Process for forming field emission electrode for manufacturing field emission array

Information

  • Patent Grant
  • 6739930
  • Patent Number
    6,739,930
  • Date Filed
    Thursday, August 9, 2001
    23 years ago
  • Date Issued
    Tuesday, May 25, 2004
    20 years ago
Abstract
A process of forming a field emission electrode for manufacturing a field emission array is provided. The process includes steps of (a) providing a substrate having a metal layer thereon, (b) forming a plurality of mask units on the metal layer and partially removing the metal layer uncovered by the mask units, (c) oxidizing a surface of the remained metal layer by an anodic oxidization method for forming a metal oxide layer thereon such that an upper portion of the unoxidized remained metal layer is in the shape of plural conoids, and (d) removing the remained mask units and the metal oxide layer. Alternatively, the process includes steps of (a) providing a substrate having a first metal layer thereon, (b) forming a plurality of mask units on the first metal layer and partially removing the first metal layer uncovered by the mask units, (c) oxidizing a surface of the remained first metal layer by an anodic oxidization method for forming a metal oxide layer thereon such that an upper portion of the unoxidized remained first metal layer is in the shape of plural cylinders, (d) forming a second metal layer on the metal oxide layer, and (e) removing the remained mask units.
Description




FIELD OF THE INVENTION




The present invention is related to a process of forming a field emission electrode, and more particularly to a process of forming a field emission electrode for manufacturing a field emission array.




BACKGROUND OF THE INVENTION




It's a critical step to form a field emission electrode for manufacturing a field emission array (FEA), because the field emission electrode is used to provide stable electron beam to excite the fluorescent substances for forming an image. Certainly, the color, the brightness, the contrast and the life span of a field emission display (FED) is related to the quality of the field emission electrode.




According to the prior arts, the field emission electrode is formed by an obliquity sputtering technique. The field emission electrode with the structure of plural conoids in shape thereon is formed by the semiconductor processing technique and a high temperature oxidization technique. Certainly, the field emission electrode can be formed by further forming a metal film or a diamond film thereon for improving the quality of the field emission electrode. However, according to the prior arts, it's not easy to form a field emission electrode with large area and good thickness uniformity at room temperature.




Accordingly, it is attempted by the present applicant to solve the above-described problems encountered in the prior arts.




SUMMARY OF THE INVENTION




According to one aspect of the present invention, a process of forming a field emission electrode for manufacturing a field emission array is provided. The process includes steps of (a) providing a substrate having a metal layer thereon, (b) forming a plurality of mask units on the metal layer and partially removing the metal layer uncovered by the mask units, (c) oxidizing a surface of the remained metal layer by an anodic oxidization method for forming a metal oxide layer thereon such that an upper portion of the unoxidized remained metal layer is in the shape of plural conoids, and (d) removing the remained mask units and the metal oxide layer.




Preferably, the substrate is made of a material selected from a group consisting of plastic, quartz and glass.




Preferably, the metal layer is selected from a group consisting of aluminum layer, tungsten layer, tantalum layer, molybdenum layer, molybdenum-tungsten alloy layer and molybdenum-tantalum alloy layer.




Preferably, the metal layer is formed on the substrate by a method selected from a group consisting of electron gun evaporation, sputtering technique and heat coating technique.




Preferably, the step (b) is performed by a photolithography technique and an etching method.




Preferably, the etching method is selected from reactive ion etching method and wet etching method.




According to another aspect of the present invention, a process of forming a field emission electrode for manufacturing a field emission array is provided. The process includes steps of (a) providing a substrate having a first metal layer thereon, (b) forming a plurality of mask units on the first metal layer and partially removing the first metal layer uncovered by the mask units, (c) oxidizing a surface of the remained first metal layer by an anodic oxidization method for forming a metal oxide layer thereon such that an upper portion of the unoxidized remained first metal layer is in the shape of plural cylinders, (d) forming a second metal layer on the metal oxide layer, and (e) removing the remained mask units.




Preferably, the substrate is made of a material selected from a group consisting of plastic, quartz and glass.




Preferably, the first metal layer and the second metal layer are selected from a group consisting of aluminum layer, tungsten layer, tantalum layer, molybdenum layer, molybdenum-tungsten alloy layer and molybdenum-tantalum alloy layer.




