The invention relates to laminated materials, and more particularly relates to processes for laminating by layering of lamina or plies to produce an improved structural material.
There is a growing need for lighter, stiffer, cheaper structural materials, preferably with all three qualities, with which to make better products.
A laminate is made by combining at least one harder lamina (layer) with at least one softer lamina. In one embodiment, two outer harder lamina are used to sandwich a softer core or centre lamina. The harder lamina(s) are preferably made of a ductile material such as sheet steel. Each such harder lamina has at least one face surface textured such that a myriad of pointed, nail-like, piercing structures rise therefrom. Preferably the textured lamina is not perforated. The core or centre lamina is preferably of a softer, pierceable material such as sheet plastic. One or more of the textured lamina(s) are forced against at least one pierceable lamina so that it is thereby pierced and preferably penetrated through such that the pointed tips of the piercing structures are co-clinched against each other and thereby locking the three lamina together.
According to a first aspect of the invention, a process is provided for making a laminate sheet. At least one face of a sheet of a first relatively hard material is provided with a surface texture having a plurality of raised and generally pointed structures. The textured face of the first material is then brought into contact with a face of a second softer material. The two faces are forced together such that at least some of the pointed structures enter the second material to form a laminate sheet.
Various materials may be used. In one preferred embodiment, the first material has a Brinell hardness of more than about 80, and the second material has a Brinell hardness of less than about 30. Preferably, the first material is a metal (e.g. steel). Preferably, the second material is a plastic, resin, polymer, foam, rubber, wood, or hybrid material.
In one embodiment, the second material is a curable material, in which case, the “forcing” step includes applying the second material in a partially cured state, and then allowing the second material to cure.
The first and second materials may be forced together by passing the laminate sheet (or portions thereof) between rolls. Preferably, the forcing step causes at least the tips of the pointed structures to pierce through the second material, such that the tips protrude at a second face of the second material. The protruding tips may be deformed to direct them over or onto or into the second face of the second material (e.g. by rolling over the tips with a roller, or by pressing downward on the tips via a second sheet of the first material). The tips may also (but need not) interact with each other (deforming each other by contact, or interengaging together in some embodiments).
The process may involve heating either or both of the first material and the second material prior to forcing the materials together. The materials may be at least partially assembled together in a heated state and then cooled. The second material may be heated to a softened state, prior to partially assembling the second material to the first material in the softened state, and the second material may be then allowed to cool and at least partially harden, prior to further forcing the materials together to form the laminate sheet.
The structures may have a hooked shape. The structures may be pre-bent into a hooked shape.
According to a second aspect of the invention, a continuous process for making laminate sheets is provided. A supply of sheeting of a first relatively hard material with a surface texture having a plurality of raised and generally pointed structures is provided from a continuous roll. The textured face of the first material is brought into contact with a face of a second softer material. The two faces are then forced together such that at least some of the pointed structures enter the second material to form a laminate sheet.
The second material is preferably continuously fed to the first material, and the two materials are forced together downstream of the respective material feeds. Preferably, the second material is continuously rolled onto the first material. The first material may also be cut before the second material is applied (or pre-cut pieces may be provided continuously for laminating—e.g. from a magazine). Alternatively, the laminate sheet may be cut into lengths after the forcing step.
A laminate sheet formed by any of the foregoing processes is also provided.
According to a third aspect of the invention, a laminate sheet is provided. A first relatively hard material with a surface texture having a plurality of raised and generally pointed structures is mated to a second softer material, such that at least some of the pointed structures of the first material protrude into the second material.
At least some of the pointed structures may extend completely through the second material. At least some of the tips of the pointed structures may be turned over, onto or into the second material, so as to retain the first and second materials together.
According to a fourth aspect of the invention, a multi-layer laminate sheet is provided. At least one dual sided sheet forms the core of the laminate. The sheet is of a first relatively hard material and has surface texturing on two faces thereof. The surface texture has a plurality of raised and generally pointed structures. Outer layers of a second softer material are disposed on both sides of the dual sided sheet, the second material being mated to the first material such that at least some of the pointed structures of the first material protrude into the second material.
