Process for gas assisted and water assisted injection molding

Information

  • Patent Grant
  • 6579489
  • Patent Number
    6,579,489
  • Date Filed
    Friday, June 30, 2000
    24 years ago
  • Date Issued
    Tuesday, June 17, 2003
    21 years ago
Abstract
A liquid and gas assisted injection molding apparatus comprising a source of liquid coolant, a source of compressed gas, a source of heated viscous plastic, a mold cavity means for controllably injecting said plastic into said cavity, means for controllably injecting said compressed gas into said cavity, means for controllably injecting said liquid coolant into said cavity, and means for selectively controlling the injection of said plastic, gas and liquid coolant.
Description




BACKGROUND OF THE INVENTION




Gas injection molding of plastic has long been known in the industry. During gas assisted injection molding molten plastic is forced into an enclosed mold, and gas is injected into the mold within the plastic material. The gas will raise the internal pressure and create an expanding gas pocket which will force the cooling plastic to the extreme recesses of the mold, giving a better fill out of the mold surface and reducing the sag of the plastic from the mold surface as the plastic shrinks during cooling, thus producing a better finished surface.




There are two main methods of injecting gas into the mold cavity. The first is directly injecting the gas mold into the cavity, known as in-article. The second is injecting the gas into a channel leading into the mold, which is known as in-runner. The injection of gas from molten into the cavities generally is preferred over the channel method.




Gas assisted injection molding uses some plastics that have a long cycle time i.e. cooling time in the mold. However, these plastics are still used in order to get specific shaped parts as needed. However, it should be noted that in the current art the use of TPO resin will only allow the outside of the part to cool while in the mold itself. The inside of the molded part remains hot and makes for a difficult molding cycle and/or ruined molded parts. Therefore, there is a need in the art for a process that will reduce the temperature of the molded product on the inside while cooling the outside at a precise time internal and temperature to allow for a smooth finished plastic product.











BRIEF DESCRIPTION OF THE DRAWING





FIG. 1

is a diagrammatic representation of a control system for carrying out the claimed invention.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




The present invention is a process for a combination of gas assisted and water assisted molding operation for a plastic injection molding system


10


as shown in attached FIG.


1


. The system


10


generally includes a gas unit


12


, a water unit


16


, and the mold unit


14


. The gas supply unit


12


is connected via a valve


18


to the mold unit


14


. The water assist unit


16


is connected via a valve


20


and valve


22


to the mold unit


14


.




In operation the sequence of the molding process is as follow: First an injection gas assisted molded operation is started by opening valve


18


to allow the gas to assist in the initial molding of the plastic within the mold


14


. After a predetermined amount of time valve


18


, which connects the gas unit


12


to the mold


14


is closed and valve


20


which connects the water assist unit


16


to the mold


14


is opened in order to inject water into the plastic being molded. The introduction of this water will cool the part being molded down to a predetermined temperature in a predetermined time frame. Once the part is sufficiently cooled using the water injection system, valve


20


will be closed. After valve


20


has been closed and the part being molded is sufficiently cooled, valve


22


will be open to drain the water from the mold


14


. Once the water is fully drained from the mold, valve


22


is closed and the mold unit is opened up exposing the part with a smooth finish that has been made with a shorter cycle time than the original gas only assisted unit.




Alternatively, the process can be operated utilizing a liquid such as water alone. Instead of injecting gas to assist the molding process, a liquid can be injected to increase the pressure within the mold and force the plastic to fill out the mold and create a void, the liquid will also then act to facilitate the cooling of the plastic.




It should be noted that the valves can be operated either mechanically, electronically or by any other means commonly known. It should also be noted that a variety of coolants may be used but water is the preferred coolant.



Claims
  • 1. A method of molding a plastic article comprising the steps of:injecting a heated viscous plastic into a closed mold cavity; injecting a gaseous fluid during the injection of said plastic to create a fluid space within the article and to urge the plastic to fill out the mold; injecting into said fluid space a non-compressible fluid to increase the pressure within the fluid space and to increase the cooling rate of said plastic; venting said non-compressible fluid from said cavity; and injecting additional gaseous fluid into said fluid space after at least some of said non-compressible fluid is vented.
  • 2. A method of injection molding plastic parts comprising:injecting viscous plastic into a closed mold cavity; injecting a non-gaseous fluid into said mold cavity; injecting a gaseous fluid into said mold cavity prior to injecting said non-gaseous fluid; and injecting additional gaseous fluid after at least some of the non-gaseous fluid is vented.
  • 3. The method of claim 2 wherein said non-gaseous fluid is injected before the injection of said viscous plastic has been completed.
  • 4. The method of claim 3 further comprising: maintaining the non-gaseous fluid in the mold cavity while the viscous plastic hardens.
  • 5. The method of claim 4 further comprising venting the non-gaseous fluid prior to complete hardening of the viscous plastic.
  • 6. The method of claim 2 wherein the volume of viscous plastic and non-gaseous fluid injected is substantially equal to the volume of the mold cavity.
  • 7. A method of injection molding plastic parts comprising:injecting viscous plastic into a closed mold cavity; injecting a non-compressible fluid into id mold cavity; and injecting a compressible fluid into said mold cavity.
  • 8. The method of claim 7 wherein said compressible fluid is injected prior to said non-compressible fluid.
  • 9. The method of claim 8 wherein said compressible fluid is injected before the injection of said viscous plastic has been completed.
  • 10. The method of claim 9 wherein additional gaseous fluid is injected after at least some of the non-compressible fluid is vented.
  • 11. A method of injection molding plastic parts comprising:injecting viscous plastic into a closed mold cavity; injecting a compressible fluid into said mold cavity; and injecting water into said mold cavity.
Parent Case Info

This is a Continuation of Provisional Application Serial No. 60/142,015 filed Jul. 1, 1999.

US Referenced Citations (22)
Number Name Date Kind
4740150 Sayer Apr 1988 A
4781554 Hendry Nov 1988 A
4855094 Hendry Aug 1989 A
4905901 Johnson Mar 1990 A
4943407 Hendry Jul 1990 A
5032345 Hendry Jul 1991 A
5039463 Loren Aug 1991 A
5047183 Eckardt et al. Sep 1991 A
5090886 Jaroschek Feb 1992 A
5118455 Loren Jun 1992 A
5131226 Hendry Jul 1992 A
5141682 Steinbichler et al. Aug 1992 A
5151278 Baxi et al. Sep 1992 A
5198238 Baxi Mar 1993 A
5200127 Nelson Apr 1993 A
5204051 Jaroschek Apr 1993 A
5284429 Schneider et al. Feb 1994 A
5295800 Nelson et al. Mar 1994 A
5423667 Jaroschek Jun 1995 A
5482669 Shah Jan 1996 A
5505891 Shah Apr 1996 A
5849377 Horikoshi et al. Dec 1998 A
Provisional Applications (1)
Number Date Country
60/142015 Jul 1999 US