Preferably, the first metal layer is formed on the substrate by a method selected from a group consisting of electron gun evaporation, sputtering technique and heat coating technique.




Preferably, the second metal layer is formed on the metal oxide layer by a method selected from a group consisting of electron gun evaporation, sputtering technique and heat coating technique.




Preferably, the step (b) is performed by a photolithography technique and an etching method.




Preferably, the etching method is selected from reactive ion etching method and wet etching method.











BRIEF DESCRIPTION OF THE DRAWING




The present invention may best be understood through the following description with reference to the accompanying drawings, in which:





FIG. 1

is a schematic diagram showing an anodic oxidization device for forming a field emission electrode according to the present invention;





FIG. 2

is a schematic diagram showing a hot bath tank of an anodic oxidization device shown in

FIG. 1

for forming a field emission electrode according to the present invention;




FIGS.


3


(


a


)˜(


g


) are the schematic diagrams showing a process of forming a field emission electrode according to a first preferred embodiment of the present invention; and




FIGS.


4


(


a


)˜(


h


) are the schematic diagrams showing a process of forming a field emission electrode according to a second preferred embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




According to the present invention, a field emission electrode is formed by an anodic oxidization method. Please refer to

FIG. 1

which is a schematic diagram showing an anodic oxidization device for forming a field emission electrode according to the present invention. The device includes a heater


1


, a rotator


2


, a hot bath tank


3


, a temperature controller


4


and a temperature sensor


5


.

FIG. 2

schematically shows a hot bath tank


3


of an anodic oxidization device shown in

FIG. 1

for forming a field emission electrode according to the present invention. The hot bath tank


3


includes a multi-meter


7


, an electrolytic solution


8


, a substrate


9


, an anode


10


(or a remained metal layer) and a cathode


11


. According to the present invention, a surface of a remained metal layer shown in FIG.


3


(


f


) or FIG.


4


(


f


) is oxidized for forming a field emission electrode, wherein the remained metal layer is serving as an anode


10


in FIG.


2


.




Please refer to FIGS.


3


(


a


)˜(


g


) which are the schematic diagrams showing a process of forming a field emission electrode according to a first preferred embodiment of the present invention. A substrate


12


having a metal layer


13


thereon is provided first. The metal layer


13


is then formed on the substrate


12


by electron gun evaporation, sputtering technique or heat coating technique. Preferably, the substrate


12


is made of plastic, quartz or glass. Preferably, the metal layer


13


is an aluminum layer, a tungsten layer, a tantalum layer, a molybdenum layer, a molybdenum-tungsten alloy layer or a molybdenum-tantalum layer. As shown in FIG.


3


(


c


) and FIG.


3


(


d


), after a photoresist layer


14


is formed on the metal layer


13


, a portion of the photoresist layer


14


is removed by a photolithography technique to form plural mask units, i.e. remained photoresist


15


. As shown in FIG.


3


(


e


), the metal layer


13


uncovered by the remained photoresist layer


15


is then partially removed by an etching method to form the remained metal layer


16


. Preferably, the etching method is a reactive ion etching method or a wet etching method. Thereafter, referring to FIG.


3


(


f


), a surface of the remained metal layer


16


is oxidized by an anodic oxidization method for forming a metal oxide layer


17


thereon such that an upper portion


19


of the unoxidized remained metal layer is in the shape of plural conoids. Finally, the remained photoresist layer


15


and the metal oxide layer


17


is removed to form the field emission array


18


as shown in FIG.


3


(


g


).




Please refer to FIGS.


4


(


a


)˜(


h


) which are the schematic diagrams showing a process of forming a field emission electrode according to a second preferred embodiment of the present invention. A substrate


22


having a first metal layer


23


thereon is provided first. The first metal layer


23


is then formed on the substrate


22


by electron gun evaporation, sputtering technique or heat coating technique. Preferably, the substrate


22


is made of plastic, quartz or glass. Preferably, the first metal layer


23


is an aluminum layer, a tungsten layer, a tantalum layer, a molybdenum layer, a molybdenum-tungsten alloy layer or a molybdenum-tantalum layer. As shown in FIG.


4


(


c


) and FIG.


4


(


d


), after a photoresist layer


24


is formed on the first metal layer


23


, a portion of the photoresist layer


24


is removed by a photolithography technique to form plural mask units, i.e. remained photoresist layer


25


. As shown in FIG.