The multi-layer laminate sheet may also include boundary layers of single sided sheets disposed respectively outside each of the outer layers. Each boundary layer is single sided in that it has a plurality of raised and generally pointed structures on one face thereof (the opposing face is plain). The structures on the face are disposed so as to extend into at least a portion of its corresponding outer layer. (It will be appreciated that laminates of greater complexity may also be provided using this general structure—first boundary layer, core with one or more dual-sided textured sheets, each surrounded on both sides with softer material, second boundary layer.)
In one variant, at least one outer layer has at least one recess for allowing access to the pointed structures. In another variant, one outer layer has at least one relatively thinner area for allowing access to the pointed structures.
In the following description the word “clinch” (clinching, clinchable, clinched), is used to describe the act of bending over the exposed tip of a pin- or nail that has pierced through two or more layers and extends therefrom. Clinching is common practice in the wood construction trade. Clinching is analogous to riveting in metal work, or to any other deformation of a fastener to prevent its easy withdrawal. The purpose of clinching is to impart greater cohesion between the two laminate layers that are so joined.
The term “pointed structure” or “pointed structures” is used herein as a general term to describe any type of nail- or pin-like structure (or hooked or barbed structure) raised on the surface of a material (for embedding or piercing). “Piercing structure” is one embodiment where the structure is formed to pierce through a softer material in the laminating process.
The term “pointed structure” or “pointed structures” is used herein as a general term to describe any type of nail- or pin-like structure (or hooked or barbed structure) raised on the surface of a material (for embedding or piercing). “Piercing structure” is one embodiment where the structure is formed to pierce through a softer material in the laminating process.
In the instant invention pointed (e.g. piercing) structures have been raised from a surface of a harder lamina material. Preferably, they can pierce into an adjacent softer lamina and if longer than the soft lamina's thickness, can protrude. The protruding tips may be bent over or clinched to create the ‘locked-laminate’ embodiment of the instant invention. This piercing through and clinching brings the unexpected benefits of extraordinary stiffness to the resulting laminate.
Rolls 4, 4a can press against the entire width of the material “sandwich” or just in localized areas (e.g. edges).
If lamina 1a is too hard to be readily pierced and/or too thick for the piercing structures 20 to extend completely through it, heaters 10 may be used to soften the material. Coolers 11 may then be used to cool the laminate strip 5 prior to cutting into laminate sheets 6.
In another embodiment, stiff, sheet core lamina 1b, such as polycarbonate, shown in
In
In
In
In
Such locked-laminate material may then be formed using different known fabrication methods including bending, drawing, punching, and the like. Such fabrication methods may be augmented by heating the laminate to allow the structure's tips 50a to move through the softened lamina to their new angular relationship (
Although the foregoing description refers to three- and more-ply laminates, it will be appreciated that simple two-ply laminates can be created using one harder (textured) material and one softer (pierceable) material, using the same roller arrangement described above (with suitable modifications) to “lock” the material together.
The foregoing description illustrates only certain preferred embodiments of the invention. The invention is not limited to the foregoing examples. That is, persons skilled in the art will appreciate and understand that modifications and variations are, or will be, possible to utilize and carry out the teachings of the invention described herein. The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest purposive construction consistent with the description as a whole.
Number | Date | Country | Kind |
---|---|---|---|
2780397 | Jun 2012 | CA | national |
This application is a U.S. continuation application of U.S. patent application Ser. No. 14/568,462, entitled “PROCESS FOR MAKING A LAMINATED SHEET” and filed Dec. 12, 2014, now U.S. Pat. No. 9,254,634 which is a U.S. continuation application under 35 U.S.C. §111(a) claiming priority under 35 U.S.C. §§120 and 365(c) to International Application No. PCT/CA2013/000501, filed May 23, 2013, which claims the priority benefit of Canadian Patent Application No. 2,780,397, filed Jun. 18, 2012, the contents of which are incorporated by reference herein in their entirety for all intended purposes.
