PROCESS FOR MAKING A PERSONAL CARE COMPOSITION USING COMPACTED RHEOLOGY MODIFIERS

Abstract
A method of making a personal care composition, such as dentifrice, using compacted rheology modifiers to control viscosity development.
Description
FIELD OF THE INVENTION

The present invention relates to methods of making personal care compositions, specifically methods involving the addition of compacted rheology modifiers.


BACKGROUND OF THE INVENTION

Today dentifrice is typically made in a batch process using vacuum vessels, such as a batch mixing tank, equipped with a high shear mixing device. Added to the mixing tank, per a defined recipe, are all the ingredients dosed at the proper amount to produce a dentifrice. Flavor or other oils can be added at various points within the batch to minimize loss and maximize within batch antifoaming benefits. Liquids are usually added to the mixing tank as a first step. Salts are added directly to the mixing tank, or added to a slurry tank first then added to the mixing tank. Abrasive is typically added directly to the mixing tank, however the abrasive may also be pre-slurried and delivered to the mixing tank as a premix.


Rheology modifiers are either added directly to the mixing tank or added via offline pre-slurry (tank or inline). The direct to the mixing tank option requires significant within batch mixing (typically high energy), which can take significant processing time to complete. The offline option requires more capital assets to support the different formulations. Generally the final step in a typical process is the addition of a surfactant. Keeping the surfactant to the end of the batch makes tank deaeration easier to complete. Even with holding the surfactant to the end of the batch making process, when making the dentifrice batch on the residual of the previous batch, the residual surfactant from the first batch can cause significant challenges on deaeration. These challenges can account for up to 30% of the total process time in making dentifrice.


The ingredients are combined together by recirculating the ingredients through a high shear mixing device to create the final homogenous personal care composition. Vacuum is then applied to the mixing tank to deaerate the dentifrice to the desired finished density. The addition of rheology modifiers thickens the premix making dearation more difficult, as it is harder to pull air out of a thick premix. Due to the addition of the rheology modifiers during the mixing process the final premix has a paste like viscosity that clings to the internal mixing tank surfaces, preventing the removal of all the premix when it is pumped out of the mixing tank. This requires the mixing tank to be cleaned prior to making another formula. It currently takes a long time (>1 hr.) and large amounts of water to clean the batch making vessel. This results in a greatly reduced making capacity due to lost time, as new formulas cannot be made while the system is being cleaned. Therefore due to the high viscosity of the finished premix, processing time is slow and losses are high.


What is needed is a dentifrice making methodology that has reduced down-time due to inter batch cleaning times.


SUMMARY OF THE INVENTION

A method of producing a personal care composition is provided that comprises forming in a mix tank a premix having a lower viscosity than a packaged personal care composition; adding compacted rheology modifiers to the premix; transferring the premix from the mix tank; and packaging the premix to produce a personal care composition.


A method of producing a personal care composition is provided that comprises forming in a mix tank a premix having a lower viscosity than a packaged personal care composition; compacting a rheology modifier; adding compacted rheology modifiers to the premix; transferring the premix from the mix tank; and packaging the premix to produce a personal care composition.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a process flow chart showing an embodiment of the present invention.



FIG. 2 is a perspective view of a test mixing vessel.



FIG. 3 is a side view of a mix impeller.





DETAILED DESCRIPTION OF THE INVENTION

The present invention involves the delayed release of rheology modifiers into a personal care composition premix, such as a dentifrice premix. The delayed release of the rheology modifier can be achieved by numerous techniques such as physical coatings, chemical coatings, or particle size control. It has been discovered that if the rate of hydration of the rheology modifier is less than about 1.0×10−3 s−1 the majority of the personal care composition formulation process can be completed under significantly lower viscosities.


All parts, percentages and proportions referred to herein and in the claims are by weight of the total composition unless otherwise indicated. All measurements are made at 25 deg. C. on the total composition unless otherwise indicated.


As used herein, the word “or” when used as a connector of two or more elements is meant to include the elements individually and in combination; for example X or Y, means X or Y or both.


By “personal care composition” is meant a product which in the ordinary course of usage is applied to or contacted with a body surface to provide a beneficial effect. Body surface includes skin, for example dermal or mucosal; body surface also includes structures associated with the body surface for example hair, teeth, or nails. Examples of personal care compositions include a product applied to a human body for improving appearance, cleansing, odor control or general aesthetics. Non-limiting examples of personal care compositions include hair coloring compositions, oral care compositions, after shave gels and creams, pre-shave preparations, shaving gels, creams, or foams, moisturizers and lotions, cough and cold compositions, leave-on skin lotions and creams, shampoos, conditioners, shower gels, bar soaps, toilet bars, antiperspirants, deodorants, depilatories, lipsticks, foundations, mascara, sunless tanners and sunscreen lotions.


By “oral care composition,” as used herein, is meant a product, which in the ordinary course of usage, is not intentionally swallowed for purposes of systemic administration of particular therapeutic agents, but is rather retained in the oral cavity for a time sufficient to contact dental surfaces or oral tissues. Examples of oral care compositions include dentifrice, tooth gel, subgingival gel, mouth rinse, mousse, foam, mouth spray, lozenge, chewable tablet, chewing gum, tooth whitening strips, floss and floss coatings, breath freshening dissolvable strips, or denture care or adhesive product. The oral care composition may also be incorporated onto strips or films for direct application or attachment to oral surfaces.