4


(


e


), the first metal layer


23


uncovered by the remained photoresist layer


25


is then partially removed by an etching method to form the remained metal layer


26


. Preferably, the etching method is a reactive ion etching method or a wet etching method. Thereafter, referring to FIG.


4


(


f


), a surface of the remained first metal layer


26


is oxidized by an anodic oxidization method for forming a metal oxide layer


27


thereon such that an upper portion


29


of the unoxidized remained first metal layer


26


is in the shape of plural chimneys. Then, as shown in FIG.


4


(


g


), a second metal layer


28


serving as a gate is formed on the metal oxide layer


27


. The second metal layer


28


is formed on the metal oxide layer


27


by electron gun evaporation, sputtering technique or heat coating technique. Preferably, the second metal layer


28


is an aluminum layer, a tungsten layer, a tantalum layer, a molybdenum layer, a molybdenum-tungsten alloy layer or a molybdenum-tantalum layer. Finally, the remained photoresist layer


25


is removed to form the field emission array as shown in FIG.


4


(


h


).




As described above, the present invention is directed to a process of forming a field emission electrode for manufacturing a field emission array. The field emission electrode is formed by an anodic oxidization method. By optimizing the oxidization parameters, e.g. the oxidization voltage, the oxidization time, the rotation speed of the rotator and the content of the electrolytic solution, a field emission electrode with large area and good thickness uniformity can be formed at room temperature by controlling the oxidization speed and the density of the metal oxide layer. As an aluminum layer as an illustration, Table 1 shows the oxidized aluminum of different types by using different types of electrolytic solution. The problems encountered in the prior arts are solved, therefore the present invention possesses inventive step, and it's unobvious for one skilled in the art to develop the present invention.
















TABLE 1













Thickness








Oxidi-





of metal






Sample




Oxidization




zation




oxide






Label




Voltage (V)




Time




Electrolytic Solution




layer



























B1




40




600




[ammonium tartarte 3%




55






B2




100




600




(wt)]:[ethyl glycol] =




132.3






B3




150




600




1:9(vol)˜4:6(vol)




195.4






P1




30




90




oxalic acid 5% (wt)




132.8






P2




30




180





262.6






P3




30




240





341.6






C1




30




90




oxalic acid 5% (wt)




160.8







40




600




[ammonium tartarte 3%









(wt)]:[ethyl glycol] =









1:9(vol)˜4:6(vol)






C2




160




160




oxalic acid 5% (wt)




276.6







600




600




[ammonium tartarte 3%









(wt)]:[ethyl glycol] =









1:9(vol)˜4:6(vol)






C3




220




220




oxalic acid 5% (wt)




364.1







600




600




[ammonium tartarte 3%









(wt)]:[ethyl glycol] =









1:9(vol)˜4:6(vol)












Sample B represents barrier-type aluminum.











Sample P represents porous-type aluminum.










Sample C represents composite-type aluminum.













While the invention has been described in terms of what are presently considered to be the most practical and preferred embodiments, it is understood that the invention need not be limited to the disclosed embodiment. On the contrary, it is intended to cover various modifications similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures. Therefore, the above description and illustration should not be taken as limiting the scope of the present invention which is defined by the appended claims.



