 2007 | B2 |
7250874 | Mueller et al. | Jul 2007 | B2 |
7251570 | Hancock et al. | Jul 2007 | B2 |
7263073 | Petite et al. | Aug 2007 | B2 |
7271735 | Rogai | Sep 2007 | B2 |
7274305 | Luttrell | Sep 2007 | B1 |
7274975 | Miller | Sep 2007 | B2 |
7277027 | Ehrke et al. | Oct 2007 | B2 |
7277967 | Kao et al. | Oct 2007 | B2 |
7289887 | Rodgers | Oct 2007 | B2 |
7295128 | Petite | Nov 2007 | B2 |
7301476 | Shuey et al. | Nov 2007 | B2 |
7304587 | Boaz | Dec 2007 | B2 |
7308370 | Mason, Jr. et al. | Dec 2007 | B2 |
7312721 | Mason, Jr. et al. | Dec 2007 | B2 |
7315257 | Patterson et al. | Jan 2008 | B2 |
7317404 | Cumeralto et al. | Jan 2008 | B2 |
7321316 | Hancock et al. | Jan 2008 | B2 |
7324453 | Wu et al. | Jan 2008 | B2 |
7327998 | Kumar et al. | Feb 2008 | B2 |
7346463 | Petite et al. | Mar 2008 | B2 |
7348769 | Ramirez | Mar 2008 | B2 |
7349766 | Rodgers | Mar 2008 | B2 |
7362709 | Hui et al. | Apr 2008 | B1 |
7366113 | Chandra et al. | Apr 2008 | B1 |
7379981 | Elliott et al. | May 2008 | B2 |
7397907 | Petite | Jul 2008 | B2 |
7406298 | Luglio et al. | Jul 2008 | B2 |
7411964 | Suemura | Aug 2008 | B2 |
7427927 | Borleske et al. | Sep 2008 | B2 |
7451019 | Rodgers | Nov 2008 | B2 |
7457273 | Nakanishi et al. | Nov 2008 | B2 |
7468661 | Petite et al. | Dec 2008 | B2 |
7487282 | Leach | Feb 2009 | B2 |
7495578 | Borleske | Feb 2009 | B2 |
7498873 | Opshaug et al. | Mar 2009 | B2 |
7505453 | Carpenter et al. | Mar 2009 | B2 |
7512234 | McDonnell et al. | Mar 2009 | B2 |
7515571 | Kwon et al. | Apr 2009 | B2 |
7516106 | Ehlers et al. | Apr 2009 | B2 |
7522540 | Maufer | Apr 2009 | B1 |
7522639 | Katz | Apr 2009 | B1 |
7539151 | Demirhan et al. | May 2009 | B2 |
7545285 | Shuey et al. | Jun 2009 | B2 |
7548826 | Witter et al. | Jun 2009 | B2 |
7548907 | Wall et al. | Jun 2009 | B2 |
7554941 | Ratiu et al. | Jun 2009 | B2 |
7562024 | Brooks et al. | Jul 2009 | B2 |
7586420 | Fischer et al. | Sep 2009 | B2 |
7599665 | Sinivaara | Oct 2009 | B2 |
7602747 | Maksymczuk et al. | Oct 2009 | B2 |
7609673 | Bergenlid et al. | Oct 2009 | B2 |
7613147 | Bergenlid et al. | Nov 2009 | B2 |
7623043 | Mizra et al. | Nov 2009 | B2 |
7626967 | Yarvis et al. | Dec 2009 | B2 |
7650425 | Davis et al. | Jan 2010 | B2 |
7676231 | Demirhan et al. | Mar 2010 | B2 |
7680041 | Johansen | Mar 2010 | B2 |
7729496 | Hacigumus | Jun 2010 | B2 |
7756538 | Bonta et al. | Jul 2010 | B2 |
7814322 | Gurevich et al. | Oct 2010 | B2 |
7847706 | Ross et al. | Dec 2010 | B1 |
20010005368 | Rune | Jun 2001 | A1 |
20010038342 | Foote | Nov 2001 | A1 |
20010046879 | Schramm et al. | Nov 2001 | A1 |
20020012358 | Sato | Jan 2002 | A1 |
20020013679 | Petite | Jan 2002 | A1 |
20020031101 | Petite et al. | Mar 2002 | A1 |
20020066095 | Yu | May 2002 | A1 |
20020110118 | Foley | Aug 2002 | A1 |
20020120569 | Day | Aug 2002 | A1 |
20020174354 | Bel et al. | Nov 2002 | A1 |
20020186619 | Reeves et al. | Dec 2002 | A1 |
20030001640 | Lao et al. | Jan 2003 | A1 |
20030001754 | Johnson et al. | Jan 2003 | A1 |
20030033394 | Stine | Feb 2003 | A1 |
20030037268 | Kistler | Feb 2003 | A1 |
20030050737 | Osann | Mar 2003 | A1 |
20030112822 | Hong et al. | Jun 2003 | A1 |
20030117966 | Chen | Jun 2003 | A1 |
20030122686 | Ehrke et al. | Jul 2003 | A1 |
20030123481 | Neale et al. | Jul 2003 | A1 |
20030156715 | Reeds, III et al. | Aug 2003 | A1 |
20030229900 | Reisman | Dec 2003 | A1 |
20030233201 | Horst et al. | Dec 2003 | A1 |
20040008663 | Srikrishna et al. | Jan 2004 | A1 |
20040031030 | Kidder et al. | Feb 2004 | A1 |
20040034773 | Balabine et al. | Feb 2004 | A1 |
20040056775 | Crookham et al. | Mar 2004 | A1 |
20040066310 | Ehrke et al. | Apr 2004 | A1 |
20040077341 | Chandranmenon et al. | Apr 2004 | A1 |
20040082203 | Logvinov et al. | Apr 2004 | A1 |
20040100953 | Chen et al. | May 2004 | A1 |
20040113810 | Mason, Jr. et al. | Jun 2004 | A1 |
20040117788 | Karaoguz et al. | Jun 2004 | A1 |