The term “dentifrice”, as used herein, includes tooth or subgingival-paste, gel, or liquid formulations unless otherwise specified. The dentifrice composition may be a single phase composition or may be a combination of two or more separate dentifrice compositions. The dentifrice composition may be in any desired form, such as deep striped, surface striped, multilayered, having a gel surrounding a paste, or any combination thereof. Each dentifrice composition in a dentifrice comprising two or more separate dentifrice compositions may be contained in a physically separated compartment of a dispenser and dispensed side-by-side.


Equipment


Test mixing vessel dimensions are optimized to impeller design to provide adequate liquid/liquid or liquid/solid mixing. For the rate of hydration experiments, a typical experimental design is detailed below for one impeller type and was the design used to support the rate of hydration data included in this application. For other impellers, test mixing vessel internal diameter and height, as well as impeller diameter, gaps, etc., will be optimized for that impeller.


1. Test mixing vessel:

    • a. The test mixing vessel is designed to be a miniature version of a traditional mix tank Test mixing vessel is constructed of plastic material, typically optically clear acrylic or polyvinyl chloride (PVC). As shown in FIG. 2 the test mixing vessel 30 is cylindrical in shape with a flat bottom and two separate injection ports 32 for material addition.
    • b. Test mixing vessel dimensions:
      • i. Internal diameter: 38.3 mm
      • ii. Outside diameter: 42 mm
      • iii. Vessel height: 65 mm
      • iv. Injection port diameter: 5 mm, round, spaced 30 mm apart approximately 35 mm from vessel bottom


2. Mix impeller:

    • a. As shown in FIG. 3, mix impeller 40 is an impeller design that combines a traditional pitch blade turbine with a hydrofoil impeller design. Dimensions for the mix impeller corresponding to above test mixing vessel are as follows:
      • i. Mix impeller blade diameter (BD): 32.5 mm
      • ii. Mix impeller blade width (BW): 13 mm
      • iii. Length of mix impeller shaft (L): 55 mm


3. Rheometer:

    • a. TA Instruments ARG2 or DHR3 controlled stress rheometer (TA Instruments, New Castle, Del.) equipped with custom peltier base container holder.


4. Methodology:

    • a. Determine density of dentifrice base fluid via density meter, pygnometer, etc.
    • b. Based on fluid density, weigh appropriate amount of dentifrice base material to provide 28-30 mL of fluid into test mixing vessel.
    • c. Prepare the compacted rheology modifier to the desired particle size and hardness.
    • d. Mount test mixing vessel onto base holder and align/center mix impeller with test mixing vessel
    • e. Lower mix impeller into mix chamber of test mixing vessel. Typical side wall gap between mix impeller and test mixing vessel is around 5.5 mm. Gap will vary for alternative impeller types and test mixing vessel dimensions.
    • f. Rheometer methodology
      • i. A traditional flow-peak hold experiment design is utilized where viscosity and torque are monitored as a function of shear rate over time.
      • ii. Rheometer is set to desired temperature
      • iii. Mix impeller speed is set at desired rpm to generate desired shear rate of the impellers. Desired shear rate typically ranges from 1 to several hundred s−1.
      • iv. Length of experiment may vary from 1 minute to 10 minutes depending on the formulation being created. Some formulations with lower water need to be analyzed over longer time periods up to 1 hour.
      • v. Time, torque, and viscosity data is collected over the course of the experiment at the rate of 0.5 to 1 seconds per data point.
    • g. With impeller in place, start analysis program as powder and/or binder slurry is injected into test mixing vessel through the side ports in less than two seconds.
    • h. Monitor viscosity and torque over the measurement time with a sampling rate of less than once per second.
    • i. After the defined test run is complete (typically a 10 minute run), perform Metzner-Otto corrections to raw data (Ait-kadi A., Marchal P., Choplin L., Chrissement, A., Bousmina M., “Quantitative Analysis of Mixer-Type Rheometers using the Couette Analogy”, Canadian J. Chem Eng., 80 (6), 1166-1174, 2002.).


The test can clearly show how each various types and extents of compaction impact how the rheology modifier changes viscosity over time. By significantly reducing the rate of hydration of the rheology modifiers in the system, the system can be processed with significantly less losses. The rate of hydration in this case is best calculated using the equation:








(


μ3600





s

-
μ0

)



(
μ0
)



(

3600





s

)



=
RH




where:

    • μ3600 s—viscosity measured 60 minutes after compacted rheology modifier added (Pa·s)
    • μ0—viscosity measured of system prior to addition of compacted rheology modifier (Pa·s)
    • RH—rate of hydration of the system


Specifically, the delayed release can be provided by compacting the rheology modifiers prior to addition into the dentifrice premix. Compaction delays the activation of the rheology modifiers, such that the premix does not start to noticeably thicken until after the premix substantially exits the mix tank. Because the rheology modifiers do not noticeably thicken the premix until after the premix exits the mix tank, losses from washout of the mix tank are minimized and throughput of the process in the mix tank is faster because of lower rheology. The low rheology of the premix also increases the efficiency and speed of deaeration, which may be conducted prior to an increase in viscosity, such as in line prior to pumping through a high shear mill or in the mix tank. In certain embodiments the deaeration of the premix is done prior to the addition of surfactant to reduce the generation of micelles.


