The described embodiments relate generally to anodic films and anodizing processes. More particularly, the present embodiments relate to processes for repairing defects, such as cracks, within anodic films so as to enhance the corrosion protection properties of the anodic films.
Anodizing is a method of providing a protective anodic oxide film on a metal substrate, often used in industry to provide a protective and sometimes cosmetically appealing coating to metal parts. When subjected to any of a number of manufacturing processes, such as laser marking or other thermal operations, however, anodic oxide films can crack due to internal stresses. Machining and handling can also form cracks or crack-like defects. Substrate geometry can also increase the likelihood of an overlying anodic oxide film to have cracks or crack-like defects. For example, anodic films formed on corners or convex curvatures of a substrate can develop cracks along these corners and curvatures.
Although stress-induced cracks are generally very small, if the cracks span the entire thickness of an anodic oxide film, they can present pathways for water or other corrosion-inducing agents to reach the underlying metal substrate through an otherwise protective metal oxide film. Over time and repeated exposure to water or other corrosion-inducing agents during the service life of a part, corrosion of the underlying metal substrate can quickly escalate and further compromise the protective properties of the anodic oxide film. What is needed, therefore, are manufacturing methods for repairing cracks within anodic oxide films, thereby enhancing the corrosion protection of the anodic oxide films.
This paper describes various embodiments that relate to anodic oxide films and processes for enhancing the corrosion protection properties of anodic oxide films. The processes involve blocking pathways for water or other corrosion-inducing agents from reaching an underlying substrate via a crack or defect within an anodic oxide film. In particular embodiments, the methods involve thickening a barrier layer, or a portion of the barrier layer, of the anodic oxide film.
According to one embodiment, a method of anodizing a substrate is described. The method includes performing a first anodizing operation on the substrate. The first anodizing operation forms an anodic film on the substrate. The method also includes performing an intermediate operation on the anodic film. The intermediate operation forms a defect within the anodic film that provides a pathway through the anodic film to substrate. The method further includes performing a second anodizing operation on the substrate. The second anodizing operation forms a metal oxide plug within the anodic film that blocks the pathway.
According to another embodiment, an enclosure for an electronic device is described. The enclosure includes a metal substrate. The enclosure also includes an anodic coating covering a surface of the metal substrate. The anodic coating includes a defect region. The enclosure further includes a metal oxide plug within the defect region of the anodic film.
According to a further embodiment, an enclosure for an electronic device is described. The enclosure includes a metal substrate having a surface with a surface feature. The enclosure also includes an anodic coating covering the surface of the metal substrate. The anodic coating includes a crack located near the surface feature of the metal substrate. The anodic coating includes a metal oxide plug within the crack.
These and other embodiments will be described in detail below.
The disclosure will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements.
Reference will now be made in detail to representative embodiments illustrated in the accompanying drawings. It should be understood that the following descriptions are not intended to limit the embodiments to one preferred embodiment. To the contrary, it is intended to cover alternatives, modifications, and equivalents as can be included within the spirit and scope of the described embodiments as defined by the appended claims.
Processes for improving the corrosion protection properties of anodic oxide films are described. In general, anodic oxide films are made of metal oxide material, which is generally harder than the underlying metal of the substrate. Therefore, anodizing is commonly used in industry to provide hard protective coatings for metal parts. Some manufacturing processes, however, such as laser-marking, thermal operations, machining and handling, can put stress on the anodic oxide films and may cause them to crack or acquire other defects. Although many of these cracks can be very small—on the scale of micrometers or tens of micrometers wide—they can allow water or other corrosion-inducing agents to reach the underlying metal substrate. Thus, these cracks can act as pathways for corrosion-inducing agents to reach the underlying metal substrate. This can eventually cause the metal substrate to corrode, especially if the metal substrate is relatively susceptible to corrosion, such as some alloys that have certain alloying elements.
