The present invention relates to a drying process of BIBW 2992 or the salts thereof, preferably the dimaleate salt (abbreviated hereinafter BIBW 2992 MA2), as well as of solid pharmaceutical formulations comprising BIBW 2992 or a salt thereof, and to pharmaceutical compositions comprising BIBW 2992 or a salt thereof as the active product ingredient (API), characterized by a water activity of the formulation of not more than 0.20 or a water content (Karl-Fischer) of the formulation of not more than 4.2%.
BIBW 2992 (also named TOMTOVOK®) is known as the compound 4-[(3-chloro-4-fluorophenyl)amino]-6-{[4-(N,N-dimethylamino)-1-oxo-2-buten-1-yl]amino}-7-((S)-tetrahydrofuran-3-yloxy)-quinazoline,
BIBW 2992 is a potent and selective dual inhibitor of erbb1 receptor (EGFR) and erbB2 (Her2/neu) receptor tyrosine kinases. Furthermore, BIBW 2992 was designed to covalently bind to EGFR and HER2 thereby irreversibly inactivating the receptor molecule it has bound to. This compound, salts thereof such as the dimaleate BIBW 2992 MA2 and its crystalline modification, their preparation as well as pharmaceutical formulations comprising BIBW 2992 or a salt thereof are disclosed in WO 02/50043 and WO 2005/037824. These documents are incorporated by reference regarding these aspects.
BIBW 2992 is suitable for the treatment of tumoral diseases, hypersecretory diseases of the lungs and respiratory tract, diseases of the gastrointestinal tract, the bile duct and gall bladder. Indications to be treated with BIBW 2992 and combination treatments are disclosed in WO 2007/054550 and WO 2007/054551.
Besides the pharmacological activity of an active pharmaceutical ingredient (API) there are a variety of chemical, physical or physicochemical characteristics of the active substance relevant for the preparation of solid oral dosage forms, as oral powders, granules, pellets, tablets, capsules, chewable tablets, dispersible tablets, or lozenges. To achieve adequate formulation characteristics, as correct assay, content and mass uniformity, chemical and physical stability of the drug product and a proper dissolution rate, also the characteristics of the product intermediates have to be adequate for robust, fast and cost efficient processing.
Without being restrictive, examples of these parameters relevant for processing of the active agent (the drug substance) are
the stability of the drug substance under various environmental conditions which strongly may influence the stability of the final pharmaceutical formulation (the drug product), and physical characteristics of the drug substance such as bulk densities (i.e. poured and tapped density), particle morphology, shape, the ratio of length to width for needles, size distribution, electrostatic charging and surface adhesive properties, which may vary due to precipitation and drying conditions of the drug substance. These characteristics may significantly influence key features for processing of the drug substance into a final formulation, such as flowability and compressibility.
For actives sensitive to hydrolytic degradation it is substantial to minimize access of moisture within the manufacture of the drug product up to packaging as well as to take effective measures to prevent entrance of water into the final packaging in order to achieve an adequate shelf life of the product.
BIBW 2992 is a moisture sensitive compound and can quickly hydrolytically degrade at humid conditions, e.g. in the presence of water, moisture or moisture released by further excipients in the drug product, resulting a main API degradation product by release of dimethylamine from the side chain attached to position 6 of the quinazoline.
A first object of the present invention is directed to a process for drying of BIBW 2992 or a salt thereof, preferably BIBW 2992 MA2, comprising drying with a gas which is inert towards BIBW 2992 at the drying conditions and which has a relative humidity (rh) of not more than 15%, preferably not more than 12% rh, at a temperature below 40° C., preferably below 30° C.
A second object of the present invention is directed to a process for drying of a pharmaceutical formulation containing BIBW 2992 or a salt thereof, preferably BIBW 2992 MA2, as the active ingredient and at least one further excipient, with a gas, e.g. air which is inert towards the ingredients of the mentioned pharmaceutical formulation at the drying conditions, and which has a relative humidity of not more than 15%, preferably not more than 12% rh, at temperatures below 40° C., preferably below 30° C.
A third object of the present invention is a pharmaceutical composition comprising BIBW 2992 or a salt thereof, preferably BIBW 2992 MA2, as an active ingredient and at least one further excipient, e.g. an oral, pharmaceutical dosage form, such as a tablet, which is characterized by a water activity of not more than 0.20, preferably of not more than 0.17, or, most preferred, of not more than 0.15.
A fourth object of the present invention is a pharmaceutical composition comprising BIBW 2992 or a salt thereof, preferably BIBW 2992 MA2, as an active ingredient and at least one further excipient, e.g. an oral, pharmaceutical dosage form, such as a tablet, which is characterized by a water content (Karl-Fischer) of not more than 4.2%, preferably of not more than 4.0%, particularly of not more than 3.8%, or, most preferred, of not more than 3.7%.
BIBW 2992 to be dried according to the process of the invention or referred to herein within the context of the invention includes the API in any form, e.g. in the form of the free base itself, in the form of a solvate and in the form of a salt, preferably a pharmaceutically acceptable salt. Pharmaceutically acceptable salts are for instance selected from the group consisting of the hydrochloride, hydrobromide, hydroiodide, hydrosulphate, hydrophosphate, hydromethanesulphonate, hydronitrate, hydromaleate, hydroacetate, hydrobenzoate, hydrocitrate, hydrofumarate, hydrotartrate, hydrolactate, hydroxalate, hydrosuccinate, hydrobenzoate and hydro-p-toluenesulphonate, preferably the hydrochloride, hydrobromide, hydrosulphate, hydrophosphate, hydromaleate, hydrofumarate and hydromethanesulphonate. In a particularly preferred embodiment with regard to any aspects of the invention BIBW 2992 is applied as its hydromaleate, preferably in the ratio BIBW 2992:maleic acid=1:2 as depicted in the formula (1a) below (also denoted herein as the “dimaleate” or BIBW 2992 MA2).