An illustrative processing diagram of the instant invention is depicted in FIG. 1. In certain embodiments a rheology modifier is compacted by feeding a powder mass of rheology modifier 10 under controlled volume flow into the nip of the counter rotating rolls of a roller compactor 12. The surface of the rolls can be scored to give corrugated, patterned or briquetted compacted rheology modifier of any desired shape. For instance, in certain applications, corrugations facilitate the flow of the fine feed into the nip of the rolls. In a roller compactor, the force employed for the compaction step can vary from about 300 kilograms force/linear centimeter roll width to about 4,000 kilograms force/linear centimeter roll width or higher. In certain embodiments the range in applied force for compaction in a roller compactor is from about 1400 kilograms force/linear centimeter roll width to about 2,500 kilograms force/linear centimeter roll width. The compaction step can be carried out at a high or low rate of application of pressure.


In certain embodiments, where an average particle size range is desirable the average particle size of the rheology modifier used as the feed material can vary from about 0.5 μm to about 1000 μm with a majority of the particles being within the range of from about 25 μm to about 250 μm. The bulk density of the fine particle feed to the compacting process of the present invention can range from about 0.2 to about 0.8 g/cc.


Compaction can be carried out at low relative humidity and ambient temperature. The compaction step in exerting mechanical pressure on the fine particles of the rheology modifier by means of rolls increases the temperature about 10° C. to about 40° C. Chilling the pressure rolls is generally unnecessary unless there is a negative effect upon the compacted rheology modifier.


The compacted rheology modifier is then comminuted by any means appropriate to produce the desired particle sizes, which can effectively be granulated in accordance with the invention, such as by grinding using a mill 14. Grinding mills such as those manufactured by the Prater-Sterling Company, Bolingbrook, Ill.; and HiBar Systems Limited, Richmond Hill, Ontario, can be used to prepare the desired sized granules from the compacted sheet, ribbon, flakes or chips.


After comminuting, the rheology modifier can be classified to provide the desirable particle size for addition to a premix. Any appropriate screening or sieving device 16 including screens, perforated plates, cloth and the like, and air separators and the like can be used if appropriate classification of particles can be obtained. The large particles can be recycled to the compactor for further processing. The milling can include several separating, recycling, and screening steps to obtain the desired particle sizes. The particles should be of such a size such that the viscosity of the premix will not substantially increase within the main mixing tank, but will rather slowly increase as the compacted particles of rheology modifier are slowly hydrated in the slurry. In certain embodiments the compacted rheology modifier has a particle size distribution of less than about 25% or less than about 20% through 325 mesh, i.e., smaller than 44 μm; from about 40% to about 70% or from about 45% to about 65% on 100 mesh i.e. larger than about 149 μm; and a maximum of about 10% or about 5% on 40 mesh, i.e., larger than about 420 μm. The particle size may vary based on the type of rheology modifier used. The resulting compacted rheology modifier can then be stored for later use or conveyed to a mix tank.


A coating can be added to the compacted rheology modifier further impacting how the compacted rheology modifier disperses or hydrates in the system. The rheology modifier can also be compacted with other formula components to improve dispersion, further delay rheology build, or deliver other ingredients that may currently not be possible. For example, compacting the rheology modifier with silica can significantly reduce the energy needed to achieve the finished fine dispersion of the compacted particles. Compacting a polyacrylic acid with an acid salt can provide a localized low pH zone slowing the neutralization and effectively slowing the rate of rheology build.


Generally prior to addition of the compacted rheology modifier the mixing process begins with the addition of liquids 4 to the mix tank 20. The mix tank 20 provides the means for preparing a low viscosity slurry of the liquid and solid components of the mix. The liquids 4 can be added directly to the mix tank 20, or could be added through an in-line dispersion device, such as an eductor, examples of which include a Lobestar eductor sold by Vortex Ventures, Houston, Tex., allowing powders to be added concurrently with the liquids. After the main liquids (typically humectants, water, pH adjuster, and potentially flavor and emulsifier) are added to the tank the powder 6 (or remaining powder) can be added to the mix tank 20. In certain embodiments the powder 6 can be added via an in-line dispersion device, such as an educator 22, so as to maximize the dispersion during the addition, which minimizes the total processing time. The powders 6 typically start with the salts for the system, then the addition of the abrasive(s). Visual ingredients, such as mica, prills, and aesthetic agents, can also be added at this point.


After all the materials are combined, the batch is mixed for a time to deliver homogeneity. To determine sufficient mixing, a relationship between the system pumping rate and the settling rate of the suspension can be used to calculate the system suspension ratio. A system suspension ratio of about one or greater insures a system will not settle and maintain homogeneity. The system suspension ratio can be determined by first measuring the settling rate of the suspension. Once the settling rate of the suspension is determined, the pumping rate of the system can be calculated. The system suspension ratio is calculated as follows:







Qp

SRf
×
Vb


=
SSR




where:

    • Qp—system pumping rate (see following discussion) (m3/s)
    • Vb—Equivalent batch volume (m3)
    • SRf—settling rate of the fluid measured by attached method (1/s)
    • SSR—System Suspension Ratio


Qp can be measured using a flow meter on an external recirculation loop or by the following calculation approach for calculating the pumping rate of the agitator in a stirred tank; as shown in: Paul, Edward L. Atiemo-Obeng, Victor A. Kresta, Suzanne M. (2004). Handbook of Industrial Mixing—Science and Practice. John Wiley & Sons. p. 358-360.