Techniques described herein involve increasing the protective characteristics of an anodic oxide film by thickening a barrier layer, or a portion of the barrier layer, of the anodic oxide film. Conventionally, the barrier layer corresponds to a thin non-porous region of the anodic oxide film proximate to the metal substrate, and of thickness approximately equivalent to half an anodic cell pore wall thickness (typically 10-20 nanometers thick in Type II anodic oxides). Thickening this non-porous barrier layer, or a portion thereof, can block off the pathways created by the cracks within the anodic oxide film where corrosion-inducing agents can enter and reach the underlying metal substrate.
The barrier layer thickening can be accomplished by performing an additional anodizing process on the already-formed anodic oxide film. The additional anodizing process can be a non-pore-forming anodizing process so as to increase the thickness of the non-porous barrier layer. In some embodiments, the additional anodizing process is performed prior to an anodic film sealing process, resulting in a generally uniform thickening of the barrier layer. In some embodiments, the additional anodizing process is performed after an anodic film sealing process, resulting in localized thickening of the barrier layer—in particular, at locations corresponding to the crack or defects within the anodic oxide film.
The methods described herein may be particularly useful in applications that include metal substrates made of certain types of aluminum alloys that are relatively sensitive to corrosion. For example, some aluminum alloys that include relatively high amounts of zinc and magnesium (e.g., some 7000 series alloys) may be more susceptible to the above-described corrosion compared to aluminum alloys having lower amounts of zinc and magnesium (e.g., some 6000 series alloys). Thus, the methods described herein can provide a more robust corrosion protection layer on these corrosion sensitive alloys. It should be noted, however, that the methods described herein are not limited to use on any particular aluminum alloy, or on any particular metal. That is, the methods can be used on any suitable anodizable metal substrate.
As used herein, the terms anodic oxide, anodic oxide coating, anodic oxide film, anodic film, anodic layer, anodic coating, oxide film, oxide layer, oxide coating, metal oxide, etc. can be used interchangeably and can refer to suitable metal oxide materials, unless otherwise specified.
Methods described herein are well suited for providing cosmetically appealing surface finishes to consumer products. For example, the methods described herein can be used to form durable and cosmetically appealing anodized substrates used in enclosures, or portions of enclosures, for computers, portable electronic devices, wearable electronic devices, and electronic device accessories, such as those manufactured by Apple Inc., based in Cupertino, Calif.
These and other embodiments are discussed below with reference to
The methods described herein can be used to form durable and cosmetically appealing anodic oxide coatings for metallic surfaces of consumer devices.
During manufacturing, the anodized metal portions of devices 102, 104, 106 and 108 can be exposed to a number of mechanical, chemical and thermal processes. Such processes can include machining, surface finishing, chemical cleaning, laser marking, and other thermal operations. These manufacturing processes can sometimes cause stress-induced fractures, or cracks, to form within the anodic oxide coatings that are supposed to protect the underlying metal substrates.
In many applications, it is ideal for anodic oxide film 202 to be defect-free, such as represented by defect-free region 206. As shown, defect-free region 206 is an area of anodic oxide film 202 that does not have defects that span thickness 207 of anodic oxide film 202. An anodic film that is completely defect-free, however, is very rarely achieved, if ever—at least over a large area. Note that anodic oxide film 202, including defect-free region 206, does not show pores that are formed within anodic oxide film 202 during typical anodizing processes, such as type II anodizing. These pores, because of their small size, are not generally considered defects. Furthermore, these pores can be sealed using a sealing process, which will be described in detail below.
As described above, cracks within an anodic oxide film can result from any of a number of mechanisms. For example, cracks 208 can result from mechanically or thermally induced strain of part 200, such as by machining, surface finishing or handling of part 200. Cracks 210 can be induced by laser-marking, where the metal substrate 204 at interface 211 between metal substrate 204 and anodic oxide film 202 is melted by a laser wavelength to which anodic oxide film 202 is largely transparent in order to produce a dark or black mark 212. Such laser-marking operations can cause intense localized heating and strain of anodic oxide film 202, which can result in the formation of cracks 210. Cracks 208, 210, 214 and 216 can also be referred to generally as defect regions within anodic oxide film 202.
