The following includes information that may be useful in understanding the present disclosure. It is not an admission that any of the information provided herein is prior art nor material to the presently described or claimed inventions, nor that any publication or document that is specifically or implicitly referenced is prior art.
The present invention relates generally to the field of hydrocarbon processing and more specifically relates to extraction of crude oils.
Hydrocarbon compounds form the vast majority of fuel energy sources in modern industry. Accordingly, processing a wide variety of hydrocarbon types into purities suitable for combustion is a critical technology. However, the economic viability of such processing varies by hydrocarbon. In particular, a distinction is made between “light” hydrocarbons (typically defined as having API gravity over 20°) and “heavy” hydrocarbons (having API gravity less than 20°). Generally, “light” hydrocarbons are more valuable and are also easier to process and transport due to their flow characteristics. “Heavy” hydrocarbons (i.e. crude oil) present problems in processing and transportation since they do not flow easily. Since heavy hydrocarbons are also worth less, purifying heavy hydrocarbons is disincentivized in the industry. If heavy hydrocarbons can be purified, they can be subjected to cracking processes to convert the long-chain hydrocarbon molecules into more useful forms, generally by use of catalysts. However, it is the purification of heavy hydrocarbons prior to reaching this stage which is of particular difficulty.
This disincentivization of purifying heavy hydrocarbons is problematic for two primary reasons. First, this leaves an untapped source of profit, especially when light hydrocarbons and heavy hydrocarbons are harvested together in the same extraction process. Second, heavy hydrocarbons can be a detriment to the environment when left as waste product. Examples may include naturally or artificially occurring oil-saturated soils, asphalt roof shingles, aqueous oil spills, and bitumen from degrading or deconstructed roadways. Accordingly, there is seen a need to develop a practical and economically viable process for purifying crude oil out of solid substrates.
Various attempts have been made to solve problems found in the oil processing art. Among these are found in U.S. Pat. Nos. 3,415,738, 1,908,616, and 8,790,509. This prior art is representative of processes for purifying heavy hydrocarbons.
None of the above inventions and patents, taken either singly or in combination, is seen to describe the invention as claimed. Thus, a need exists for a reliable process for extracting crude oil from substrates, and to avoid the above-mentioned problems.
In view of the foregoing disadvantages inherent in the known hydrocarbon processing art, the present disclosure provides a novel process for extracting crude oil from substrates. The general purpose of the present disclosure, which will be described subsequently in greater detail, is to provide a process for extracting crude oil from substrates.
The process allows the extraction of heavy hydrocarbon compounds from solid substrates in an economical and efficient fashion. Materials containing heavy hydrocarbons (i.e. oil sands or roofing shingles) are broken up into an auger and then mixed with light hydrocarbons. Subsequently, the resulting slurry is shaken to separate fluids from solids, and the fluids are subjected to one or more filtering processes to remove waste sediment. These filtering processes may include a series of one or more of centrifuges and nozzle purifier machines. Filtered fluids are distilled to separate heavy hydrocarbons from light hydrocarbons. Simultaneously, the solids are heated to remove the remaining light hydrocarbons as vapors. Light hydrocarbons are cooled in a condenser and coalesced in a holding tank, wherefrom they may be recirculated into the process and used repeatedly. The now-isolated heavy hydrocarbons resulting from the distillation process may be removed as a purified product.
For purposes of summarizing the invention, certain aspects, advantages, and novel features of the invention have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any one particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein. The features of the invention which are believed to be novel are particularly pointed out and distinctly claimed in the concluding portion of the specification. These and other features, aspects, and advantages of the present invention will become better understood with reference to the following drawings and detailed description.
The figures which accompany the written portion of this specification illustrate embodiments and methods of use for the present disclosure, a process for extracting crude oil from substrates, constructed and operative according to the teachings of the present disclosure.
The various embodiments of the present invention will hereinafter be described in conjunction with the appended drawings, wherein like designations denote like elements.
As discussed above, embodiments of the present disclosure relate to a hydrocarbon separation process and more particularly to a process for extracting crude oil from substrates as used to improve the efficiency of harvesting heavy hydrocarbons.