Q=N
Q
×N×D
3


Where


NQ=Pumping number which depends on the impeller type, D/τ ratio and impeller Reynolds number


and the impeller Reynold's number is:






Re
=


ρ
×
N
×

D
2


μ





N=impeller speed


D=Diameter of the impeller


The Table below gives values for the pumping number for various impellers under turbulent conditions. In certain embodiments the pumping number is between about 0.4 NQ to 0.8 NQ.












TABLE 1









Impeller Type
NQ



Propeller
0.4-0.6



Pitched blade turbine
0.79



Hydrofoil impellers
0.55-0.73



Retreat curve blade
0.3



Flat-blade turbine
0.7



Disk flat-blade turbine (Rushton)
0.72



Hollow-blade turbine (Smith)
0.76










Mixing can occur under vacuum or under atmospheric conditions. In certain embodiments mixing under non-vacuum conditions can be done as the low viscosity of the fluid allows for self deaeration of the system. Being able to produce under non-vacuum conditions reduces the energy consumption of the system improving efficiency of the overall process. So typically the premix is under atmospheric conditions in the mix tank at a temperature of about 15° C. to about 55° C. for about 0 to 30 minutes at a System Suspension Ratio (SSR) of about 1.5 or greater or about 2 or greater. The lower viscosity enables higher system pumping rates resulting in shorter mix time to boost process efficiency. The compacted rheology modifier can be added at any point in the batch as long as the rate of hydration of the system is kept about 1.0×10−3 s−1 or less over the process time which may be less than about two hours or less than about one hour. In certain embodiments the compacted rheology modifier can be added at the end of the batch. The compacted rheology modifier may be added to a mix tank or in-line by any suitable method, for example by being vacuumed in from pre-weigh or trolley, metered via screws, or gravity fed from pre-weigh hopper or funnel. The compacted rheology modifier can be added in an amount of from about 0.1% to about 15.0%, by weight of the premix, based on the amount and type of added compacted rheology modifier and the consumer expectation of the formula being structured.


For example, with reference to FIG. 1, in certain embodiments the mix tank 20 can be charged with Sorbitol, Water, Pigment, Dye and Polysorbate 80 through the main port and the agitator controller set to deliver a System Suspension Ratio (SSR) of about 0.75 or greater. A recirculation pump 24 controller can be set deliver an SSR about 1.5 or greater. A flavor component may then be added to the mix tank 20 through a main port while mixing and recirculating through the eductor 22. A powder delivery hose may be connected to the eductor 22 via a powder delivery port and the Minor powders (sweetener, fluoride source, phosphates, etc.) can then be added to the mix tank 20 through the eductor 22 via the powder delivery hose connected to the powder delivery port. The batch can be recirculated through the eductor 22 for about 5 minutes or less or until pass volume of 100% of batch volume has been achieved. Sodium hydroxide can then be added to the mix tank 20 via the main port and the batch recirculated through eductor 22 for about five minutes or less. Silica may then be added to the mix tank 20 through the eductor 22 via the powder delivery hose connected to powder delivery port and the batch is again recirculated through the eductor 22 for about 5 minutes or less or until pass volume of 100% of batch volume has been achieved. The compacted rheology modifier can then be added to the mix tank 20 and mixed via agitation at an SSR of about 1.5 or greater until course homogeneity is achieved.


Viscosities of the premix may range from about 0.01 Pa·s to about 10 Pa·s as measured with an AR2000 rheometer (TA Instruments, New Castle, Del.) when sampled at 10 sec−1. The addition of the compacted rheology modifier should not immediately have a significant impact on mix rheology. The properties of the compacted rheology modifier (particle size, compaction pressure, composition) are such that the rate of hydration is about 1.0×10−3 s−1 or less. The AR2000 rheometer uses the following methodology when measuring rheology: For the conditioning step, the temperature is set to 25 C and equilibration is performed for 2 minutes. Steady state flow with increasing shear rate is measured by ramping the shear rate (1/s) from 0.001 to 120.0 and setting to Log mode. Three (3) points per decade are acquired at 25° C. over a sampling period of 3.0 seconds within a tolerance of 5% until two (2) consecutive points within the tolerance are achieved. The maximum point is measured over a time of 1.0 minute. Steady state flow with decreasing shear rate is measured by ramping the shear rate (1/s) from 120.0 to 0.01 and setting to Log mode. Three (3) points per decade are acquired at 25° C. over a sampling period of 10.0 seconds within a tolerance of 5% until two (2) consecutive points within the tolerance are achieved. The maximum point is measured over a time of 1.0 minute.