Concentrations of second-phase particles in metal substrate 204—such as might occur on grain boundary 213—may result in crack or defective region 214 to form within anodic oxide film 202 due to excessive dissolution or inhibited growth of anodic oxide film 202 near grain boundary 213. That is, grain boundary 213 can correspond to a surface feature, albeit very small, on metal substrate 204 that can cause a corresponding defective region or crack 214 to form within anodic oxide film 202. That is, crack 214 can propagate from grain boundary 213 within metal substrate 204. In addition, the shape of metal substrate 204 can also affect the anodic oxide film 202. For example, protruding feature 215, which can correspond to corner or edge of metal substrate 204, can also result in crack 216 to form within anodic oxide film 202 simply due to the convex geometry of protruding feature. That is, protruding feature 215 has a convex radius, which can cause a gap or crack 216 to develop during an anodizing process. In some cases, protruding feature 215 is a deliberately engineered macroscopic feature of metal substrate 204. In other cases, protruding feature 215 is a microscopic texture, such as the peaks on a textured surface (e.g., blasted surface) of metal substrate 204.
Each type of cracks 208, 210, 214 and 216 can extend through thickness 207 of anodic oxide film 202, and thus can present a pathway for corrosion-inducing agents to reach metal substrate 204. It should be noted that a metal substrate 204 made of aluminum alloy is often inherently corrosion resistant, and even a defective anodic oxide film 202 can provide a sufficient barrier against most corrosive environments. However, for certain types of aluminum alloys having certain alloying elements, everyday substances that part 200 can be exposed to (e.g., water, sweat) can be sufficient to cause corrosion at these crack 208, 210, 214 and 216—at least under long-term exposure. This has been simulated using tests that accelerate exposure to such substances in order to evaluate chemical sensitivity of part 200.
Many anodizing processes include hydrothermal sealing processes, whereby anodic oxide film 202 is immersed in a hot aqueous solution or steam. The hydrothermal sealing process hydrates exposed portions of the metal oxide material of anodic oxide film 202, causing the metal oxide material to swell and close up pores with anodic oxide film 202 that were formed during the anodizing process. This greatly improves the corrosion resistance of anodic oxide film 202 since the anodic pores can also provide pathways for corrosion-inducing agents to reach metal substrate 204. However, the pores formed during the anodizing process are extremely small, typically on the scale of less than 20 nanometers in diameter. Cracks 208, 210, 214 and 216, however, are typically too wide for conventional hydrothermal sealing processes to sufficiently close and provide significant protection of metal substrate 204 against corrosion-inducing agents. Thus, even after a conventional sealing process, cracks 208, 210, 214 and 216 can still provide pathways to metal substrate 204.
The techniques provided herein address these problems by performing a barrier layer thickening process that thickens the barrier layer over metal substrate 204 at cracks 208, 210, 214 and 216. The barrier layer thickening is accomplished by performing an additional anodizing operation on the already anodized part 200. The additional anodizing process can be performed before a sealing operation or after a sealing operation, both of which can enhance the corrosion protection of anodic oxide film 202.
Reference will now be made to
As described above, anodic oxide film 302 can include defects such as crack 310, which can span the entire thickness 311 of anodic oxide film 302 and exposed a portion of metal substrate 304. Crack 310 can be formed by any mechanism, including mechanically or thermally induced strain, laser marking, defects related to grain boundaries of metal substrate 304, and/or geometry of metal substrate 304, as described above. Crack 310 can act as a pathway for moisture or other corrosion-inducing agents to pass through anodic oxide film 302 and reach underlying metal substrate 304.