Number | Name | Date | Kind |
---|---|---|---|
1897088 | Victor | Feb 1933 | A |
1915221 | Fitzgerald | Jun 1933 | A |
2171530 | Balfe | Sep 1939 | A |
2255268 | Perrine | Sep 1941 | A |
2274765 | Zalkind | Mar 1942 | A |
3092532 | Swick et al. | Jun 1963 | A |
3170354 | Scholl | Feb 1965 | A |
3513950 | Ratcliffe et al. | May 1970 | A |
3533891 | Puyear | Oct 1970 | A |
3551232 | Thompson | Dec 1970 | A |
3557407 | Lemelson | Jan 1971 | A |
3605360 | Lindal | Sep 1971 | A |
3615994 | MacLaine et al. | Oct 1971 | A |
4023613 | Uebayasi et al. | May 1977 | A |
4234638 | Yamazoe et al. | Nov 1980 | A |
4552252 | Stahl | Nov 1985 | A |
4569424 | Taylor, Jr. | Feb 1986 | A |
4640390 | Saumweber et al. | Feb 1987 | A |
4705278 | Locacius et al. | Nov 1987 | A |
4723783 | Belter et al. | Feb 1988 | A |
4776602 | Gallo | Oct 1988 | A |
4781389 | Beyer et al. | Nov 1988 | A |
4815172 | Ward | Mar 1989 | A |
4911972 | Mercuri | Mar 1990 | A |
4939818 | Hahn | Jul 1990 | A |
5067210 | Keyaki | Nov 1991 | A |
5142743 | Hahn | Sep 1992 | A |
5143184 | Snyder et al. | Sep 1992 | A |
5172920 | Schlenk | Dec 1992 | A |
5362074 | Gallo et al. | Nov 1994 | A |
5376410 | MacKelvie | Dec 1994 | A |
5469604 | Calmettes et al. | Nov 1995 | A |
D374609 | Akeno | Oct 1996 | S |
D376533 | Akeno | Dec 1996 | S |
5611122 | Torigoe et al. | Mar 1997 | A |
5732800 | Spigener | Mar 1998 | A |
5788247 | Tensor | Aug 1998 | A |
D400427 | Okawa et al. | Nov 1998 | S |
5842546 | Biswas | Dec 1998 | A |
D425405 | Naohara et al. | May 2000 | S |
6247704 | Battistoni | Jun 2001 | B1 |
6258457 | Ottinger et al. | Jul 2001 | B1 |
6276045 | Buchi et al. | Aug 2001 | B1 |
6279222 | Bunker et al. | Aug 2001 | B1 |
6431331 | Arbesman | Aug 2002 | B1 |
6464047 | Arbesman | Oct 2002 | B1 |
6622346 | Graham et al. | Sep 2003 | B2 |
6671935 | Filion et al. | Jan 2004 | B2 |
6843095 | Arbesman | Jan 2005 | B2 |
6860368 | Kulis, Jr. et al. | Mar 2005 | B2 |
6910255 | Arbesman | Jun 2005 | B2 |
6913673 | Baggot et al. | Jul 2005 | B2 |
7048097 | Arbesman | May 2006 | B2 |
7222701 | Pham | May 2007 | B2 |
7320386 | Kulis, Jr. et al. | Jan 2008 | B2 |
7686142 | Jung | Mar 2010 | B2 |
7841052 | Ducauchuis | Nov 2010 | B2 |
7989049 | Potier | Aug 2011 | B2 |
8048507 | Townsend et al. | Nov 2011 | B2 |
8088316 | Muth et al. | Jan 2012 | B2 |
D654355 | Cheng | Feb 2012 | S |
8407864 | Mask et al. | Apr 2013 | B2 |
8683840 | Tuma et al. | Apr 2014 | B2 |
8685520 | Meyer et al. | Apr 2014 | B2 |
9259899 | Arbesman | Feb 2016 | B1 |
9273741 | Arbesman et al. | Mar 2016 | B1 |
20020170789 | Poelemans | Nov 2002 | A1 |
20040016608 | Gutowski | Jan 2004 | A1 |
20040140165 | Pham | Jul 2004 | A1 |
20050170157 | Armela et al. | Aug 2005 | A1 |
20060027427 | Anda et al. | Feb 2006 | A1 |