Once the premix is sufficiently mixed, it is then discharged out of the mix tank 20 through a pump and flow meter into a high energy dispersion device 27 (i.e. rotor stator mill), in certain embodiments at a flow rate from about 10 Kg/min to about 1000 Kg/min or from about 40 Kg/min to about 400 Kg/min. The high energy dispersion device 27 ensures an even dispersion of the rheology modifiers within the main mix stream. The energy density, or the amount of energy transferred to the premix by a high energy dispersion device is best defined by the observed mechanical energy of the device (typically measured off the VFD or servo motor) and the premix flow rate through the system. This energy density has been shown to impact the premix texture and the overall rate of hydration of the system. Acceptable energy density as described above would be between about 5 KW/Kg/s to about 25 KW/Kg/s. Examples of high energy dispersion devices are Quadro ZC1 (Quadro Engineering, Ontario, Canada), IKA Ultra-Turrax UTL (IKA Works GmbH & Co. KG, Staufen, Germany), Silverson In-Line High Shear Sanitary (Silverson Co., Cincinnati, Ohio), etc. . . . Typically, soon after dispersing the rheology modifiers, the premix rheology begins to increase. The rate of viscosity increase is a function of the type of rheology modifier used, the formulation, and process conditions. The rheology modifiers may make up between about 0.1% to about 15% by weight of the total composition and can be a single rheology modifier or a combination of rheology modifiers.


In certain embodiments, after leaving the high energy dispersion device the premix can then flow through an inline deaeration device. The inline deaeration device can remove down to about 0.001% by volume of the premix or less air, as measured by sonar detection method, which is below the consumer noticeable air level of about 0.5% by volume or greater air, enabling a robust process window. In certain embodiments the inline deaeration device can reduce the air level of the premix to about 0.01% or less, by volume of the premix. In still further embodiments the inline deaeration device may deliver the ratio of air removal to liquid throughput of about 0.15 L/Kg to about 0.6 L/Kg or from about 0.2 L/Kg to about 0.5 L/Kg. In addition the size of the inline deaeration device may deliver a loss (waste in deaerater)/throughput ratio of about 1 l/s to about 8 l/s or from about 2 l/s to about 4 l/s. The inline deaeration may occur after all dry ingredients have been added to the stream, so that the air removal can be maximized Given that the rheology modifiers begin increasing rheology as soon as they are added to the premix (as defined by the rate of hydration of the system). The rate of hydration of the formulations is a function of numerous formula components such as rheology modifier type, water level, ionic strength, solids loading and other attributes. In addition, the rate of hydration is driven by process conditions such as temperature and energy density of the high energy dispersion device.


It is also important that the deaeration occur at a rheology lower than finished product, such as toothpaste to maximize efficiency (rate), as less energy is required to remove air from a material having a lower rheology as compared to a material having a higher rheology. Consequently the inline deaeration device may be located as close to the high energy dispersion device as possible. The inline deaeration device can be positioned such that the pressure drop between the high energy dispersion device and inline deaeration device is less than the pumping pressure head of the high energy dispersion device. In certain embodiments if that is not possible then the pressure control valve can be replaced with a positive displacement pump to control back pressure on the high energy dispersion device and ensure the premix can be fed to the inline deaeration device. This relationship may be defined by the residence time of the rheology modifiers from the point of premix contact through the inline deaeration device and the rate of hydration of the system.


Deaeration efficiency can be improved by reducing or removing foaming surfactants, such as sodium lauryl sulfate. Therefore, in certain embodiments the dentifrice foaming surfactants are added after the deaeration steps. Emulsifying surfactants such as polysorbate 80 can be used prior to the deaeration step without appreciable impact to the deaeration efficiency.


The viscosity of the stream between the high energy dispersion device, and inline deaeration device in certain embodiments is between about 0.01 Pa·s and about 1,000 Pa·s measured at 10 sec−1 and in certain other embodiments between about 0.01 Pa·s and about 100 Pa·s measured at 10 sec−1 using the measurement protocol described above.


After leaving this step the personal care composition, such as dentifrice, can be packaged into one or more containers having equal or unequal volumes. The container(s) containing the personal care composition may be ultimately shipped and sold to the consumer, or may be used for transport and storage of the mixture as an intermediate. Thus, the container(s) may be selected from a bulk storage device, for example, a tank, a tank car, or rail car, or a final package, for example, a tube, bottle and/or a tottle. Storing in the interim containers for a given amount of time could improve filling performance for striping. The container(s) may be provided with a frangible or resealable closure as are well known in the art, and be made of any material suitable for containing the materials combined according to the present invention.


In one aspect, one or more of the processing methods described herein may be employed or in conjunction with one or more additional processing methods and the personal care compositions produced by employing multiple processing methods may be discharged into a common container, thereby forming for example, a personal care composition having multiple layers, phases, patterns etc. Such layers, phases and/or patterns may or may not mix in the container to form a homogeneous personal care composition. In one aspect, the processing method to manufacture a first phase of a personal care composition may be in a separate location from the processing method to produce a second, third, fourth or more phase for filling the container with the final multi-phase composition, such as a dentifrice with a paste phase and a gel phase.