20040125776 | Haugli et al. | Jul 2004 | A1 |
20040138787 | Ransom et al. | Jul 2004 | A1 |
20040140908 | Gladwin et al. | Jul 2004 | A1 |
20040157613 | Steer et al. | Aug 2004 | A1 |
20040183687 | Petite et al. | Sep 2004 | A1 |
20040185845 | Abhishek et al. | Sep 2004 | A1 |
20040210544 | Shuey et al. | Oct 2004 | A1 |
20050026569 | Lim et al. | Feb 2005 | A1 |
20050027859 | Alvisi et al. | Feb 2005 | A1 |
20050030968 | Rich et al. | Feb 2005 | A1 |
20050033967 | Morino et al. | Feb 2005 | A1 |
20050055432 | Rodgers | Mar 2005 | A1 |
20050058144 | Ayyagari et al. | Mar 2005 | A1 |
20050065742 | Rodgers | Mar 2005 | A1 |
20050122944 | Kwon et al. | Jun 2005 | A1 |
20050136972 | Smith et al. | Jun 2005 | A1 |
20050172024 | Cheifot et al. | Aug 2005 | A1 |
20050201397 | Petite | Sep 2005 | A1 |
20050243867 | Petite | Nov 2005 | A1 |
20050251403 | Shuey | Nov 2005 | A1 |
20050257215 | Denby et al. | Nov 2005 | A1 |
20050270173 | Boaz | Dec 2005 | A1 |
20050276243 | Sugaya et al. | Dec 2005 | A1 |
20050286440 | Strutt et al. | Dec 2005 | A1 |
20060028355 | Patterson et al. | Feb 2006 | A1 |
20060055432 | Shimokawa et al. | Mar 2006 | A1 |
20060056363 | Ratiu et al. | Mar 2006 | A1 |
20060056368 | Ratiu et al. | Mar 2006 | A1 |
20060077906 | Maegawa et al. | Apr 2006 | A1 |
20060087993 | Sengupta et al. | Apr 2006 | A1 |
20060098576 | Brownrigg et al. | May 2006 | A1 |
20060098604 | Flammer, III et al. | May 2006 | A1 |
20060111111 | Ovadia | May 2006 | A1 |
20060140135 | Bonta et al. | Jun 2006 | A1 |
20060146717 | Conner et al. | Jul 2006 | A1 |
20060158347 | Roche et al. | Jul 2006 | A1 |
20060161310 | Lal | Jul 2006 | A1 |
20060167784 | Hoffberg | Jul 2006 | A1 |
20060184288 | Rodgers | Aug 2006 | A1 |
20060215583 | Castagnoli | Sep 2006 | A1 |
20060215673 | Olvera-Hernandez | Sep 2006 | A1 |
20060217936 | Mason et al. | Sep 2006 | A1 |
20060230276 | Nochta | Oct 2006 | A1 |
20060271244 | Cumming et al. | Nov 2006 | A1 |
20060271678 | Jessup et al. | Nov 2006 | A1 |
20070001868 | Boaz | Jan 2007 | A1 |
20070013547 | Boaz | Jan 2007 | A1 |
20070019598 | Prehofer | Jan 2007 | A1 |
20070036353 | Reznik et al. | Feb 2007 | A1 |
20070057767 | Sun et al. | Mar 2007 | A1 |
20070060147 | Shin et al. | Mar 2007 | A1 |
20070063868 | Borleske | Mar 2007 | A1 |
20070085700 | Walters et al. | Apr 2007 | A1 |
20070087756 | Hoffberg | Apr 2007 | A1 |
20070103324 | Kosuge et al. | May 2007 | A1 |
20070109121 | Cohen | May 2007 | A1 |
20070110024 | Meier | May 2007 | A1 |
20070120705 | Kiiskila et al. | May 2007 | A1 |
20070136817 | Nguyen | Jun 2007 | A1 |
20070139220 | Mirza et al. | Jun 2007 | A1 |
20070143046 | Budike | Jun 2007 | A1 |
20070147268 | Kelley et al. | Jun 2007 | A1 |
20070169074 | Koo et al. | Jul 2007 | A1 |
20070169075 | Lill et al. | Jul 2007 | A1 |
20070169080 | Friedman | Jul 2007 | A1 |
20070177538 | Christensen et al. | Aug 2007 | A1 |
20070177576 | Johansen et al. | Aug 2007 | A1 |
20070177613 | Shorty et al. | Aug 2007 | A1 |
20070189249 | Gurevich et al. | Aug 2007 | A1 |
20070200729 | Borleske et al. | Aug 2007 | A1 |
20070201504 | Christensen et al. | Aug 2007 | A1 |
20070204009 | Shorty et al. | Aug 2007 | A1 |
20070205915 | Shuey et al. | Sep 2007 | A1 |
20070206503 | Gong et al. | Sep 2007 | A1 |
20070206521 | Osaje | Sep 2007 | A1 |
20070207811 | Das et al. | Sep 2007 | A1 |
20070210933 | Leach | Sep 2007 | A1 |
20070211636 | Bellur et al. | Sep 2007 | A1 |
20070239477 | Budike, Jr. | Oct 2007 | A1 |
20070248047 | Shorty et al. | Oct 2007 | A1 |
20070257813 | Vaswani et al. | Nov 2007 | A1 |
20070258508 | Werb et al. | Nov 2007 | A1 |
20070263647 | Shorty et al. | Nov 2007 | A1 |
20070265947 | Schimpf et al. | Nov 2007 | A1 |
20070266429 | Ginter et al. | Nov 2007 | A1 |
20070271006 | Golden et al. | Nov 2007 | A1 |
20070276547 | Miller | Nov 2007 | A1 |
20080018492 | Ehrke et al. | Jan 2008 | A1 |
20080024320 | Ehrke et al. | Jan 2008 | A1 |
