For a better understanding of the present invention and to show how it may be carried into effect, reference will now be made by way of example to the accompanying drawings, in which:—
A fluid outlet 6 is defined between the side wall 10 of the cap 8 and the flange 26 and an annular flow passage 28 is defined between the side wall 10 of the cap 8 and the upper portion 20 of the flow guide 18. The annular flow passage 28 is continuous with the fluid outlet 6, so that the fluid inlet 4 communicates with the fluid outlet 6 by means of the tangential slots 22a to 22f and the flow passage 28. Directly above the flow chamber 2 is located a transport outlet 30.
In use of the fluidising unit in a pressurised system, fluid under pressure enters the fluidising unit through the fluid inlet 4, passes down the flow guide 18 and exits the flow guide tangentially via the slots 22a to 22f (as the open end of the flow guide 18 is closed by the cap 8). The cap 8 also acts as a swirl enhancer and is positioned such that its side wall. 10 forms one side of the said annular flow passage 28 around the tangential slots 22a to 22f. The cap 8 is longer than the slots 22a to 22f, such that it overlaps the slots by an amount d and defines the fluid outlet 6 by which the concentrated swirling fluid exits the flow chamber 2. The profiled region 14 of the cap 8 is shaped in order to encourage a stable fluid regime above the flow chamber 2. The swirling flow exiting the flow chamber 2 fluidises, mixes and breaks up settled or partly settled solids adjacent to the flow chamber 2, thereby forming a mobile slurry, which is directed towards the transport outlet 30 from where it can be directed to a slurry pipeline or for further processing. The transport outlet 30 may, for example, comprise a substantially horizontal pipe or a pipe with a bend (preferably a 90 degree bend), and it may be funnelled, such that it flares outwardly towards the flow chamber 2.
The fluidising apparatus may be fixed within a vessel or tank at any orientation, passing through the vessel or tank wall by means of a normal flanged nozzle or threaded inlet boss, whereby the inlet to the fluidising apparatus is fed by a fluid under pressure. The outlet 6 of the fluidising apparatus sets up a swirl that can be created by, for example, a tangential fluid inlet or inlets, tangential slots or holes in a flow guide, or an auger unit within the inlet pipe or flow chamber 2. The swirl from the fluidising apparatus mobilises any settled or partly settled solids into a slurry mixture. In the case of a pressurised unit the only exit from the vessel is a separate transport outlet 30 which is preferably situated directly above or under the fluidising unit. The prepared slurry then reports via the transport outlet 30 to a slurry pipeline, pump or process system as may be required. In an atmospheric system the outlet duct can be attached to a pump, or inductor to create the pressure differential required to transport the slurry to its required destination.
Solids to be transported are loaded into V1. Should fluids be present in V1 these may be displaced by incoming solids and will report to the Tank T1 by means of an overflow.
When V1 is filled with solids the pump is started and the valve 40 opens to allow fluids to pass through non-return valve 42 into fluidising unit F1.
Solids will be fluidised and discharged through pipe 44, due to the vessel operating at atmospheric pressure the slurry will discharge at an equal or less pressure, controlled by the hydrostatic head of solids/water/slurry available in V1.
The discharging slurry can be fed into an inductor 46 to provide motive force to deliver the slurry over a short distance. Feed to the inductor may be from a separate feed or from the main pump by opening valve 48. Alternatively the exiting slurry from 44 may be fed into the suction of a slurry pump 50 to provide motive force without further dilution. Using this method will in most cases reduce the need for large mixing tanks normally required to feed slurry pumps.
Solids to be transported are loaded into the vessel via a hopper 58 and valve 60. Fluids in vessel V1 are displaced by incoming solids and report to the feed tank T1 via valve 62.
When the vessel is filled with solids, valves 60 and 62 are closed together with all other valves.
The pump is started and valve 64 is opened to allow fluid to pass non-return valve 66 and to enter V1 via fluidising unit F1 to pressurise V1 and solids will discharge as a slurry through the discharge line 68. Should the slurry be too dilute then valve 70 may be opened to cause partial flow to the top of vessel V1 to compact the solids and cause greater concentration of solids in the slurry discharge.
In the event that the slurry is too concentrated valve 70 is opened to cause the discharging slurry to be diluted to suite the process conditions. This can be pre-set or can be operated whilst slurry is discharging until the set point is reached.
Alternatively valve 70 may be automatic and opening set by using a signal from a mass density meter installed in the slurry discharge line.
Number | Date | Country | Kind |
---|---|---|---|
0212728.0 | May 2002 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB03/02370 | 5/30/2003 | WO | 00 | 8/25/2006 |