In one aspect, the processing method or multiple methods can be a coupled with a filling line to fill containers with a first phase, a second phase, combined phase and/or a multiphase composition. In one aspect, where the composition is intended to be combined with another composition to form a multiphase personal care composition it may be filled into containers in many ways. For example, one could fill containers by combining toothpaste-tube filling technology with a spinning stage design. Additionally, the present invention can be filled into containers by the method and apparatus as disclosed in U.S. Pat. No. 6,213,166. The method and apparatus allows two or more compositions to be filled in a spiral configuration into a single container using at least two nozzles to fill a container, which is placed on a rotating stage and spun as the composition is introduced into the container.


In certain embodiments the premix should have sufficiently low viscosity while being mixed in the mix tank, while having sufficiently high viscosity at the end of the dentifrice formulation process to prevent the dentifrice flowing off the brush once dispensed. Therefore a compacted rheology modifier should provide the premix with minimal viscosity increase while in the mix tank, but increase the viscosity between the time the premix exits the mix tank and the dentifrice is loaded into a dispensing container.


Typically, rheology modifiers imparting the highest level of pseudoplasticity are those which form structure by charge-charge interactions or hydrogen-bonding such as the colloidal silicas and hectorite clays. From a flow rate standpoint, these materials have ideal characteristics, being highly shear thinning Rheology modifiers forming cross-linked networks, such as polysaccharide derivatives including xanthan gum or synthetic polymers including carbomer, also give a high degree of pseudoplasticity. Rheology modifiers that build structure by chain entanglement alone, such as cellulose gum, are also pseudoplastic, but tend to have a lower level of pseudoplasticity than those having a three dimensional order.


Rheology modifiers may be used singly, or in combination to form “thickening systems”. Some rheology modifiers, such as hectorite, allow phase separation of the compositions in which they are used in the absence of a second rheology modifier. Similarly, there may be restrictions on the level at which an individual rheology modifier can be employed, requiring the addition of a further rheology modifiers to achieve the required rheology profile.


For a particular rheology modifier or combination of rheology modifiers, achieving the correct rheological profile to allow the premix to have a suitable flow rate during mixing yet form a useable dentifrice will be dependent upon the formulation level at which the rheology modifier or combination of rheology modifiers is employed. Typically, increasing the level of rheology modifier will lead to an increase in viscosity. Therefore, there is a window of rheology modifier levels that allows the mix to mostly exit the mix tank and to produce dentifrice that will be retained on the bristles. The optimal level or levels of rheology modifier or a combination of rheology modifiers will also be determined by the grade of material employed, typically as a function of molecular weight or polymer chain length, with longer chain lengths resulting in higher viscosity. The rheology modifier may also exhibit synergistic interaction with other ingredients in the formulation such that the level required to attain the correct viscosities during mixing and dentifrice use is altered. Many other factors may govern the selection of a particular rheology modifier in a particular formulation. A specific charge on the rheology modifier may be required for example in order to avoid undesirable interactions with other ingredients.


Rheology modifiers suitable for use in the present invention include organic and inorganic rheology modifiers, and mixtures thereof. Inorganic rheology modifiers include hectorite and derivatives, hydrated silicas, ternary and quaternary magnesium silicate derivatives, bentonite and mixtures thereof. Preferred inorganic rheology modifiers are hectorite and derivatives, hydrated silicas and mixtures thereof. Organic rheology modifiers include xanthan gum, carrageenan and derivatives, gellan gum, hydroxypropyl methyl cellulose, sclerotium gum and derivatives, pullulan, rhamsan gum, welan gum, konjac, curdlan, carbomer, algin, alginic acid, alginates and derivatives, hydroxyethyl cellulose and derivatives, hydroxypropyl cellulose and derivatives, starch phosphate derivatives, guar gum and derivatives, starch and derivatives, co-polymers of maleic acid anhydride with alkenes and derivatives, cellulose gum and derivatives, ethylene glycol/propylene glycol co-polymers, poloxamers and derivatives, polyacrylates and derivatives, methyl cellulose and derivatives, ethyl cellulose and derivatives, agar and derivatives, gum arabic and derivatives, pectin and derivatives, chitosan and derivatives, resinous polyethylene glycols such as PEG-XM where X is >=1, karaya gum, locust bean gum, natto gum, co-polymers of vinyl pyrollidone with alkenes, tragacanth gum, polyacrylamides, chitin derivatives, gelatin, betaglucan, dextrin, dextran, cyclodextrin, methacrylates, microcrystalline cellulose, polyquatemiums, furcellaren gum, ghatti gum, psyllium gum, quince gum, tamarind gum, larch gum, tara gum, and mixtures thereof. Preferred are xanthan gum, carrageenan and derivatives, gellan gum, hydroxypropyl methyl cellulose, sclerotium gum and derivatives, pullulan, rhamsan gum, welan gum, konjac, curdlan, carbomer, algin, alginic acid, alginates and derivatives, hydroxyethyl cellulose and derivatives, hydroxypropyl cellulose and derivatives, starch phosphate derivatives, guar gum and derivatives, starch and derivatives, co-polymers of maleic acid anhydride with alkenes and derivatives, cellulose gum and derivatives, ethylene glycol/propylene glycol co-polymers, poloxamers and derivatives and mixtures thereof.


In certain embodiments amounts of rheology modifiers may range from about 0.1% to about 15% or from about 0.5% to about 3% by weight of the total composition.