20080031145 | Ethier et al. | Feb 2008 | A1 |
20080032703 | Krumm et al. | Feb 2008 | A1 |
20080037569 | Werb et al. | Feb 2008 | A1 |
20080042874 | Rogai | Feb 2008 | A1 |
20080046388 | Budike, Jr. | Feb 2008 | A1 |
20080048883 | Boaz | Feb 2008 | A1 |
20080051036 | Vaswani et al. | Feb 2008 | A1 |
20080063205 | Braskich et al. | Mar 2008 | A1 |
20080068217 | Van Wyk et al. | Mar 2008 | A1 |
20080068994 | Garrison Stuber et al. | Mar 2008 | A1 |
20080068996 | Clave et al. | Mar 2008 | A1 |
20080086560 | Monier et al. | Apr 2008 | A1 |
20080089314 | Meyer et al. | Apr 2008 | A1 |
20080095221 | Picard | Apr 2008 | A1 |
20080097782 | Budike, Jr. | Apr 2008 | A1 |
20080107034 | Jetcheva et al. | May 2008 | A1 |
20080117110 | Luglio et al. | May 2008 | A1 |
20080129538 | Vaswani et al. | Jun 2008 | A1 |
20080130535 | Shorty et al. | Jun 2008 | A1 |
20080130562 | Shorty et al. | Jun 2008 | A1 |
20080132185 | Elliott et al. | Jun 2008 | A1 |
20080136667 | Vaswani et al. | Jun 2008 | A1 |
20080151795 | Shorty et al. | Jun 2008 | A1 |
20080151824 | Shorty et al. | Jun 2008 | A1 |
20080151825 | Shorty et al. | Jun 2008 | A1 |
20080151826 | Shorty et al. | Jun 2008 | A1 |
20080151827 | Shorty et al. | Jun 2008 | A1 |
20080154396 | Shorty et al. | Jun 2008 | A1 |
20080159213 | Shorty et al. | Jul 2008 | A1 |
20080165712 | Shorty et al. | Jul 2008 | A1 |
20080170511 | Shorty et al. | Jul 2008 | A1 |
20080177678 | Di Martini et al. | Jul 2008 | A1 |
20080180274 | Cumeralto et al. | Jul 2008 | A1 |
20080181133 | Thubert et al. | Jul 2008 | A1 |
20080183339 | Vaswani et al. | Jul 2008 | A1 |
20080186202 | Vaswani et al. | Aug 2008 | A1 |
20080186203 | Vaswani et al. | Aug 2008 | A1 |
20080187001 | Vaswani et al. | Aug 2008 | A1 |
20080187116 | Reeves et al. | Aug 2008 | A1 |
20080189415 | Vaswani et al. | Aug 2008 | A1 |
20080189436 | Vaswani et al. | Aug 2008 | A1 |
20080204272 | Ehrke et al. | Aug 2008 | A1 |
20080205355 | Liu et al. | Aug 2008 | A1 |
20080224891 | Ehrke et al. | Sep 2008 | A1 |
20080225737 | Gong et al. | Sep 2008 | A1 |
20080238714 | Ehrke et al. | Oct 2008 | A1 |
20080238716 | Ehrke et al. | Oct 2008 | A1 |
20080272934 | Wang et al. | Nov 2008 | A1 |
20080310311 | Flammer et al. | Dec 2008 | A1 |
20080310377 | Flammer et al. | Dec 2008 | A1 |
20080317047 | Zeng et al. | Dec 2008 | A1 |
20090003214 | Vaswani et al. | Jan 2009 | A1 |
20090003232 | Vaswani et al. | Jan 2009 | A1 |
20090003243 | Vaswani et al. | Jan 2009 | A1 |
20090003356 | Vaswani et al. | Jan 2009 | A1 |
20090010178 | Tekippe | Jan 2009 | A1 |
20090034418 | Flammer, III et al. | Feb 2009 | A1 |
20090034419 | Flammer, III et al. | Feb 2009 | A1 |
20090034432 | Bonta et al. | Feb 2009 | A1 |
20090043911 | Flammer et al. | Feb 2009 | A1 |
20090046732 | Pratt, Jr. et al. | Feb 2009 | A1 |
20090055032 | Rodgers | Feb 2009 | A1 |
20090068947 | Petite | Mar 2009 | A1 |
20090077405 | Johansen | Mar 2009 | A1 |
20090079584 | Grady et al. | Mar 2009 | A1 |
20090082888 | Johansen | Mar 2009 | A1 |
20090096605 | Petite et al. | Apr 2009 | A1 |
20090102737 | Birnbaum et al. | Apr 2009 | A1 |
20090115626 | Vaswani et al. | May 2009 | A1 |
20090134969 | Veillette | May 2009 | A1 |
20090135716 | Veillette | May 2009 | A1 |
20090135843 | Veillette | May 2009 | A1 |
20090161594 | Zhu et al. | Jun 2009 | A1 |
20090167547 | Gilbert | Jul 2009 | A1 |
20090168846 | Filippo, III et al. | Jul 2009 | A1 |
20090175238 | Jetcheva et al. | Jul 2009 | A1 |
20090179771 | Seal et al. | Jul 2009 | A1 |
20090235246 | Seal et al. | Sep 2009 | A1 |
20090243840 | Petite et al. | Oct 2009 | A1 |
20090245270 | van Greunen et al. | Oct 2009 | A1 |
20090262642 | van Greunen et al. | Oct 2009 | A1 |
20090267792 | Crichlow | Oct 2009 | A1 |
20090285124 | Aguirre et al. | Nov 2009 | A1 |
20090303972 | Flammer, III et al. | Dec 2009 | A1 |
20090315699 | Satish et al. | Dec 2009 | A1 |
20090319672 | Reisman | Dec 2009 | A1 |