BIBW 2992 also includes combinations with at least one pharmaceutical excipient, e.g. a pharmaceutical composition comprising BIBW 2992 in the form of the free base, in the form of a solvate or in the form of a salt as the active ingredient, as an intermediate for further processing or as a final dosage form ready for ingestion.
Preferred pharmaceutical compositions as an intermediate for further processing includes a compacted intermediate or a dry granulated intermediate comprising BIBW 2992 MA2 in form of a powder obtainable by a combined compaction (either roller compaction, briquetting or slugging) or dry granulation and subsequent sieving of the compacted active, optionally in mixture with a lubricant, to adjust and equilibrate its bulk properties and therefore ensure its suitability for further processing into a finished dosage form,
the intermediate and final blends prepared from said compacted (or dry granulated) intermediate, suitable for further processing in the preparation of solid oral dosage forms.
Particularly preferred pharmaceutical compositions are those comprising BIBW 2992 MA2 in final dosage forms ready for ingestion, including solid oral formulations made from said compacted intermediate, from said intermediate blends or from said final blends, in powdery, compacted, granulated or compressed, form e.g.
dry powder formulations,
uncoated or coated granules,
uncoated or coated pellets, and
uncoated or film-coated tablets, e.g. prepared by direct-compression,
The process according to the present invention may be carried out by drying the sample comprising BIBW 2992 (or a pharmaceutically acceptable salt thereof) or any of the pharmaceutical compositions comprising BIBW 2992 (or a pharmaceutically acceptable salt thereof) mentioned hereinbefore, which contains humidity, e.g. water moisture from a formulation procedure, such as aqueous film-coating or adsorbed from a further excipient containing genuine non-crystalline water or moisture adsorbed from environmental air, using continuous contact of the sample with a gas flowing through which is inert towards BIBW2992 at the drying conditions and has a relative humidity of not more than 15%, preferably of not more than 12% rh, at temperatures below 40° C., preferably below 30° C., until the targeted water activity (equilibrium moisture content) in the sample is achieved. The water activity is a measure of the water that is freely available in the sample and is available for exchange with the atmosphere. A desired water activity reduces the water which may be present free or as solvate bound in excipients in the drug product and includes moisture of the form in which BIBW 2992 is present after completion of drying, e.g. 0.20 water activity and less, or Karl-Fischer water content of 4.2% and less.
The water activity mentioned in the context of the invention is meant to be determined as mentioned in the United States Pharmacopeia (USP) <921>. Furthermore, the Karl-Fischer water content mentioned in the context of the invention is meant to be a titrimetric method (i.e. biamperometric Karl Fischer titration) specified in the United States Pharmacopeia (USP) <1112>. Examples for the methods used are provided hereinafter.
It is essential that the gas used, e.g. inert gas, dried compressed or constantly supply dried air, nitrogen or carbon dioxide, has a relative humidity of not more than 15% rh, preferably not more than 12%, in order to guarantee a sufficiently high humidity gradient between the product and the drying gas. Consequently a permanent gas flow has to be assured in order to maintain the humidity gradient and achieve the targeted humidity of BIBW2992. Such could be achieved either by a continuous flow-through of dried compressed air or by continuous flow generated by ventilators (e.g. using a Munters® device).
The process according to the present invention is carried out by placing the sample in a container having an inlet and an outlet opening for the supply and removal of the gas.
In one embodiment of the invention the gas stream is purged through the container and the sample as a continuous flow-through of dried compressed air with a pressure at the outlet of approximately 0.5 to 3 bar, preferably 0.8 to 1.5 bar, most preferred about 1 bar. Especially for this purpose containers with a bi-layer bottom are used, in which the upper one is perforated in order to allow the gas to pass through. The gas is introduced into the space between the two bottoms, flows through the perforated upper bottom and then through the product. Finally the gas containing moisture from the product is discharged through the outlet.
In a second embodiment of the invention the gas stream is purged through the container and the sample as a continuous flow generated by ventilators (e.g. using a Munters® device) providing an air flow rate of 20-1000 ncm/h, preferably of 30-500 ncm/h, most preferred, of 40-150 ncm/h. The expression “ncm” denotes “norm cubic meter”, alternatively abbreviated in the literature as “m3 (i.N.)”, defining a volume of a gas under norm or standard conditions, here of 1013 mbar, a relative humidity (rh) of 0% and a temperature of 0° C.
According to any embodiment of the invention drying temperature is set in the range of 20-40° C., preferably in the range of 20-30° C., e.g. room temperature. During drying, water which may be present as solvate bound in BIBW2992 as dihydrate or Lactose as monohydrate is substantially not removed.
It has been found that at the given conditions drying has to be performed for at least 8 hours, preferably for at least 12 h, most preferred for at least 24 h, in order to achieve the targeted water activity of the formulation of 0.20 and less or Karl-Fischer water content of the formulation of 4.2% and less.
In contrast, an alternative approach to reduce moisture content as conventional drying of film-coated tablets comprising BIBW 2992 in a film-coater at temperatures clearly higher than room temperature e.g. 50° C. led only intermediately to a low level of moisture during the drying process itself. Finally the product (film-coated tablets) have to be cooled down to room temperature associated with moisture re-uptake, since the relative humidity of the cooling air is above 15% rh.