Unlike the anodizing process for forming porous portion 306, the subsequent anodizing process for thickening barrier layer 308 can involve a non-pore-forming anodizing process that promotes growth and thickening of barrier layer 308. A non-pore-forming anodizing process generally involves growth of metal oxide material without substantial simultaneous dissolution of the metal oxide material. Thus, metal oxide plug 312 can be non-porous, thereby providing a better barrier between metal substrate 304 and the environment. This is in contrast to a dissolution anodizing process, such as the anodizing process used to form the first portion of anodic oxide film 302 at
Non-pore-forming anodizing processes can involve the use of an electrolytic bath that promotes metal oxide growth without substantial dissolution and without substantial pore formation. Examples of non-pore-forming solutions which are suitable for the additional anodizing operation include electrolytes having any of a number of weak organic acids, such as one or more of formic acid, malonic acid, maleic acid and tartaric acid—as well as neutral and basic solutions such as one or more of ammonium adipate, sodium borate, sodium hydrogen phosphate, sodium hydroxide and sodium sulfate. In some embodiments, the non-pore-forming electrolyte includes one or both of tartaric acid and sodium tetra-borate. In a non pore-forming electrolyte, barrier layer 308 can achieve a thickness 307 of tens or hundreds of nanometers, depending on the voltage used during the anodizing operation. In a particular embodiment, an electrolyte with tartaric acid in a concentration of about 100 g/l was used. In another particular embodiment, substantially equivalent results (as the tartaric acid, 100 g/l) were obtained using sodium tetraborate in a concentration of about 15 g/l. The applied voltages can vary depending on a desired thickness of barrier layer 308. In some embodiments, thickness 307 of barrier layer 308 in nanometers is typically about 1.3 times the applied voltage. In some embodiments, suitable voltages range between about 50 V and 300 V. In one embodiment, a voltage of about 200 V is used.
Although barrier layer 308 may not provide significant abrasion resistance on its own (i.e., without the presence of porous portion 306), it benefits from the mechanical protection of adjacent porous portion 306. That is, the greater thickness 307 of barrier layer 308 (compared to a conventional barrier layer of just a few or tens nanometers) can provide improved corrosion resistance, while porous portion 306 can provide structural integrity and abrasion resistance.
As described above, the additional anodizing operation can be performed before and/or after a sealing process. When it is performed before sealing, it can uniformly thicken barrier layer 308 at terminuses 309 of substantially all pores 305, as show in
As shown, crack 410 can span the entire thickness 411 of anodic oxide film 402. Although the sealing operation can sufficiently swell the metal oxide material of anodic oxide film 402 to seal pores 405, it may not be sufficient to seal crack 410 if crack 410 is about one micrometer wide or wider. Thus, at
Since anodic oxide film 402 is sealed, the electrolyte used in the anodizing process may not readily access metal substrate 404 via pores 405. The electrolyte, however, can more readily access metal substrate 404 via crack 410. Thus, the anodizing preferably converts the portion of metal substrate 404 at the base of crack 410, thereby forming a localized metal oxide plug 412. Thickness 415 of metal oxide plug 412 can vary depending on process parameters of the non-pore-forming anodizing process, as described above with reference to
One of the benefits of methods described herein is most evident on an alloy, which can be inherently somewhat corrosion-prone. For example, some 7000 series aluminum alloys that include relatively high concentrations of magnesium and zinc alloying elements have high strength compared to typical 6000 series aluminum alloys. However, these alloying elements can make certain 7000 series aluminum alloys slightly more prone to corrosion. That is, a non-anodized surface of a 7000 series may be more prone to corrosion under certain environmental exposures (e.g., prolonged sweat, etc.) than an equivalent anodized surface of a 6000 series aluminum alloy. Metal alloys with anodized surfaces are generally well protected against corrosion, but can exhibit localized corrosion sensitivity after, for example, an infrared laser has been used to generate dark marks by locally melting the metal at the metal/oxide interface, as described above. In particular, a 72-hour ASTM B117 salt mist exposure yielded corrosion on about 10% of laser marked regions of an anodized 7000-series aluminum alloy part. However, when the part is protected by the embodiments described herein, this corrosion is eliminated under the same testing conditions.
Further quantitative evidence of the corrosion resistance improvement is offered by corrosion potential measurements and corrosion current density measurements, as indicated by Table 1 below.