20090320073 | Reisman | Dec 2009 | A1 |
20100007336 | de Buda | Jan 2010 | A1 |
20100037069 | Deierling et al. | Feb 2010 | A1 |
20100037293 | St. Johns et al. | Feb 2010 | A1 |
20100040042 | van Greunen et al. | Feb 2010 | A1 |
20100060259 | Vaswani et al. | Mar 2010 | A1 |
20100061350 | Flammer, III | Mar 2010 | A1 |
20100073193 | Flammer, III | Mar 2010 | A1 |
20100074176 | Flammer, III et al. | Mar 2010 | A1 |
20100102824 | Tremblay et al. | Apr 2010 | A1 |
20100179780 | Taft | Jul 2010 | A1 |
Number | Date | Country |
---|---|---|
0 578 041 | Nov 1999 | EP |
0 663 746 | Jan 2003 | EP |
0 812 502 | Aug 2004 | EP |
0 740 873 | Dec 2005 | EP |
WO 9512942 | May 1995 | WO |
WO 9610307 | Apr 1996 | WO |
WO 9610307 | Apr 1996 | WO |
WO 0054237 | Sep 2000 | WO |
WO 0126334 | Apr 2001 | WO |
WO 0155865 | Aug 2001 | WO |
WO 03015452 | Feb 2003 | WO |
WO 2005091303 | Sep 2005 | WO |
WO 2006059195 | Jun 2006 | WO |
WO 2007015822 | Aug 2007 | WO |
WO 2007132473 | Nov 2007 | WO |
WO 2008027457 | Mar 2008 | WO |
WO 2008033287 | Mar 2008 | WO |
WO 2008033514 | Mar 2008 | WO |
WO 2008038072 | Apr 2008 | WO |
WO 2008092268 | Aug 2008 | WO |
WO 2009067251 | May 2009 | WO |
Entry |
---|
Hydro One Networks, Inc., Request for Proposal for Smart Metering Services, 16 pp., Mar. 4, 2005. |
Trilliant Networks, “The Trilliant AMI Solution,” RFP SCP-07003, 50 pp., Mar. 22, 2007. |
“ZigBee Smart Energy Profile Specification,” ZigBee Profile 0x0109, Revision 14, Document 075356r14, 202 pp., May 29, 2008. |
Hubaux, J. P., et al. “Towards Mobile Ad-Hoc WANs: Terminodes,” 2000 IEEE, Wireless Communications and Networking Conference, WCNC, vol. 3, pp. 1052-1059, 2000. |
Miklos, G., et al., “Performance Aspects of Bluetooth Scatternet Formation,” First Annual Workshop on Mobile and Ad Hoc Networking and Computing, MobiHOC 2000, pp. 147-148, 2000. |
Eng, K. Y., et al. “BAHAMA: A Broadband Ad-Hoc Wireless ATM Local-Area Network,” 1995 IEEE International Conference on Communications, ICC '95 Seattle, ‘Gateway to Globalization’, vol. 2, pp. 1216-1223, Jun. 18-22, 1995. |
Lee, David J. Y., “Ricocheting Bluetooth,” 2nd International Conference on Microwave and Millimeter Wave Technology Proceedings, ICMMT 2000, pp. 432-435, 2000. |
Lilja, Tore, “Mobile Energy Supervision,” Twenty-second International Telecommunications Energy Conference, 2000 INTELEC, pp. 707-712, 2000. |
Parkka, Juha, et al., “A Wireless Wellness Monitor for Personal Weight Management,” Proceedings of the 2000 IEEE EMBS International Conference on Information Technology Applications in Biomedicine, pp. 83-88, 2000. |
Broch, J., et al., “Supporting Hierarchy and Heterogeneous Interfaces in Multi-Hop Wireless Ad Hoc Networks,” Proceedings of the Fourth International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN '99), pp. 370-375 (7 pp. with Abstract), Jun. 23-25, 1999. |
Privat, G., “A System-Architecture Viewpoint on Smart Networked Devices,” Microelectronic Engineering, vol. 54, Nos. 1-2, pp. 193-197, Dec. 2000. |
Jonsson, U., et al., “MIPMANET—Mobile IP for Mobile Ad Hoc Networks,” MobiHOC 2000, First Annual Workshop on Mobile and Ad Hoc Networking and Computing, pp. 75-85 (12 pp. with Abstract), 2000. |
Kapoor, R., et al., “Multimedia Support Over Bluetooth Piconets,” First Workshop on Wireless Mobile Internet, pp. 50-55, Jul. 2001. |
Sung-Yuan, K., “The Embedded Bluetooth CCD Camera,” TENCON, Proceedings of the IEEE Region 10 International Conference on Electrical and Electronic Technology, vol. 1, pp. 81-84 (5 pp. with Abstract), Aug. 19-22, 2001. |
Lim, A., “Distributed Services for Information Dissemination in Self-Organizing Sensor Networks,” Journal of the Franklin Institute, vol. 338, No. 6, pp. 707-727, Sep. 2001. |
Meguerdichian, S., et al., “Localized Algorithms in Wireless Ad-Hoc Networks: Location Discovery and Sensor Exposure,” ACM Symposium on Mobile Ad Hoc Networking & Computing, MobiHOC 2001, pp. 106-116, Oct. 2001. |