A further alternative conventional approach to reduce moisture content could be storage of BIBW 2992 bulk in close contact with desiccants. The desiccants remove unbound water from the product via physical adsorption of water. For drying of bulk products as e.g. film-coated tablet such a method requires a much longer drying time as the presented method in order to achieve the targeted moisture content and thus is unsuitable to be used in production scale.
The following non-limiting examples serve to illustrate the invention:
50 kg of film-coated tablets containing 20 mg BIBW 2992 base each are filled into a drying container that is equipped with a double bottom, an air inlet and an air outlet. The tablets are flushed in the container with dried compressed air with relative humidity of not more than 12% and a temperature of approximately 20° C. until the water activity of the formulation is less than 0.15 or the water content (Karl Fischer) of the formulation is not more than 4.0%. Finally a water content of 3.7% (Karl Fischer) after drying was achieved.
After 6 months storage in Alu/Alu-blister at 40° C./75% rh an increase of 1.6% main API degradation product was observed.
Without initial drying film-coated tablets containing 20 mg BIBW 2992 base showed a water content of the formulation of 4.3%. After 6 months storage in Alu/Alu-blister at 40° C./75% rh an increase of 2.6% main API degradation product was detected.
In the following section the manufacturing method for dosage forms of 1a is described.
Process for Preparing Compacted Intermediates Comprising 1a
A compacted intermediate comprising 1a in form of a powder is prepared by a roller compaction step for densification of the material, combined with at least one sieving step additional to the break-up of the ribbon or briquettes, optionally in mixture with a lubricant.
The roller compaction may be carried out with
The API or pre-blend of the API is compacted on a conventional roller compactor
The compaction force may vary
The compacted intermediate is received from the compaction rolls in form of ribbons which are directly broken up into granules by a granulation-unit with a mesh size between 0.5 mm and 1.6 mm, resulting the compacted intermediate in form of granules. In the second step subsequently the granules are sieved by a sieving machine, as e.g. an oscillating or conical sieving machine or hammer mill, with a mesh size of 0.5 to 2.0 mm, preferably about 1.0 mm, resulting the compacted intermediate in the form of a powder. Optionally a second sieving step is performed, whereas this one should be conducted with a mesh size of 0.3 to 0.5 mm, preferably about 0.5 mm.
Process for Preparing Intermediate Blends and Final Blends
Intermediate blends:
Any intermediate blends comprising 1a in form of a powder are prepared by mixing the API with carrier, binder or combination thereof, glidants, colorants and solid flavours in a freefall or tumble blender.
Final blends:
Oral powders:
Formulations A, B and C, D and E are tablets which can be coated with a film-coat according to Table 2.
Solvents and Reagents
Water content [%] is calculated as follows:
a=volume of Karl Fischer solution required to titrate the test sample [mL]
b=average volume of Karl Fischer solution required for blank titration [mL]
F=factor of titrant [mg water/mL]
WtTS=weight of test sample [mg]
Procedure
Number | Date | Country | Kind |
---|---|---|---|
09164659 | Jul 2009 | EP | regional |
10154562 | Feb 2010 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/059546 | 7/5/2010 | WO | 00 | 1/13/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/003853 | 1/13/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4933443 | Hamashima et al. | Jun 1990 | A |
5728687 | Bissery | Mar 1998 | A |
5866572 | Barker et al. | Feb 1999 | A |
6127374 | Bridges | Oct 2000 | A |
6153617 | Bridges | Nov 2000 | A |
6251912 | Wissner et al. | Jun 2001 | B1 |
6297258 | Wissner et al. | Oct 2001 | B1 |
6344459 | Bridges et al. | Feb 2002 | B1 |
6362336 | Lohmann et al. | Mar 2002 | B1 |
6403580 | Himmelsbach et al. | Jun 2002 | B1 |
6617329 | Himmelsbach et al. | Sep 2003 | B2 |
6627634 | Himmelsbach et al. | Sep 2003 | B2 |
6653305 | Himmelsbach et al. | Nov 2003 | B2 |
6656946 | Himmelsbach et al. | Dec 2003 | B2 |
6673803 | Thomas et al. | Jan 2004 | B2 |
6740651 | Himmelsbach et al. | May 2004 | B2 |
6924285 | Himmelsbach et al. | Aug 2005 | B2 |