In addition to the above components, a sweetener, a flavor, a preservative, an effective ingredient, abrasives, fluoride ion sources, chelating agents, antimicrobials, silicone oils and other adjuvants such as preservatives and coloring agents, etc. may be added as required.


As the sweetener, saccharin sodium, sucrose, maltose, lactose, stevioside, neohesperidildigydrochalcone, glycyrrhizin, perillartine, p-methoxycinnamic aldehyde and the like may be used in an amount of 0.05 to 5% by weight of the toothpaste. Essential oils such as spearmint oil, peppermint oil, salvia oil, eucalptus oil, lemon oil, lime oil, wintergreen oil and cinnamon oil, other spices and fruit flavors as well as isolated and synthetic flavoring materials such as 1-menthol, carvone, anethole, eugenol and the like can be used as flavors. The flavor may be blended in an amount of 0.1 to 5% by weight of the toothpaste. Ethyl paraoxy benzonate, butyl paraoxy benzoate, etc. may be used as the preservative. The sweetener may be added with the abrasive. The flavor and the preservative may be added when preparing the liquid of the slightly swollen rheology modifier or mixed with rheology modifier after mixing with the humectant. Enzymes such as dextranase, lytic enzyme, lysozyme, amylase and antiplasmin agents such as EPSILON-aminocaproic acid and tranexamic acid, fluorine compounds such as sodium monofluorophosphate sodium fluoride and stannous fluoride, chlorhexidine salts, quaternary ammonium salts, aluminum chlorohydroxyl allantoin, glycyrrhetinic acid, chlorophyll, sodium chloride and phosphoric compounds may be used as the effective ingredient. Moreover, silica gel, aluminum silica gel, organic acids and their salts may be blended as desired. An organic effective ingredient with low viscosity may be added when preparing the liquid of the slightly swollen rheology modifier.


The toothpastes produced by the methods of the present invention may comprise greater than about 0.1% by weight of a surfactant or mixture of surfactants. Surfactant levels cited herein are on a 100% active basis, even though common raw materials such as sodium lauryl sulphate may be supplied as aqueous solutions of lower activity.


Suitable surfactant levels are from about 0.1% to about 15%, from about 0.25% to about 10%, or from about 0.5% to about 5% by weight of the total composition. Suitable surfactants for use herein include anionic, amphoteric, non-ionic, zwitterionic and cationic surfactants, though anionic, amphoteric, non-ionic and zwitterionic surfactants (and mixtures thereof) are preferred.


Useful anionic surfactants herein include the water-soluble salts of alkyl sulphates and alkyl ether sulphates having from 10 to 18 carbon atoms in the alkyl radical and the water-soluble salts of sulphonated monoglycerides of fatty acids having from 10 to 18 carbon atoms. Sodium lauryl sulphate and sodium coconut monoglyceride sulphonates are examples of anionic surfactants of this type.


Suitable cationic surfactants useful in the present invention can be broadly defined as derivatives of aliphatic quaternary ammonium compounds having one long alkyl chain containing from about 8 to 18 carbon atoms such as lauryl trimethylammonium chloride; cetyl pyridinium chloride; benzalkonium chloride; cetyl trimethylammonium bromide; di-isobutylphenoxyethyl-dimethylbenzylammonium chloride; coconut alkyltrimethyl-ammonium nitrite; cetyl pyridinium fluoride; etc. Certain cationic surfactants can also act as germicides in the compositions disclosed herein.


Suitable nonionic surfactants that can be used in the compositions of the present invention can be broadly defined as compounds produced by the condensation of alkylene oxide groups (hydrophilic in nature) with an organic hydrophobic compound which may be aliphatic and/or aromatic in nature. Examples of suitable nonionic surfactants include the poloxamers; sorbitan derivatives, such as sorbitan di-isostearate; ethylene oxide condensates of hydrogenated castor oil, such as PEG-30 hydrogenated castor oil; ethylene oxide condensates of aliphatic alcohols or alkyl phenols; products derived from the condensation of ethylene oxide with the reaction product of propylene oxide and ethylene diamine; long chain tertiary amine oxides; long chain tertiary phosphine oxides; long chain dialkyl sulphoxides and mixtures of such materials. These materials are useful for stabilising foams without contributing to excess viscosity build for the oral care composition.


Zwitterionic surfactants can be broadly described as derivatives of aliphatic quaternary ammonium, phosphonium, and sulphonium compounds, in which the aliphatic radicals can be straight chain or branched, and wherein one of the aliphatic substituents contains from about 8 to 18 carbon atoms and one contains an anionic water-solubilising group, e.g., carboxy, sulphonate, sulphate, phosphate or phosphonate.


The dentifrices produced by the methods of the present invention may comprise greater than about 50% liquid carrier materials. Liquid carrier materials, such as water, employed in the preparation of commercially suitable dentifrice may be deionised and free of organic impurities. Water may comprise from about 20% to about 70% or from about 30% to about 50% by weight of the total composition. These amounts of water include the free water which is added plus that which is introduced with other materials such as with sorbitol and with surfactant solutions.