Lilakiatsakun, W., et al. “Wireless Home Networks Based on a Hierarchical Bluetooth Scatternet Architecture,” Proceedings of the Ninth IEEE International Conference on Networks, pp. 481-485 (6 pp. with Abstract), Oct. 2001. |
Jha, S., et al., “Universal Network of Small Wireless Operators (UNSWo),” Proceedings of the First IEEE/ACM International Symposium on Cluster Computing and the Grid, pp. 626-631 (7 pp. with Abstract), 2001. |
“AMRON Technologies Successfully Deploys Advanced Metering Solution for C&I Customers Using Bluetooth” [online], Sep. 2, 2004 [retrieved on Jan. 2, 2009], 3 pp., Retrieved from the Internet: http://www.techweb.com/showpressrelease?articleId=X234101&CompanyId=3. |
Utility Intelligence, “Exclusive Distributors of Dynamic Virtual Metering” [online], Copyright 2004-2005 [retrieved on May 12, 2005], Retrieved from the Internet:http://www.empoweringutilities.com/hardware.html, 29 pp. |
“AMRON Meter Management System” [online], [retrieved on May 12, 2005], 41 pp., Retrieved from the Internet: http://www.amronm5.com/products/. |
Reexamination U.S. Appl. No. 90/008,011, filed Jul. 24, 2006, 75 pp. |
Broch, Josh, et al., “A Performance Comparison of Multi-Hop Wireless Ad Hoc Network Routing Protocols,” Proceedings of the Fourth Annual ACM/IEEE International Conference in Mobile Computing and Networking (MobiCom '98), Dallas, Texas, 13 pp., Oct. 25-30, 1998. |
Broch, Josh, et al., “The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks” [online], Mar. 13, 1998 [retrieved on Feb. 24, 2009], 31 pp., Retrieved from the Internet: htts://tools,ietf.org/draft-ietf-manet-dsr-00.txt. |
Katz, Randy H. and Brewer, Eric A., “The Case for Wireless Overlay Networks,” Electrical Engineering and Computer Science Department, University of California, Berkeley, 12 pp., 1996. |
Johnson, David B., “Routing in Ad Hoc Networks of Mobile Hosts,” IEEE, pp. 158-163, 1995. |
Nachum Shacham, Edwin B. Brownrigg, & Clifford A. Lynch, A Packet Radio Network for Library Automation, 1987 IEEE Military Communications Conference, vol. 2 at 21.3.1, (Oct. 1987). (TN-IP 0004176-82). |
Nachum Shacham & Janet D. Tornow, Future Directions in Packet Radio Technology, Proc. of the IEEE Infocom 1985 at 93 (Mar. 1985). (TN-IP 0005080-86), 17 pp. |
John Jubin & Janet D. Tornow, The DARPA Packet Radio Network Protocols, Proc. of the IEEE, vol. 75, No. 1 at 21 (Jan. 87). (TN-IP 0004930-41). |
John Jubin, Current Packet Radio Network Protocols, Proc. of the IEEE Infocom1985 at 86 (Mar. 1985), (TN-IP 0004921-29), 9 pp. |
David B. Johnson & David A. Maltz, Dynamic Source Routing in Ad Hoc Wireless Networks, reprinted in Mobile Computing, 153, Kluwer Academic Publishers (Tomasz Imielinski & Henry F. Korth eds., 1996), (TN-IP 0006929-46), 18 pp. |
David B. Johnson, Mobile Host Internetworking Using IP Loose Source Routing, Carnegie Mellon University CMU-CS-93-128, DARPA Order No. 7330 (Feb. 1993), (TN-IP 0006911-28), 18 pp. |
Daniel M. Frank, Transmission of IP Datagrams Over NET/ROM Networks, Proc. of the ARRL 7th Computer Networking Conference 1988 at 65 (Oct. 1988), (TN-IP 0006591-96), 6 pp. |
Robert E. Kahn, et al., Advances in Packet Radio Technology, Proc. of the IEEE, vol. 66, No. 11, pp. 1468-1496 (Nov. 1978), (TN-IP 0004942-71). |
Clifford A. Lynch & Edwin B. Brownrigg, Packet Radio Networks, Bergamon Press, 259-74 (1987), (TN-IP 0004018-175). |
Charles E. Perkins & Pravin Bhagwat, Highly Dynamic Destination-Sequenced Distance-Vector Routing (DSDV) for Mobile Computers, ACM SIGCOMM Computer Communication Review, vol. 24, Issue 4 at 234 (Oct. 1994), (TN-IP 0005018-28), 11 pp. |
William MacGregor, Jil Westcott, & Michael Beeler, Multiple Control Stations in Packet Radio Networks, 1982 IEEE Military Communications Conference, vol. 3 at 10.3-1 (Oct. 1982), (TN-IP 0004988-93), 6 pp. |