6972288 | Himmelsbach et al. | Dec 2005 | B1 |
7019012 | Himmelsbach et al. | Mar 2006 | B2 |
7084136 | Tanimoto et al. | Aug 2006 | B2 |
7119084 | Himmelsbach et al. | Oct 2006 | B2 |
7160889 | Hennequin et al. | Jan 2007 | B2 |
7196091 | Himmelsbach et al. | Mar 2007 | B2 |
7220750 | Himmelsbach et al. | May 2007 | B2 |
7223749 | Himmelsbach et al. | May 2007 | B2 |
7456189 | Himmelsbach et al. | Nov 2008 | B2 |
7846936 | Hilberg et al. | Dec 2010 | B2 |
7960546 | Schroeder et al. | Jun 2011 | B2 |
8067593 | Schroeder et al. | Nov 2011 | B2 |
RE43431 | Himmelsbach et al. | May 2012 | E |
8188274 | Schroeder et al. | May 2012 | B2 |
8404697 | Solca et al. | Mar 2013 | B2 |
8828391 | Denis et al. | Sep 2014 | B2 |
20010044435 | Himmelsbach et al. | Nov 2001 | A1 |
20020032208 | Lohmann et al. | Mar 2002 | A1 |
20020077330 | Himmelsbach et al. | Jun 2002 | A1 |
20020082270 | Himmelsbach et al. | Jun 2002 | A1 |
20020169180 | Himmelsbach et al. | Nov 2002 | A1 |
20020173509 | Himmelsbach et al. | Nov 2002 | A1 |
20030149062 | Jung et al. | Aug 2003 | A1 |
20030186956 | Bilke et al. | Oct 2003 | A1 |
20030191308 | Hennequin et al. | Oct 2003 | A1 |
20030225079 | Singer et al. | Dec 2003 | A1 |
20040024019 | Tanimoto et al. | Feb 2004 | A1 |
20040057992 | Gierer | Mar 2004 | A1 |
20040158065 | Barth et al. | Aug 2004 | A1 |
20050031769 | Watanabe et al. | Feb 2005 | A1 |
20050043233 | Stefanic et al. | Feb 2005 | A1 |
20050085495 | Soyka et al. | Apr 2005 | A1 |
20050215574 | Bradbury et al. | Sep 2005 | A1 |
20060058311 | Munzert et al. | Mar 2006 | A1 |
20060100223 | Himmelsbach et al. | May 2006 | A1 |
20060270672 | Himmelsbach et al. | Nov 2006 | A1 |
20070027170 | Soyka et al. | Feb 2007 | A1 |
20070078091 | Hubler et al. | Apr 2007 | A1 |
20070099918 | Singer et al. | May 2007 | A1 |
20070185091 | Himmelsbach et al. | Aug 2007 | A1 |
20080096212 | Bell et al. | Apr 2008 | A1 |
20080103161 | Himmelsbach et al. | May 2008 | A1 |
20080145422 | Zhou et al. | Jun 2008 | A1 |
20080207615 | Bell et al. | Aug 2008 | A1 |
20080234264 | Bell et al. | Sep 2008 | A1 |
20080254040 | Stefanic et al. | Oct 2008 | A1 |
20080269487 | Bradbury et al. | Oct 2008 | A1 |
20090036676 | Himmelsbach et al. | Feb 2009 | A1 |
20090203683 | Himmelsbach et al. | Aug 2009 | A1 |
20090238828 | Munzert et al. | Sep 2009 | A1 |
20090306044 | Solca et al. | Dec 2009 | A1 |
20090306072 | Jung et al. | Dec 2009 | A1 |
20090306101 | Solca et al. | Dec 2009 | A1 |
20090306378 | Schroeder et al. | Dec 2009 | A1 |
20090318480 | Solca | Dec 2009 | A1 |
20100010023 | Himmelsbach et al. | Jan 2010 | A1 |
20100069414 | Himmelsbach et al. | Mar 2010 | A1 |
20100087482 | Haber et al. | Apr 2010 | A1 |
20100144639 | Singer et al. | Jun 2010 | A1 |
20110039863 | Hilberg et al. | Feb 2011 | A1 |
20110046168 | Himmelsbach et al. | Feb 2011 | A1 |
20110136826 | Hilberg et al. | Jun 2011 | A1 |
20110142929 | Messerschmid et al. | Jun 2011 | A1 |
20110171289 | Stefanic et al. | Jul 2011 | A1 |
20110207929 | Schroeder et al. | Aug 2011 | A1 |
20110207932 | Schroeder et al. | Aug 2011 | A1 |
20120107399 | Barta | May 2012 | A1 |
20120157472 | Larsen et al. | Jun 2012 | A1 |
20120294867 | Denis et al. | Nov 2012 | A1 |
20120329778 | Himmelsbach et al. | Dec 2012 | A1 |
20130012465 | Haslinger et al. | Jan 2013 | A1 |
Number | Date | Country |
---|---|---|
19825591 | Dec 1999 | DE |
19908567 | Aug 2000 | DE |
19911366 | Sep 2000 | DE |
10017539 | Oct 2001 | DE |
10042060 | Mar 2002 | DE |
10042064 | Mar 2002 | DE |
0302967 | Feb 1989 | EP |
0566226 | Oct 1993 | EP |
0799619 | Oct 1997 | EP |
1123705 | Aug 2001 | EP |
9410995 | May 1994 | WO |
9428880 | Dec 1994 | WO |
9520045 | Jul 1995 | WO |
9630347 | Oct 1996 | WO |
9633980 | Oct 1996 | WO |
9702266 | Jan 1997 | WO |
9738983 | Oct 1997 | WO |
9843960 | Oct 1998 | WO |
9906378 | Feb 1999 | WO |
9906396 | Feb 1999 | WO |
9909016 | Feb 1999 | WO |
9933980 | Jul 1999 | WO |
9935146 | Jul 1999 | WO |
9965228 | Dec 1999 | WO |
0018740 | Apr 2000 | WO |
0031048 | Jun 2000 | WO |
0031068 | Jun 2000 | WO |
0051991 | Sep 2000 | WO |
0055141 | Sep 2000 | WO |
0078735 | Dec 2000 | WO |
0134574 | May 2001 | WO |
0168186 | Sep 2001 | WO |
0177104 | Oct 2001 | WO |
0218351 | Mar 2002 | WO |
0218372 | Mar 2002 | WO |
0218373 | Mar 2002 | WO |
0218375 | Mar 2002 | WO |
0218376 | Mar 2002 | WO |
0241882 | May 2002 | WO |
0250043 | Jun 2002 | WO |