Table 1 shows open circuit potentials and corrosion current densities for substrate samples 1-7 of the same type of 7000-series aluminum processed in different ways. Sample 1 corresponds to a bare substrate that has not undergone an anodizing process. Sample 2 corresponds to a substrate after a pore-forming anodizing process (Ano A) and a first type of sealing process are performed. In some embodiments, the pore-forming anodizing process (Ano A) is a sulfuric acid-based anodizing process, and the sealing process is a hydrothermal sealing process. Sample 3 corresponds to a substrate after a pore-forming anodizing process (Ano A) and a second type of sealing process are performed. Sample 4 corresponds to a substrate after a pore-forming anodizing process (Ano A) and a third type of sealing process are performed. Sample 5 corresponds to a substrate after a pore-forming anodizing process (Ano A) and a fourth type of sealing process are performed. Sample 6 corresponds to a substrate after a non-forming anodizing process (Ano B) is performed. Sample 7 corresponds to a substrate after a pore-forming anodizing process and a barrier layer thickening process are performed. The barrier layer thickening process of sample 7 involves further anodizing the substrate with a non-pore-forming anodizing process using 200 V.
Sample 1 (bare substrate) has high open circuit potential, as indicated by the large negative value −926 mV+/−3. Anodizing using a pore-forming anodizing process (Ano A) or non-pore-forming anodizing process (Ano B) increases the open circuit potential, as indicated by samples 2-6. However, the open circuit potential of sample 7 indicates that anodizing using a pore-forming anodizing process (Ano A) followed by a barrier layer thickening process drastically increases the open circuit potential (213+/−48 mV).
Corrosion current density measurements yield similar results. The corrosion current density of sample 1 (bare substrate) is 8.7×10−7 A cm−2. Corrosion current density measurements of samples 2-6 show that anodizing reduces the corrosion current density by about three orders of magnitude, to between 1×10−10 A cm−2 and 3.9×10−10 A cm−2. However, corrosion current density of sample 7 indicates that anodizing using a pore-forming anodizing process (Ano A) followed by a barrier layer thickening process drastically reduces the corrosion current density (7.6×10−12 A cm−2).
The data of Table 1 are graphically illustrated in the graphs of
As expected, the bare substrate samples A, B, C and D are shown to have more discoloration with more salt spray exposure time, indicating significant corrosion of the aluminum alloy. Those samples I, J, K and L protected by a conventional porous anodic oxide film show little discoloration, indicating the conventional porous anodic oxide film can provide good corrosion protection under the salt spray conditions. It should be noted, however, that samples I, J, K and L protected by a conventional porous anodic oxide may experience corrosion if the porous anodic film develops cracks or defects as described above. In particular, for example, if a region of the surface has been laser-marked, it will typically exhibit local corrosion.
These results may be an indication of inhomogeneities in the alloy substrate. These aspects are illustrated in
In some embodiments described herein, an anodic oxide film having a thick barrier layer portion and a porous portion is found to provide significant reduction in corrosion of an underlying metal alloy substrate. To illustrate,
At
At 1002, a porous anodic film is formed on the metal substrate. In some embodiments, a type II anodizing process is used, which can provide a relatively transparent and cosmetically appealing anodic film. At 1004, an intermediate processing operation, such as machining, and/or laser marking or texturing, is optionally performed. At 1006, the barrier layer of the porous anodic film is thickened. In some embodiments, the barrier layer is thickened to a pre-determined thickness, such as a target thickness of tens or hundreds of nanometers. The barrier layer thickening can be achieved by exposing the already anodized metal substrate to a non-pore-forming anodizing process. The final thickness of the barrier layer can depend on processing conditions—for example, the voltage used during the non-pore-forming anodizing process. After the non-pore-forming process is complete, the resultant anodic film retains its porous portion and also includes a thickened barrier layer.
At 1008, the porous anodic film is optionally colored. For example, a colorant (e.g., dye or metal) can be infused within pores of the porous portion of the anodic film. At 1010, the porous anodic film is optionally sealed using a sealing process. In some cases, the sealing is performed in a hot an aqueous solution (e.g., nickel acetate solution). Sealing the pores of the anodic film can increase the corrosion protection quality of the anodic film since the pores can act as pathways for corrosion-inducing agents (e.g., water, sweat) to come near, and possibly reach, the underlying metal substrate. The sealing process can also retain colorant within the anodic film if the anodic film is colored. At 1012, a processing operation is optionally performed. In some embodiments, the processing operation includes an anodic film polishing process or other post-sealing manufacturing process.