Nachum Shacham & Jil Westcott, Future Directions in Packet Radio Architectures and Protocols, Proc. of the IEEE, vol. 75, No. 1 at 83 (Jan. 1987), (TN-IP 0008712-28), 17 pp. |
David B. Johnson and David A. Maltz, Protocols for Adaptive Wireless and Mobile Networking, IEEE Personal Communications, Feb. 1996, p. 34-42. |
Arek J. Dadej and Daniel Floreani, Interconnected Mobile Radio Networks—A step Towards Integrated Multimedia Military Communications, Communications and Networks for the Year 2000, IEEE Singapore International Conference on Networks/International Conference on Information Engineering '93, vol. 1, p. 152-156. |
David A. Beyer, Accomplishments of the DARPA SURAN Program, IEEE MILCOM 1990, p. 39.6.1-8. |
William S. Hortos, Application of Neural Networks to the Dynamic Spatial Distribution of Nodes within an Urban Wireless Network, SPIE, vol. 2492, p. 58-70, 1995. |
Nachum Shacham and Richard G. Ogier, Network Control and Data Transport for C3I Applications, IEEE 1987, p. 30.5.1-6. |
John E. Rustad, Reidar Skaug, and Andreas Aasen, New Radio Networks for Tactical Communication, IEEE Jornal on Selected Areas in Communications, vol. 8, No. 5, p. 713-27, Jun. 1990. |
Barry M. Leiner, Donald L. Nielson, and Fouad A. Tobagi, Issues in Packet Radio Network Design, Proceedings of the IEEE, vol. 75, No. 1, p. 6-20, Jan. 1987. |
Janet Tornow, Functional Summary of the DARPA SURAP1 Network, DARPA, Sep. 1986, 17 pp. |
John F. Shoch and Lawrence Stewart, Interconnecting Local Networks via the Packet Radio Network, Sixth Data Communications Symposium, Nov. 1979, pp. 153-158. |
J.R. Cleveland, Performance and Design Considerations for Mobile Mesh Networks, IEEE MILCOM 96, vol. 1, p. 245-49. |
Cmdr. R. E. Bruninga, USN, A Worldwide Packet Radio Network, Signal, vol. 42, No. 10, p. 221-230, Jun. 1988. |
Nachum Shacham and Janet Tornow, Packet Radio Networking, Telecommunications, vol. 20, No. 9, p. 42-48, 64, 82, Sep. 1986. |
Spencer T. Carlisle, Edison's NetComm Project, IEEE 1989, Paper No. 89CH2709-4-B5, p. B5-1-B5-4. |
Brian H. Davies and T.R. Davies, The Application of Packet Switching Techniques to Combat Net Radio, Proceedings of the IEEE, vol. 75, No. 1, p. 43-55, Jan. 1987. |
Fouad A. Tobagi, Richard Binder, and Barry Leiner, Packet Radio and Satellite Networks, IEEE Communications Magazine, vol. 22, No. 11, p. 24-40, Nov. 1984. |
M. Scott Corson, Joseph Macker, and Stephen G. Batsell, Architectural Considerations for Mobile Mesh Networking, IEEE MILCOM 96, vol. 1, p. 225-9. |
K.Y. Eng, et. al., Bahama: A Broadband Ad-Hoc Wireless ATM Local-Area Network, 1995 IEEE International Conference on Communications, vol. 2, p. 1216-23, Jun. 18-22, 1995. |
J. Jonquin Garcia-Luna-Aceves, A Fail-Safe Routing Algorithm for Multihop Packet-Radio Networks, IEEE Infocom '86, p. 434-43, Apr. 8-10, 1986. |
Johanes P. Tamtomo, A Prototype of TCP/IP-Based Internet-PRNET for Land Information Networks and Services, Department of Surveying Engineering, University of New Brunswick, Jan. 25, 1993, 118 pp. |
A. Alwan, et al., Adaptive Mobile Multimedia Networks, IEEE Personal Communications, p. 34-51, Apr. 1996. |
Michael Ball, et al., Reliability of Packet Switching Broadcast Radio Networks, IEEE Transactions on Circuits and Systems, vol. Cas-23, No. 12, p. 806-13 ,Dec. 1976. |
Kenneth Brayer, Implementation and Performance of Survivable Computer Communication with Autonomous Decentralized Control, IEEE Communications Magazine, p. 34-41, Jul. 1983. |
Weidong Chen and Eric Lin, Route Optimization and Locations Updates for Mobile Hosts, Proceedings of the 16th ICDSC, p. 319-326, 1996. |
Daniel Cohen, Jonathan B. Postel, and Raphael Rom, IP Addressing and Routing in a Local Wireless Network, IEEE Infocom 1992, p. 5A.3.1-7. |
Charles Perkins and David B. Johnson, Mobility Support in IPv6, Sep. 22, 1994, http//www.monarch.cs.rice.edu/internet-drafts/draft-perkins-ipv6-mobility-sup-00.txt (last visited Sep. 26, 2009. |