03082290 | Oct 2003 | WO |
03089439 | Oct 2003 | WO |
03094921 | Nov 2003 | WO |
2004014426 | Feb 2004 | WO |
2004074263 | Sep 2004 | WO |
2004096224 | Nov 2004 | WO |
2004108664 | Dec 2004 | WO |
2005028470 | Mar 2005 | WO |
2005030179 | Apr 2005 | WO |
2005033096 | Apr 2005 | WO |
2005037824 | Apr 2005 | WO |
WO 2005037824 | Apr 2005 | WO |
2005094357 | Oct 2005 | WO |
2006017317 | Feb 2006 | WO |
2006018182 | Feb 2006 | WO |
2006084058 | Aug 2006 | WO |
2007054550 | May 2007 | WO |
2007054551 | May 2007 | WO |
2007085638 | Aug 2007 | WO |
2008034776 | Mar 2008 | WO |
2008091701 | Jul 2008 | WO |
2009030239 | Mar 2009 | WO |
2009147238 | Dec 2009 | WO |
2010081817 | Jul 2010 | WO |
2010085845 | Aug 2010 | WO |
2010129053 | Nov 2010 | WO |
2011003853 | Jan 2011 | WO |
2011056894 | May 2011 | WO |
2011069962 | Jun 2011 | WO |
2012156437 | Nov 2012 | WO |
Entry |
---|
Mills, “Humidity Control in Pharma Processing”, Innovations in Pharmaceutical Technology, pp. 1-3, 2007. |
English translation of WO 2005037824 A2 obtained from wipo.int on Dec. 12, 2014. |
International Search Report for PCT/EP2010/059546 mailed Nov. 22, 2011. |
International Search Report and Written Opinion for PCT/EP2010/059546 mailed Nov. 22, 2011. |
Toyooka, S. et al., “EGFR Mutation and Response of Lung Cancer to Gefitinib.” The New England Journal of Medicine, 2005, vol. 352, No. 20, p. 2136. |
Tsou, Hwei-Ru, “6-Substituted-4-(3-bromophenylamino)quinazolines as Putative Irreversible Inhibitors of the Epidermal Growth Factor Receptor (EGFR) and Human Epidermal Growth Factor Receptor (HER-2) Tyrosine Kinases with Enhanced Antitumore Activity”, J. Med. Chem 2001, 2719-2734, vol. 44. |
U.S. Appl. No. 12/914,003, filed Oct. 28, 2010, Inventor: Frank Himmelsbach. |
Wikstrand, C. et al. “Monoclonal Antibodies against EGFRvIII Are Tumor Specific and React with Breast and Lung Carcinomas and Malignant Gliomas.” Cancer Research, 1995, vol. 55, No. 14, pp. 3140-3148. |
Wissner, A. et al., “Synthesis and Structure—Activity Relationships of 6,7-Disubstituted 4-Anilinoquinoline-3-carbonitriles. The Design of an Orally Active, Irreversible Inhibitor of the Tyrosine Kinase Activity of the Epidermal Growth Factor Receptor (EGFR) and the Human Epidermal Growth Factor Receptor-2 (HER-2).” Journal of Medicinal Chemistry, 2003, vol. 46, pp. 49-63. |
Xu, Y. et al., “Acquired Resistance of Lung Adenocarcinoma to EGFR-tyrosine Kinase Inhibitors Gefitinib and Erlotinib.” Cancer Biology & Therapy, 2010, vol. 9, No. 8, pp. 572-582. |
Yanase, K. et al., “Gefitinib reverses breast cancer resistance protein-medicated drug resistance”. Molecular Cancer Therapeutics, 2004, Vo. 9, No. 9, p. 119-1125. |
Yoshimura, N. et al., “EKB-569, a new irreversible epidermal growth factor recptor tyrosine kinase inhibitor, with clinical activity in patients with non-small cell lung cancer with acquired resistance to gefitinib.” Lung Cancer, 2006, vol. 51, pp. 363-368. |
Abstract in English (2000) for DE19911366. |
Abstract in English for WO199965228, 2010. |
Agus, D.B. et al., Abstract: “A phase I dose escalation study of BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor, in a continuous schedule in patients with advanced solid tumours.” Journal of Clinical Oncology, 2006, ASCO Annual Meeting Proceedings (Post-Meeting Edition). vol. 24, No. 18S, (Jun. 20 Supplement), 2006, 2074. |
Alan, R. “Benign Prostatic Hyperplasia (BPH)”. Available at http://healthlibrary.epnet.com/GetContent/asp?token-1baaea3c-d4f5-4e14-8429-e3b3e1add7a7&chunkiid-1203, last reviewed Mar. 2006. |
Barton, J. et al., “Growth Factors and their Receptors: new Targets for Prostate Cancern Therapy”. Urology 58 (Supplement 2A), Aug. 2001, p. 114-122. |
Bell, D.W. et al., “Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR”. Nature Genetics, Dec. 2005, vol. 37, No. 12, p. 1315-1316. Published online Oct. 30, 2005. |
Boehringer Ingelheim Press Release “Resistance to Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitors (TKIs).” 2010. |
Boehringer Ingelheim, “BIBW 2992: A Potent and Irreversible Inhibitor of EGFR/HER1 and HER2.” Accessed on Jan. 3, 2012. |
Boschelli, D., “4-Anilino-3-quinolinecarbonitriles: An Emerging Class of Kinase Inhibitors—An Update.” Medicinal Chemistry Reviews—Online, 2004, vol. 1, pp. 457-463. |