At 1102, a porous anodic film is formed on the metal substrate using a pore-forming anodizing process, such as a type II anodizing process. At 1104, the porous anodic film is optionally colored, for example, by infusing a colorant within the pores. At 1106, the porous anodic film is optionally sealed to increase the corrosion protection quality of the anodic film and retain colorant within the anodic film if the anodic film is colored. At 1108, an intermediate processing operation, such as machining, and/or laser marking or texturing, is optionally performed.
At 1110, the barrier layer of the porous anodic film is locally thickened at locations where any cracks within the anodic film exist, and which are too wide for the sealing process to seal. This can create a sort of metal oxide plug that selectively protects the underlying metal substrate at locations corresponding to cracks and other defect within the anodic film. In some embodiments, the localized barrier layer is thickened to a pre-determined thickness, such as a target thickness of tens or hundreds of nanometers. The localized barrier layer thickening can be achieved by exposing the already anodized and sealed substrate to a non-pore-forming anodizing process. The final thickness of the metal oxide plug can depend on processing conditions—for example, the voltage used during the non-pore-forming anodizing process. At 1112, an optional processing operation, such as an anodic film polishing process or other post-sealing manufacturing process, can be performed.
In
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the described embodiments. However, it will be apparent to one skilled in the art that the specific details are not required in order to practice the described embodiments. Thus, the foregoing descriptions of the specific embodiments described herein are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the embodiments to the precise forms disclosed. It will be apparent to one of ordinary skill in the art that many modifications and variations are possible in view of the above teachings.
Number | Name | Date | Kind |
---|---|---|---|
2692851 | Burrows | Oct 1954 | A |
3388050 | Wainer et al. | Jun 1968 | A |
3411994 | Wainer et al. | Nov 1968 | A |
3985629 | Kimura | Oct 1976 | A |
4039355 | Takahashi et al. | Aug 1977 | A |
4066516 | Sato | Jan 1978 | A |
4483751 | Murayama et al. | Nov 1984 | A |
4518468 | Fotland et al. | May 1985 | A |
4606796 | Hanazima et al. | Aug 1986 | A |
4631112 | Usui et al. | Dec 1986 | A |
4856326 | Tsukamoto | Aug 1989 | A |
4894127 | Wong et al. | Jan 1990 | A |
4987766 | Brar et al. | Jan 1991 | A |
5066368 | Pasqualoni et al. | Nov 1991 | A |
5078845 | Kunugihara et al. | Jan 1992 | A |
5277788 | Nitowski et al. | Jan 1994 | A |
5336341 | Maejima et al. | Aug 1994 | A |
5472788 | Benitez-Garriga | Dec 1995 | A |
5705225 | Dornfest et al. | Jan 1998 | A |
5919561 | Fuchs et al. | Jul 1999 | A |
6027629 | Hisamoto et al. | Feb 2000 | A |
6235409 | Serafin et al. | May 2001 | B1 |
6339958 | Tsui et al. | Jan 2002 | B1 |
6581446 | Deneuville et al. | Jun 2003 | B1 |
7527872 | Steele et al. | May 2009 | B2 |
7732056 | Bhatnagar et al. | Jun 2010 | B2 |
8016948 | Wang et al. | Sep 2011 | B2 |
8309237 | Levendusky et al. | Nov 2012 | B2 |
8535505 | Yi et al. | Sep 2013 | B2 |