Jonathan J. Hahn and David M. Stolle, Packet Radio Network Routing Algorithms: A Survey, IEEE Communications Magazine, vol. 22, No. 11, p. 41-7, Nov. 1984. |
David A. Hall, Tactical Internet System Architecture for the Task Force XXI, IEEE 1996, p. 219-30. |
Robert Hinden and Alan Sheltzer, The DARPA Internet Gateway, DARPA RFC 823, Sep. 1982, 45 pp. |
Manuel Jimenez-Cedeno and Ramon Vasquez-Espinosa, Centralized Packet Radio Network: A Communication Approach Suited for Data Collection in a Real-Time Flash Flood Prediction System, Dept. of Electrical and Computer Engineering, University of Puerto Rico-Mayaguez, ACM 0-89791-568-2/93, p. 709-13, 1993. |
David B. Johnson, Routing in Ad Hoc Networks of Mobile Hosts, Workshop on Mobile Computing Systems and Applications, Dec. 8-9, 1994, Santa Cruz, California, IEEE 1995, p. 158-63. |
David B. Johnson, Route Optimization in Mobile IP, Nov. 28, 1994, http://www.monarch.cs.rice.edu/internet-drafts/draft-ietf-mobileip-optim-00.txt (last visited Sep. 26, 2009), 32 pp. |
Mark G. Lewis and J.J. Garcia-Luna-Aceves, Packet-Switching Applique for Tactical VHF Radios, 1987 IEEE MILCOM Communciations Conference, Oct. 19-22, 1987, Washington, D.C., p. 21.2.1-7. |
Sioe Mak and Denny Radford, Design Considerations for Implementation of Large Scale Automatic Meter Reading Systems, IEEE Transactions on Power Delivery, vol. 10, No. 1, p. 97-103, Jan. 1995. |
Charles E. Perkins and Pravin Bhagwat, A Mobile Networking System Based on Internet Protocol, IEEE Personal Communications, First Quarter 1994, IEEE 1994, p. 32-41. |
Richard Schulman, Richard Snyder, and Larry J. Williams, SINCGARS Internet Controller—Heart of the Digitized Battlefield, Proceedings of the 1996 Tactical Communications Conference, Apr. 30-May 2, 1996, Fort Wayne, Indiana, p. 417-21. |
Nachum Shacham and Earl J. Craighill, Dynamic Routing for Real-Time Data Transport in Packet Radio Networks, Proceedings of INFOCOM 1982, IEEE 1982, p. 152-58. |
R. Lee Hamilton, Jr. and Hsien-Chuen Yu, Optimal Routing in Multihop Packet Radio Networks, IEEE 1990, p. 389-96. |
Carl A. Sunshine, Addressing Problems in Multi-Network Systems, Proceedings of INFOCOM 1982, IEEE 1982, p. 12-18. |
J.J. Garcia-Luna-Aceves, Routing Management in Very Large-Scale Networks, North-Holland, Future Generations Computer Systems 4, 1988, pp. 81-93. |
J.J. Garcia-Luna-Aceves, A Minimum-hop Routing Algorithm Based on Distributed Information, North-Holland, Computer Networks and ISDN Systems 16, 1988/89, p. 367-382. |
D. Hubner, J. Kassubek, F. Reichert, A Distributed Multihop Protocol for Mobile Stations to Contact A Stationary Infrastructure, Third IEE Conference on Telecommunications, Conference Publication No. 331, p. 204-7. |
Jens Zander and Robert Forchheimer, The SOFTNET Project: A Retrospect, IEEE EUROCON, Jun. 13-17, 1988, p. 343-5. |
Mario Gerla and Jack Tzu-Chich Tsai, Multicluster, Mobile, Multimedia Radio Network, Wireless Networks 1, J.C. Baltzer AG, Science Publishers, 1995, p. 255-265. |
F. G. Harrison, Microwave Radio in the British TeleCom Access Network, Second IEE National Conference on Telecommunications, Conference Publication No. 300, Apr. 2-5, 1989, p. 208-13. |
Chai-Keong Toh, A Novel Distributed Routing Protocol to Support Ad-Hoc Mobile Computing, Conference Proceedings of the 1996 IEEE Fifteenth Annual International Phoenix Conference on Computers and Communications, Mar. 27-29, 1996, p. 480-6. |
Fadi F. Wahhab, Multi-Path Routing Protocol for Rapidly Deployable Radio Networks, Thesis submitted to the Department of Electrical Engineering and Computer Science of the University of Kansas, 1994, 59 pp. |
Jil Westcott and Gregory Lauer, Hierarchical Routing for Very Large Networks, IEEE MILCOM 1984, Oct. 21-24, 1984, Conference Record vol. 2, p. 214-8. |