Burris, HA et al.; “EGF1004: a randomized, multicenter, phase Ib study of the safety, biologic activity and clinical efficacy of the dual kinase inhibitor GW572016” Breast Cancer Research and Treatment, V. 82, suppl. 1 (2003), p. S18 #39. |
Calabrisi, P. et al., Goodman * Gilman. “Section IX Chemotherapy of Neoplastic Diseases—Introduction”. Goodman & Gilman's The Pharmacological Basis of Therapeutics, 10th ed, 2001, Hardman, JG, Limbird LE, Gilman AG, Eds. McGraw-Hill, NY, 2001, p. 1381-1388 (pp. 1381m 1383-1385 and 1388 provided). |
Camp, E. et al., “Molecular Mechanisms of Resistance to Therapies Targeting the Epidermal Growth Factor Receptor.” Clinical Cancer Research, 2005, vol. 11, No. 1, pp. 397-405. |
Cancer Genome and Collaborative Group. Nature, Brief Communications, Sep. 2004, vol. 431, p. 525-526. |
Chan, S.K. et al., “Mutations of the epidermal growth factor receptor in non-small cell lung cancer—Search and destroy.” European Journal of Cancer 42, 2006, pp. 17-23. |
Choong, N. et al., “Gefitinib Response of Erlotinib-refractory Lung Cancer Involving Meninges—Role of EGFR Mutation.” Nature Clinical Practice Oncology, 2006, vol. 3, No. 1, pp. 50-57. |
deMiguel, M. et al., “Immunohistochemical comparative analysis of transforming growth factor a, epidermal growth factor, and epidermal growth factor receptor in normal, hyperplastic and neoplastic human prostates”. Cytokine, 1998, p. 722-727. |
Drug Data Report, “BIBW-2992” 2005, vol. 27, No. 11. |
Duque, J.L. et al., “Heparin-Binding Epidermal Growth Factor-Like Growth Factor is an Autocrine Mediator of Human Prostate Stromal Cell Growth in Vitro”. The Journal of Urology, vol. 165, Jan. 2001, p. 284-288. |
Fry, David W., “Inhibition of the Epidermal Growth Factor Receptor Family of Tyrosine Kinases as an Approach to Cancer Chemotherapy Progression from Reversible to Irreversible Inhibitors.” Pharmacological & Therapeutics, 1999, vol. 82, No. 2-3, pp. 207-218. |
Gonzales-Barcena, D. et al., “Responses to the antagonistic analog of LH-RH (SB-75, cetrorelix) in patients with benign prostatic hyperplasia and prostatic cancer”. The Prostate, 1994, 24(2), p. 84-92, only abstract provided. |
Goodman & Gilman's, “The Pharmacological Basis of Therapeutics” Tenth Edition, 2001, pp. 1381-1388. |
Harari, P.M. “Epidermal growth factor receptor inhibition strategies in oncology”. Endocrine-Related Cancer, 2004, vol. 11. p. 689-708. |
Herbst, R.S. et al., “Monoclonal Antibodies to Target Epidermal Growth Factor Receptor-Positive Tumors”. Cancer, Mar. 1, 2002, vol. 94, No. 5, p. 1593-1611. |
Hirsh, V., “Afatinib (BIBW 2992) Development in Non-Small-Cell Lung Cancer.” Future Oncology, 2011, vol. 7, pp. 817-825. |
Hofmann, B .B., Chapter 10 Catecholamines, Sympathomimetic Drugs, and Adrenergic Receptor Antagonists. “Goodman and Gilman's The Pharmacological Basis of Therapeutics, 10th ed.” Hardman JG, Limbird, LE, and Gilman AG, Eds. McGraw-Hill, 2001, p. 215-268, pp. 215, 247 and 248 provided). |
International Search Report and Written Opinion for PCT/EP2007/059735 date mailed Dec. 6, 2007. |
International Search Report for PCT/EP01/14569 mailed Mar. 1, 2002. |
Johnson, J, et al. “Relationships between drug activity in NCl preclinical in vitro and in vitro and in vivo models and early clinical trials”. British Journal of Cancer, 2001, 84 (10, p. 1424-1431. |
Kobayashi, S. et al.,“EGFR Mutation and Resistance of Non-Small-Cell Lung Cancer to Gefitinib.” The New England Journal of Medicine, 2005, vol. 352, pp. 786-792. |
Krozely, P. Abstract—Clinical Journal of Oncology Nursing, 2004, vol. 8, No. 2, p. 1092-1095. |
Kwak, E. et al. “Irreversible Inhibitors of the EGF Receptor may Circumvent Acquired Resistance to Gefitinib.” PNAS, 2005, vol. 102, No. 21, pp. 7665-7670. |
Laird & Cherrington, “Small molecule tyrosine kinase inhibitors: clinical development of anticancer agents” Expert Opinion. Investig. Drugs.; Ashley Publications (2003) 12(1) p. 51-64. |
Lee, M., “Tamsulosin for the Treatment of Benigh Prostatic Hypertrophy. The Annals of Pharmacotherapy”, Feb. 2000, 34, p. 188-199. |
Lewis, N., et al. Abstract: “A phase I dose escalation study of BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor, in a 3 week on 1 week off schedule in patients with advanced solid tumors”. Journal of Clinical Oncology, 2006 ASCO Annual Meeting Proceedings (Post-Meeting Edition). vol. 24, No. 18S (Jun. 20 Supplement), 2006: 3091. |