8691403 | Amakusa et al. | Apr 2014 | B2 |
8950465 | Lin et al. | Feb 2015 | B2 |
8962163 | Shimao et al. | Feb 2015 | B2 |
8968548 | Lai et al. | Mar 2015 | B2 |
9312511 | Mandlik et al. | Apr 2016 | B2 |
9349536 | Lee et al. | May 2016 | B2 |
9359686 | Curran | Jun 2016 | B1 |
9512510 | Hatta | Dec 2016 | B2 |
9669604 | Tatsumi et al. | Jun 2017 | B2 |
9869030 | Curran et al. | Jan 2018 | B2 |
9869623 | Hamann et al. | Jan 2018 | B2 |
20030196907 | Viola | Oct 2003 | A1 |
20040004003 | Hesse | Jan 2004 | A1 |
20050061680 | Dolan | Mar 2005 | A1 |
20050106403 | Yui | May 2005 | A1 |
20060019035 | Munz et al. | Jan 2006 | A1 |
20060086475 | Miyashita et al. | Apr 2006 | A1 |
20080274375 | Ng et al. | Nov 2008 | A1 |
20080283408 | Nishizawa | Nov 2008 | A1 |
20090050485 | Wada et al. | Feb 2009 | A1 |
20090152120 | Cao et al. | Jun 2009 | A1 |
20090233113 | Hisamoto et al. | Sep 2009 | A1 |
20100024534 | Li et al. | Feb 2010 | A1 |
20100264036 | Hatanaka et al. | Oct 2010 | A1 |
20100326839 | Morikawa et al. | Dec 2010 | A1 |
20110252874 | Patten et al. | Oct 2011 | A1 |
20110297319 | Chen et al. | Dec 2011 | A1 |
20120000783 | Suda et al. | Jan 2012 | A1 |
20120103819 | Chang et al. | May 2012 | A1 |
20120298513 | Shimao et al. | Nov 2012 | A1 |
20130008796 | Silverman et al. | Jan 2013 | A1 |
20130075262 | Teng | Mar 2013 | A1 |
20130153427 | Tatebe | Jun 2013 | A1 |
20130156635 | Lee et al. | Jun 2013 | A1 |
20130302641 | Zhang et al. | Nov 2013 | A1 |
20130319868 | Yoshida et al. | Dec 2013 | A1 |
20130319872 | Woodhull et al. | Dec 2013 | A1 |
20140061054 | Ye | Mar 2014 | A1 |
20140083861 | Askin et al. | Mar 2014 | A1 |
20140262790 | Levendusky et al. | Sep 2014 | A1 |
20150132541 | McDonald et al. | May 2015 | A1 |
20160060783 | Curran | Mar 2016 | A1 |
20160237586 | Curran | Aug 2016 | A1 |
20160289858 | Curran et al. | Oct 2016 | A1 |
20160290917 | Hamann et al. | Oct 2016 | A1 |
20170051425 | Curran et al. | Feb 2017 | A1 |
20170051426 | Curran et al. | Feb 2017 | A1 |
20170088917 | Curran et al. | Mar 2017 | A1 |
20170121837 | Tatebe | May 2017 | A1 |
20180049337 | Curran et al. | Feb 2018 | A1 |
Number | Date | Country |
---|---|---|
691064 | Apr 2001 | CH |
1254028 | May 2000 | CN |
1616709 | May 2005 | CN |
1774158 | May 2006 | CN |
1965618 | May 2007 | CN |
101287861 | Oct 2008 | CN |
101298690 | Nov 2008 | CN |
101325849 | Dec 2008 | CN |
102333897 | Jan 2012 | CN |
102654782 | Sep 2012 | CN |
102666894 | Sep 2012 | CN |
103484737 | Jan 2014 | CN |
103484916 | Jan 2014 | CN |
103526088 | Jan 2014 | CN |
103732772 | Apr 2014 | CN |
104762538 | Jul 2015 | CN |
997545 | May 2000 | EP |
1688020 | Aug 2006 | EP |
1397244 | Dec 2009 | EP |
2301760 | Mar 2011 | EP |
2817948 | Dec 2014 | EP |
H0347937 | Feb 1991 | JP |
2000313996 | Nov 2000 | JP |
2009209426 | Sep 2009 | JP |
20120021616 | Mar 2012 | KR |
101235350 | Feb 2013 | KR |
2010099258 | Sep 2010 | WO |
2013123770 | Aug 2013 | WO |
2014045886 | Mar 2014 | WO |
2014149194 | Sep 2014 | WO |
2015199639 | Dec 2015 | WO |
Entry |
---|
International Search Report and Written Opinion for PCT Application No. PCT/US2015/025000 dated Jan. 26, 2016. |
Garcia-Vergara, S. et al; “Morphology of enriched alloy layers in an anodized Al—Cu alloy” Applied Surface Science, 205 (2003),p. 121-127. |