20060118238 | Borazghi | Jun 2006 | A1 |
20060246256 | Ausen et al. | Nov 2006 | A1 |
20080003401 | Barnes et al. | Jan 2008 | A1 |
20090223753 | Kappagantu et al. | Sep 2009 | A1 |
20100170758 | Chen | Jul 2010 | A1 |
20100207334 | Virgin et al. | Aug 2010 | A1 |
20110036736 | Knowlton | Feb 2011 | A1 |
20110051724 | Scott et al. | Mar 2011 | A1 |
20110079065 | Cabanski et al. | Apr 2011 | A1 |
20110233875 | Shaver et al. | Sep 2011 | A1 |
20110260371 | Arora et al. | Oct 2011 | A1 |
20120003462 | Wong | Jan 2012 | A1 |
20120006959 | Braun et al. | Jan 2012 | A1 |
20130152654 | Arbesman et al. | Jun 2013 | A1 |
20150053517 | Arbesman et al. | Feb 2015 | A1 |
20150086750 | Arbesman et al. | Mar 2015 | A1 |
20150099093 | Arbesman et al. | Apr 2015 | A1 |
20150140255 | MacKelvie | May 2015 | A1 |
20160046110 | Broering et al. | Feb 2016 | A1 |
20160091041 | Arbesman | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
1118179 | Feb 1982 | CA |
1330521 | Jul 1994 | CA |
1337622 | Nov 1995 | CA |
2127339 | Jan 1996 | CA |
2272115 | Nov 1999 | CA |
2300401 | Dec 1999 | CA |
2391183 | Dec 2003 | CA |
2778455 | Nov 2013 | CA |
2780397 | Dec 2013 | CA |
ID145893 | Dec 2013 | CA |
2798303 | Jun 2014 | CA |
2821897 | Jan 2015 | CA |
2855378 | Jan 2016 | CA |
1286625 | Nov 2006 | CN |
19754740 | Mar 1999 | DE |
102004048464 | Apr 2006 | DE |
102006015100 | Oct 2007 | DE |
102006015145 | Oct 2007 | DE |
102006015148 | Oct 2007 | DE |
0859163 | Aug 1998 | EP |
934820 | Aug 1999 | EP |
2125126 | Feb 1984 | GB |
2507128 | Apr 2014 | GB |
04223157 | Aug 1992 | JP |
09011387 | Jan 1997 | JP |
02090792 | Nov 2002 | WO |
2011051724 | May 2011 | WO |
2013177667 | Dec 2013 | WO |
2015010183 | Jan 2015 | WO |
Entry |
---|
Alba Gaskets—Tanged Graphite data f specification sheet, 1 page, date unknown. |
Cixi CAZseal Packing & Gasket Co, Ltd.—Graphite Sheet with Tanged Metal data sheet, 1 page, date unknown. |
Dynoteq Kft.—SL T-20 Tang Sheet Specifications data sheet, 1 page, date unknown. |
Environmental Gasket Company LTD.—Graphite Sheet Gaskets, 5 pages, copyright 2009. |
Gee Graphite—Tanged Stainless Steel Reinforced Graphite Sheet data sheet, 1 page, date unknown. |
International Search Report dated Jul. 15, 2013 for Application No. PCT/CA2013/000501. |
James Walker & Co.—Supagraf Expanded Graphite Jointings data sheet, 1 page, date unknown. |
Ningbo Sunwell Fluid Technologies Co., Ltd.—Tanged Metal Reinforced Graphite Gasket data sheet, 1 page, 2010. |
SPG Gaskets Co.—Specification Sheet: SPG7003, 1 page, date unknown. |
Number | Date | Country | |
---|---|---|---|
20160101612 A1 | Apr 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14568462 | Dec 2014 | US |
Child | 14972868 | US | |
Parent | PCT/CA2013/000501 | May 2013 | US |
Child | 14568462 | US |