Generally, the process may be divided into a number of distinct steps.
Step 1 (101): Initial contaminated hydrocarbons (the object of the process) are added to an auger (specifically, a feed-auger). The auger may be used to break up the material feed. In some instances, more solid material (such as bitumen or roofing shingles) may require more aggressive deconstruction. The auger further acts as a barrier for vapors during this process. Augers may be slightly heated in some embodiments; however, heating is not a primary process at this stage.
Step 2 (102): The contaminated hydrocarbons are added to a mixing tank. Light hydrocarbons are added to the mixing tank via injection nozzles. The lights serve to increase API and flowability, and also act as a solvent to remove heavy oil from the solid substrate. Nitrogen purge occurs to displace oxygen in the tank. (Nitrogen may be generated from atmosphere in auxiliary process.) Additionally, a vacuum may pull evaporate fumes into a vapor recovery system. Slight warming may occur to improve flow characteristics.
Step 3 (103): This slurry (of contaminated hydrocarbons and added lights) pass through shakers to remove waste particulates. Resolution of the shakers may range from 50 to 300 mesh API as desired for a particular process application by the end user. Separated fluids pass down into shakers to be passed to the decanter centrifuge. Waste solids still containing some hydrocarbons pass over shakers and directly into the distillation chamber. Repeated nitrogen purging.
Step 4 (104) (optional): Fluids passes through centrifuge to further remove waste particulates. Recommended minimum centrifugal force is 2500 G's. Preferably, this is a decanter type centrifuge.
Step 5 (105) (optional) Nozzle machine further removes waste particulates from the fluids. This step will generally be used if the contaminate content (contaminants being basic solids and water, or BS&W) is still over one percent of total mass. In some embodiments, a holding tank may be placed between steps 4 and 5 where this ratio can be determined for quality control.
Step 6: (106) Fluids from holding tank following the centrifuge and the nozzle machine enter distillation system. Meanwhile, solids from the shakers are heating in augers. Heating is critical at this stage to remove light hydrocarbons as vapors. Heating in one embodiment may be approximately 500 to 650 degrees Fahrenheit. Nitrogen may be applied to purge oxygen. Solids are discarded following this step.
Step 7: (107) Light hydrocarbons are removed from the heated augers and cooled in a condenser. Condenser may use a glycol chiller or a fin fan cooler. Lights are also collected from the distillation column. The now re-liquified lights may be recirculated into Step 2 with a new batch of raw product to participate in the refining process repeatedly. In order to continually provide light hydrocarbons to an automated process, a storage tank collects and stores re-liquified lights between the condenser and the mixer in Step 2. Examples of light hydrocarbons able to be removed and condensed in this way include natural gas condensate and naphtha, and generally any hydrocarbon in the range of 45 to 65 API.
Step 8: (108) The isolates, the now purified heavy hydrocarbons (i.e. crude oil, etc.), may be removed from the distillation column as product.
Some auxiliary systems may be implemented. Firstly, an oil heater may heat a process oil to 650 degrees Fahrenheit and circulate oil in contact with the augers and distillation system to heat these components of the system process. A vacuum pump may operate to pull vapors from both the augers and shaker enclosure to add these to the condenser (in addition to those removed from the distillation stage). Lastly, a nitrogen generator may produce purge gas to use in the augers.
The exact specifications, materials used, and method of use of the process for extracting crude oil from substrates may vary upon manufacturing. Additional steps may be implemented where necessary for varying input products, output goals, environmental factors, etc.
The embodiments of the invention described herein are exemplary and numerous modifications, variations and rearrangements can be readily envisioned to achieve substantially equivalent results, all of which are intended to be embraced within the spirit and scope of the invention. Further, the purpose of the foregoing abstract is to enable the U.S. Patent and Trademark Office and the public generally, and especially the scientist, engineers and practitioners in the art who are not familiar with patent or legal terms or phraseology, to determine quickly from a cursory inspection the nature and essence of the technical disclosure of the application.
The present application is related to and claims priority to U.S. Provisional Patent Application No. 63/112,777 filed Nov. 12, 2020, which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63112777 | Nov 2020 | US |