Claims
  • 1. A process of forming a field emission electrode for manufacturing a field emission array, comprising steps of:(a) providing a substrate having a metal layer thereon; (b) forming a plurality of mask units on said metal layer and partially removing said metal layer uncovered by said mask units; (c) oxidizing a surface of the remained metal layer by an anodic oxidization method for forming a metal oxide layer thereon such that an upper portion of the unoxidized remained metal layer is in the shape of plural conoids; and (d) removing said remained mask units and said metal oxide layer.
  • 2. The process according to claim 1, wherein said substrate is made of a material selected from a group consisting of plastic, quartz and glass.
  • 3. The process according to claim 1, wherein said metal layer is selected from a group consisting of aluminum layer, tungsten layer, tantalum layer, molybdenum layer, molybdenum-tungsten alloy layer and molybdenum-tantalum alloy layer.
  • 4. The process according to claim 3, wherein said metal layer is formed on said substrate by a method selected from a group consisting of electron gun evaporation, sputtering technique and heat coating technique.
  • 5. The process according to claim 1, wherein said step (b) is performed by a photolithography technique and an etching method.
  • 6. The process according to claim 5, wherein said etching method is selected from reactive ion etching method and wet etching method.
  • 7. A process of forming a field emission electrode for manufacturing a field emission array, comprising steps of:(a) providing a substrate having a metal layer thereon; (b) forming a photoresist layer on said metal layer and removing a portion of said photoresist layer by a photolithography technique; (c) partially removing said metal layer uncovered by the remained photoresist layer; (d) oxidizing a surface of the remained metal layer by an anodic oxidization method for forming a metal oxide layer thereon such that an upper portion of the unoxidized remained metal layer is in the shape of plural conoids; and (e) removing said remained photoresist layer and said metal oxide layer.
  • 8. The process according to claim 7, wherein said metal layer is selected from a group consisting of aluminum layer, tungsten layer, tantalum layer, molybdenum layer, molybdenum-tungsten alloy layer and molybdenum-tantalum alloy layer.
  • 9. A process of forming a field emission electrode for manufacturing a field emission array, comprising steps of:(a) providing a substrate having a first metal layer thereon; (b) forming a plurality of mask units on said first metal layer and partially removing said first metal layer uncovered by said mask units; (c) oxidizing a surface of the remained first metal layer by an anodic oxidization method for forming a metal oxide layer thereon such that an upper portion of the unoxidized remained first metal layer is in the shape of plural cylinders; (d) forming a second metal layer on said metal oxide layer; and (e) removing said remained mask units.
  • 10. The process according to claim 9, wherein said substrate is made of a material selected from a group consisting of plastic, quartz and glass.
  • 11. The process according to claim 9, wherein said first metal layer and said second metal layer are selected from a group consisting of aluminum layer, tungsten layer, tantalum layer, molybdenum layer, molybdenum-tungsten alloy layer and molybdenum-tantalum alloy layer.
  • 12. The process according to claim 11, wherein said first metal layer is formed on said substrate by a method selected from a group consisting of electron gun evaporation, sputtering technique and heat coating technique.
  • 13. The process according to claim 11, wherein said second metal layer is formed on said metal oxide layer by a method selected from a group consisting of electron gun evaporation, sputtering technique and heat coating technique.
  • 14. The process according to claim 9, wherein said step (b) is performed by a photolithography technique and an etching method.
  • 15. The process according to claim 14, wherein said etching method is selected from reactive ion etching method and wet etching method.
  • 16. A process of forming a field emission electrode for manufacturing a field emission array, comprising steps of:(a) providing a substrate having a first metal layer thereon; (b) forming a photoresist layer on said first metal layer and removing a portion of said photoresist layer by a photolithography technique; (c) partially removing said first metal layer uncovered by the remained photoresist layer; (d) oxidizing a surface of the remained first metal layer by an anodic oxidization method for forming a metal oxide layer thereon such that an upper portion of the unoxidized remained first metal layer is in the shape of plural chimneys; (e) forming a second metal layer on said metal oxide layer; and (f) removing said remained photoresist layer.
  • 17. The process according to claim 16, wherein said first metal layer and said second metal layer are selected from a group consisting of aluminum layer, tungsten layer, tantalum layer, molybdenum layer, molybdenum-tungsten alloy layer and molybdenum-tantalum alloy layer.
Priority Claims (1)
Number Date Country Kind
89122379 A Oct 2000 TW
US Referenced Citations (22)
Number Name Date Kind
4008412 Yuito et al. Feb 1977 A
4095133 Hoeberechts Jun 1978 A
5401676 Lee Mar 1995 A
5449435 Ageno et al. Sep 1995 A
5481156 Lee et al. Jan 1996 A
5643032 Cheng et al. Jul 1997 A
5666020 Takemura Sep 1997 A
5739628 Takada Apr 1998 A
5779514 Cheng et al. Jul 1998 A
5818153 Allen Oct 1998 A
5834790 Suzuki Nov 1998 A
5982081 Sin et al. Nov 1999 A
6017257 Potter Jan 2000 A
6049089 Cathey Apr 2000 A
6080032 Alwan Jun 2000 A
6165808 Zhang Dec 2000 A
6232705 Forbes et al. May 2001 B1
6326221 Lee et al. Dec 2001 B1
6387717 Blalock et al. May 2002 B1
6461526 Wilson Oct 2002 B1
6498425 Derraa Dec 2002 B1
6617772 Barton et al. Sep 2003 B1