Li, D. et al. “BIBW2992, An Irreversible EGFR/HER2 Inhibitor Highly Effective in Preclinical Lung Cancer Models.” Oncogene, 2008, vol. 27, No. 34, pp. 4702-4711. |
McMahon; VEGF Receptor Signaling in Tumor Angiogenesis; The Oncologist; 2000; 5 (suppl 1); pp. 3-10. |
Nosov et al., “Mekhanismy regulyatsii vnutrikletochnoi peredachi signala . . . ” VIII Rossiskii Onkologicheskii Congress—Moscow, 2004. |
Paez, J. G. “EGFR Mutations in Lung Cancer: Correlation with Clinical Response to Gefitinib Therapy”. Science, vol. 304, 2004, p. 1497-1500. |
Pinedo et al.; Translational Research: The Role of VEGF in Tumor Angiogenesis; The Oncologist; 2000; 5(suppl 1); pp. 1-2. |
Plummer et al.; 573 Poster Phase I study of BIBW2992, an oral irreversible dual EGFR/HER2 inhibitor, showing activity in tumors with mutated EGFR; European Journal of Cancer; Supplement; Nov. 2006; vol. 4; No. 12; Pergamon; Oxford, GB. |
Rayford, W. et al., “Muscarinic Cholinergic Receptors Promote Growth of Human Prostate Cancer Cells”. The Prostate, Feb. 1997, 30(3), p. 160-165. |
Rosell, R. et al., “Crossing the Rubicon in Lung Adenocarcinoma: the Conundrum of EGFR Tyrosine Kinase Mutations.” 2005, vol. 1, No. 3, pp. 319-322. |
Sequist, L.V., et al., “Neratinib, an Irrerversible Pan-ErbB Receptor Tyrosine Kinase Inhibitor: Results of a Phase II Trial in Patients with Advanced Non-Small-Cell Lung Cancer” Journal of Clinical Oncology, vol. 28, No. 18, Jun. 20, 2010, p. 3076-3083. |
Solca et al., Abstracts of AACR-EORTC International Conference, Molecular Targets and Cancer Therapeutics. |
Solca et al.; 567 Poster Efficacy of BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor, in combination with cytotoxic agents; European Journal of Cancer; Supplement; Nov. 2006; vol. 4; No. 12; Pergamon; Oxford, GB. |
Solca, F. et al., “A242 BIBW 2992, an Irreversible Dual EGFR/HER2 Kinase Inhibitor, Shows Activity on L858R/T790M EGFR Mutants.” and “A244 BIBW 2992, An Irreversible Dual EGFR/HER2 Receptor Tyrosine Kinase Inhibitor for Cancer Therapy.” Molecular Targets and Cancer Therapeutics, Nov. 2005. |
Stedman's Medical Dictionary, 27th edition, Lippincott, Williams & Wilkins, Baltimore, 2000. |
Subramaniam, D. S., et al., “BIBW 2992 in non-small cell lung cancer”. Expert Opinion, Drug Evaluation, 2011, vol. 20, No. 3, p. 415-422. |
Supplement ASCO Meeting Abstracts 1-4, Journal of Clinical Oncology, 2006. |
“Afatinib Prolongs Progression-Free Survival in NSCLC”, 2012 ASCO Annual Meeting, Chicago, ASCO Daily News, LBA7500, Jun. 1-5, 2012. [downloaded from the internet Oct. 25, 2012. http://chicago2012.asco.org/ASCODailyNews/LBA7500.aspx]. |
Argiris, A. et al., “Phase III Randomized, Placebo-Controlled Trial of Docetaxel With or Without Gefitinib in Recurrent or Metastatic Head and Neck Cancer: An Eastern Cooperative Oncology Group Trial.” Journal of Clinical Oncology, 2013, vol. 31, No. 11, pp. 1405-1414. |
Cancer Genome and Collaborative Group. Nature, Brief Communications Sep. 2004, vol. 431, p. 525-526. |
Chustecka, Zosia, “Afatinib Shows Modest Benefit in Head and Neck Cancer.” Boehringer Ingelheim, European Society for Medical Oncology (ESMO) Congress 2014, Presented Sep. 27, 2014, Medscape.com. |
European Society for Medical Oncology, “ESMO 2014 Press Release: Second-Line Afatinib Significantly Improves Progression-Free Survival in Recurrent or Metastatic Head and Neck Cancer, Phase III Trial Shows.” Retrieved online Dec. 18, 2014. http://www.esmo.org/Conferences/ESMO-2014-Congress/Press-Media/Second-Line-Afatinib-Significantly-Improves-Progression-Free-Survival-in-Recurrent-or-Metastatic-Head-and-Neck-Cancer-Phase-III-Trial-Shows. |
European Society for Medical Oncology, “ESMO 2014: Afatinib vs Methotrexate in Second-Line Treatment of Recurrent and/or Metastatic Head and Neck Squamos Cell Carcinoma.” Retrieved online Dec. 18, 2014. http://www.esmo.org/Conferences/ESMO-2014-Congress/News-Articles/Afatinib-vs-Methotrexate-in-Second-Line-Treatment-of-Recurrent-and-or-Metastatic-Head-and-Neck-Squamous-Cell-Carcinoma. |
Hansen, A.R. et al., “Epidermal Growth Factor Receptor Targeting in Head and Neck Cancer: Have We Been Just Skimming the Surface?” Journal of Clinical Oncology, 2013, vol. 31, No. 11, pp. 1381-1383. |
Hirsh, V., “Afatinib (BIBW 2992) development in non-small-cell lung cancer”. Future Oncol., 2011, 7(7), p. 817-825. |
Martins, R.G. et al., “Cisplatin and Radiotherapy With or Without Erlotinib in Locally Advanced Squamous Cell Carcinoma of the Head and Neck: A Randomized Phase II Trial.” Journal of Clinical Oncology, 2013, vol. 31, No. 11, pp. 1415-1421. |