International Search Report and Written Opinion for Application No. PCT/US08/13027, dated Feb. 9, 2009, 6 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13023, dated Jan. 12, 2009, 10 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13019, dated Jan. 12, 2009, 13 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13025, dated Jan. 13, 2009, 7 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13018, dated Jan. 30, 2009, 9 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13020, dated Jan. 9, 2009, 8 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13028, dated Jan. 15, 2009, 9 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13021, dated Jan. 15, 2009, 11 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13016, dated Jan. 9, 2009, 7 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13024, dated Jan. 13, 2009, 9 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13022, dated Jan. 27, 2009, 10 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13030, dated Jan. 9, 2009, 7 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/12161, dated Mar. 2, 2009, 13 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13017, dated Mar. 18, 2009, 11 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13026, dated Feb. 24, 2009, 9 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13029, dated Feb. 2, 2009, 8 pp. |
International Search Report and Written Opinion for Application No. PCT/US08/13032, dated May 12, 2009, 14 pp. |
International Search Report and Written Opinion for Application No. PCT/US09/05008, dated Oct. 22, 2009, 8 pp. |
Leis, John, “TCP/IP Protocol Family,” pp. 1 and 42-43, Apr. 3, 2006. |
Supplementary European Search Report for Application No. EP 08 85 1869, dated Dec. 30, 2010, 7 pp. |
International Search Report and Written Opinion for Application No. PCT/US10/26956, dated May 19, 2010, 2 pp. |
Supplementary European Search Report for Application No. EP 08 85 1132, dated Dec. 6, 2010, 9 pp. |
Baumann, R., et al., “Routing Packets Into Wireless Mesh Networks,” Wireless and Mobile Computing, Networking and Communications, 2007, WIMOB 2007, Third IEEE International Conference, Piscataway, NJ, Oct. 8, 2007, p. 38 (XP031338321). |
Levis Stanford University, J. P. Vasseur, Cisco Systems, et al., “Overview of Existing Routing Protocols for Low Power and Lossy Networks,” draft-levis-rl2n-overview-protocols-02.txt, IETF Standard-Working-Draft, Internet Engineering Task Force, IETF, Ch, No. 2, Nov. 17, 2007 (XP015054252) (ISSN: 0000-0004). |
Culler Arch Rock, J.P. Vasseur, Cisco Systems, et al., “Routing Requirements for Low Power and Lossy Networks, draft-culler-r12n-routing-reqs-01.txt,” IETF Standard-Working-Draft, Internet Engineering Task Force, IETF, CH, No. 1, Jul. 7, 2007 (XP015050851) (ISSN: 000-0004). |
Perkins, C. E., et al., “Ad Hoc On-Demand Distance Vector (AODV) Routing,” Network Working Group Internet Draft, XX, Nov. 9, 2001 (XP002950167). |
Postel, J., “RFC 793 Transmission Control Protocol,” Sep. 1981 [retrieved on Jan. 1, 2007], Retrieved From the Internet: http://www.ietf.org/rfc/rfc0793.txt. |
Supplementary European Search Report for Application No. EP 08 85 1927, dated Dec. 22, 2010, 10 pp. |
Younis, M., et al., “Energy-Aware Routing in Cluster-Based Sensor Networks,” Modeling, Analysis and Simulation of Computer and Telecommunications Systems, 10th IEEE Proceedings on Mascots, Oct. 11-16, 2002, Piscataway, NJ (XP010624424) (ISNB: 978-0-7695-1840-4). |
Supplementary European Search Report for Application No. EP 08 85 3052, dated Mar. 18, 2011, 10 pp. |
Supplementary European Search Report for Application No. EP 08 85 1560, dated Mar. 24, 2011, 9 pp. |
Supplementary European Search Report for Application No. EP 08 85 2992, dated Mar. 23, 2011, 6 pp. |
International Search Report and Written Opinion for Application No. PCT/US2011/051290, dated Jan. 6, 2012, 11 pp. |
Number | Date | Country | |
---|---|---|---|
20120062210 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61382057 | Sep 2010 | US |