Alwitt, RS. and RC. McClung , “Mechanical Properties of Anodized Aluminum Coatings”; Proceedings of the SUR/FIN792, American Electroplaters and Surface Finishers Society, Atlanta, Georgia, Jun. 1992. |
Yann Goueffon et al., “Study of Degradation Mechanisms of Black Anodic Films in Simulated Space Environment” URL:http://webcache.googleusercontenl.com/search?q=cache:fsJq5LjVTVIJ:esmal.esa.inl/materials_news/isme09/pf/6Contamination/S8%2520%2520Goueffon.pdf+&cd=1&hl=en&ct=clnk&gl=us. |
Henkel Corporation “BONDERITE M-ED 9000 Anodizing Seal (Known as Anoseal 9000)” Technical Process Bulletin Issued Jun. 10, 2013. |
Hao et al., “Sealing Processes of Anodic Coatings—Past, Present, and Future”, Metal Finishing, vol. 98, Issue 12, Dec. 2000, p. 8-18. |
International Search Report & Written Opinion for PCT Application No. PCT/US2015/010736 dated Oct. 29, 2015. |
International Search Report & Written Opinion for PCT Application No. PCT/US2015/024349 dated Dec. 17, 2015. |
International Search Report & Written Opinion for PCT Application No. PCT/US2014/053595 dated Jun. 24, 2015. |
Habazaki et al., “Nanoscale Enrichments of Substrate Elements in the Growth of Thin Oxide Films”, Corrosion Science, vol. 39, No. 4, pp. 731-737, 1997. |
Vesborg et al., “Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy,” RSC Advances, 2, pp. 7933-7947, 2012. |
European Patent Application No. 16150283.6—European Search Report dated Jun. 9, 2016. |
International Patent Application No. PCT/US2016/043256—International Search Report and Written Opinion dated Oct. 12, 2016. |
Diggle et al., Incorporation of anions: “Anodic oxide films on aluminum”, Chemical Reviews, vol. 69, pp. 365-405 (1969 ), (41 Pages). |
Charles Grubbs, “Anodizing of Aluminium”, Metalfinishing, pp. 397-412, (16 Pages). |
Milton Stevenson, “Anodizing”, ASM Handbook vol. 5 (1994), 12 Pages. |
Nang et. al., “Brilliant and tunable color of carbon-coated thin anodic aluminum oxide films”, Appl. Phys. Lett., 91, 2007, 4 Pages. |
Brock, et al., “European Coatings Handbook”, 2000, Curt R. Vincentz, (pp. 374-376), 5 Pages. |
Taiwanese Patent Application No. 105125817—Office Action and Search Report dated Apr. 19, 2017. |
Achbach et.al. WADC technical report 55-150, Part VI, Project No. 7360, 1957. |
Chinese Application for Invention No. 201610011395.4—First Office Action dated Jul. 21, 2017. |
Saenz de Miera et. al. Surface and Interface Analysis, 2012 242, 241-246. |
John C. Ion. Laser Processing of Engineering Materials. Elsevier, 2005 p. 160. |
Chinese Application for Invention No. 201610202013.6—First Office Action dated Sep. 15, 2017. |
Chinese Application for Utility Model No. 201490001542.4—First Office Action dated Sep. 27, 2017. |
European Patent Application No. 16150283.6—Office Action dated Jan. 18, 2018. |
Chinese Application for Utility Model No. 201490001542.4—Second Office Action dated Feb. 1, 2018. |
Chinese Patent Application No. 201610011395.4—Second Office Action dated Feb. 14, 2018. |
Guo Jialin etc., “Analysis on affecting factors of thermal cracking behavior of anodic oxide film on 6060 aluminum alloy”, Materials Research and Application, vol. 5, No. 3, Sep. 2011, p. 229-232. |
Chinese Application for Invention No. 201610202013.6—Second Office Action dated Apr. 11, 2018. |
Number | Date | Country | |
---|---|---|---|
20170292202 A1 | Oct 2017 | US |