Miller, V.A., et al., “Afatinib versus placebo for patients with advanced, metastatic non-small-cell lung cancer after failure of erlotinib, gefitinib, or both, and one or two lines of chemotherapy (LUX-Lung1): a phase 2b/3 randomised trial”, The Lancet, Oncology, vol. 19, May 2012, pp. 528-538. |
Sausville, E. A. et al. “Contributions of Human Tumor Xenografts to Anticancer Drug Development”. Cancer Research, 2006, vol. 66 (7), p. 3351-3354. |
Seiwert, T.Y. et al., “A randomized, phase II study of afatinib versus cetuximab in metastatic or recurrent squamous cell carcinoma of the head and neck.” Annals of Oncology, 2014, vol. 25, No. 9, pp. 1813-1820. |
Sequist, L.V. et al., “1229PD / Lux-Lung 3: Symptom and Health-Related Quality of Life Results from a Randomized Phase III Study in 1st-Line Advanced NSCLC Patients Harbouring EGFR Mutations”, Poster Discussion, Sep. 30, 2012 [downloaded from the internet Oct. 25, 2012. http://abstracts.webges.com/myitinerary/session-148.html?congress=esmo2012#.UFdGtBr1LSY.gmai]. |
Subramaniam, D.S. et al., “BIBW 2992 in non-small cell lung cancer”. Expert Opinion Investig. Drugs, 2011, 20(3), p. 415-422. |
Vlahovic, G., et al., “Activation of Tyrosine Kinases in Cancer”, The Oncologist, 2003, vol. 8, pp. 531-538. |
Yanase, K. et al., “Gefitinib reverses breast cancer resistance protein-medicated drug resistance”. Molecular Cancer Therapeutics, 2004, Vo. 9, No. 9, p. 1119-1125. |
Yang, J. C-H, et al., “Afatinib for patients with lung adenocarcinoma and epidermal growth factor receptor mutations (LUX-Lung 2): a phase 2 trial”, The Lancet, Oncology, vol. 13, May 2012, pp. 539-548. |
Carter, T.A. et al., “Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases.” Proceedings of National Academy of Sciences of the USA, 2005, vol. 102, No. 31, pp. 11011-11016. |
Cascone, T. et al, “Epidermal growth factor receptor inhibitors in non-small-cell lung cancer”, Expert Opinion on Drug Discovery, Informa Healthcare, London, GB, vol. 2, No. 3, Mar. 1, 2008, p. 335-348. |
Doebele, R. et al., “New strategies to overcome limitations of reversible EGFR tyrosine kinase inhibitor therapy in non-small cell lung cancer.” Lung Cancer, 2010, vol. 69, pp. 1-12. |
Janjigian, Y. et al., “Phase I/II Trial of Cetuximab and Erlotinib in Patients with Lung Adenocarcinoma and Acquired Resistance to Erlotinib.” Clinical Cancer Research, 2011, vol. 17, No. 8, pp. 2521-2527. |
Kawabata, S. et al., “Abstract 2417: A new mouse model for epithelial ear neoplasms based upon expression of mutant EGFRL858R/T790M.” Cancer Research, 2011, vol. 71, No. 8, p. 1. |
Kwak, E.L. et al., “Irreversible inhibitors of the EGF receptor may circumvent acquired resistance of gefitinib.” Proceedings of National Academy of Sciences of the USA, 2005, vol. 102, No. 21, pp. 7665-7670. |
Prescribing Information, Package insert for Erbitux, Revised Jul. 2009, pp. 1-24. |
Ramalingam, S. et al., “Dual Inhibition of the Epidermal Growth Factor Receptor with Cetuximab, an IgG1 Monoclonal Antibody, and Gefitinib, A Tyrosine Kinase Inhibitor, in Patients with Refractory Non-small Cell Lung Cancer (NSCLC): A Phase I Study.” Journal of Thoracic Oncology, 2008, vol. 3, No. 3, pp. 258-264. |
Regales, L. et al., “Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer”, American Society for Clinical Investigation, vol. 199, No. 10, Oct. 1, 2009, p. 3000-3010. |
Reid, A, et al, “Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu)”, European Journal of Cancer, Pergamon Press, Oxford, GB, vol. 43, No. 3, Feb. 1, 2008, p. 481-489. |
Sequist, L.V. et al., “Neratinib, an Irreversible Pan-ErbB Receptor Tyrosine Kinase Inhibitor: Results of a Phase II Trial in Patients With Advanced Non-Small-Cell Lung Cancer.” Journal of Clinical Oncology, 2010, vol. 28, No. 18, pp. 3076-3083. |
Zhou, W. et al., “Novel mutant-selective EGFR kinase inhibitors against EGFR T790M.” Nature, 2009, vol. 462, pp. 1070-1074. |
Shaw et al., A phase I dose escalation study if BIBW 2992, an irreversible dual EGFR/HER2 receptor tyrosine kinase inhibitor, in patients with advanced solid tumors, Journal of Clinical Oncology, 2006, vol. 24, No. 18S, p. 3027. |
Kris et al., JAMA, 2003, vol. 290, No. 16, pp. 2149-2158. |
Number | Date | Country | |
---|---|---|---|
20120107399 A1 | May 2012 | US |