Generally the liquid carrier may further include one or more humectants. Suitable humectants include glycerin, sorbitol, and other edible polyhydric alcohols, such as low molecular weight polyethylene glycols at levels of from about 15% to about 50%. To provide the best balance of foaming properties and resistance to drying out, the ratio of total water to total humectant may be from about 0.65:1 to about 1.5:1, or from about 0.85:1 to about 1.3:1.


The viscosities of the oral care compositions herein may be affected by the viscosity of Newtonian liquids present in the composition. These may be either pure liquids such as glycerin or water, or a solution of a solute in a solvent such as a sorbitol solution in water. The level of contribution of the Newtonian liquid to the viscosity of the non-Newtonian oral care composition will depend upon the level at which the Newtonian liquid is incorporated. Water may be present in a significant amount in an oral care composition, and has a Newtonian viscosity of approximately 1 mPa·s at 25 deg. C. Humectants such as glycerin and sorbitol solutions typically have a significantly higher Newtonian viscosity than water. As a result, the total level of humectant, the ratio of water to humectant, and the choice of humectants, helps to determine the high shear rate viscosity of the oral care compositions.


Common humectants such as sorbitol, glycerin, polyethyleneglycols, propylene glycols and mixtures thereof may be used, but the specific levels and ratios used will differ depending on the choice of humectant. Sorbitol may be used, but due to its relatively high Newtonian viscosity, in certain embodiments cannot be incorporated at levels above 45% by weight of the composition, as it contributes significantly to the high shear rate viscosity of the oral care composition. Conversely, propylene glycol may be employed at higher levels as it has a lower Newtonian viscosity than sorbitol, and hence does not contribute as much to the high shear rate viscosity of the oral care composition. Glycerin has an intermediate Newtonian viscosity in between that of sorbitol and polyethylene glycol.


Ethanol may also be present in the oral care compositions. These amounts may range from about 0.5 to about 5%, or from about 1.5 to about 3.5% by weight of the total composition. Ethanol can be a useful solvent and can also serve to enhance the impact of a flavour, though in this latter respect only low levels are usually employed. Non-ethanolic solvents such as propylene glycol may also be employed. Also useful herein are low molecular weight polyethylene glycols.


The dentifrices produced by the methods of the present invention may comprise a dental abrasive. Abrasives serve to polish the teeth, remove surface deposits, or both. The abrasive material contemplated for use herein can be any material which does not excessively abrade dentine. Suitable abrasives include insoluble phosphate polishing agents, such as, for example, dicalcium phosphate, tricalcium phosphate, calcium pyrophosphate, beta-phase calcium pyrophosphate, dicalcium phosphate dihydrate, anhydrous calcium phosphate, insoluble sodium metaphosphate, and the like. Also suitable are chalk-type abrasives such as calcium and magnesium carbonates, silicas including xerogels, hydrogels, aerogels and precipitates, alumina and hydrates thereof such as alpha alumina trihydrate, aluminosilicates such as calcined aluminium silicate and aluminium silicate, magnesium and zirconium silicates such as magnesium trisilicate and thermosetting polymerised resins such as particulate condensation products of urea and formaldehyde, polymethylmethacrylate, powdered polyethylene and others such as disclosed in U.S. Pat. No. 3,070,510. Mixtures of abrasives can also be used. The abrasive polishing materials generally have an average particle size of from about 0.1 to about 30 μm, or from about 1 to about 15 μm.


The oral care compositions described herein may have Radioactive Dentin Abrasion (“RDA”) values of from about 70 to about 200, from about 70 to about 140, or from about 80 to about 125. The RDA values are determined according to the method set forth by Hefferen, “Journal of Dental Research”, July-August 1976, pp. 563-573, and described in the Wason U.S. Pat. Nos. 4,340,583, 4,420,312 and 4,421,527. Non-abrasive materials, such as polyphosphates can also contribute to a RDA value. A RDA value can, however, be measured for an abrasive in the absence of these materials.


Silica dental abrasives of various types offer exceptional dental cleaning and polishing performance without unduly abrading tooth enamel or dentin. The silica abrasive can be precipitated silica or silica gels such as the silica xerogels described in U.S. Pat. No. 3,538,230, U.S. Pat. No. 3,862,307. Silicas may be used that have an oil absorption from 30 g per 100 g to 100 g per 100 g of silica. It has been found that silicas with low oil absorption levels are less structuring, and therefore do not build the viscosity of the oral care composition to the same degree as those silicas that are more highly structuring, and therefore have higher oil absorption levels. As used herein, oil absorption is measured by measuring the maximum amount of linseed oil the silica can absorb at 25 deg. C.


Suitable abrasive levels may be from about 0% to about 20% by weight of the total composition, in certain embodiments less than 10%, such as from 1% to 10%. In certain embodiments abrasive levels from 3% to 5% by weight of the total composition can be used.


For anticaries protection, a source of fluoride ion will normally be present in the oral care composition. Fluoride sources include sodium fluoride, potassium fluoride, calcium fluoride, stannous fluoride, stannous monofluorophosphate and sodium monofluoro-phosphate. Suitable levels provide from 25 to 2500 ppm of available fluoride ion by weight of the liquid dentifrice.


Another optional agent is a chelating agent, of value as an anticalculus agent. Suitable chelating agents include organic acids and their salts, such as tartaric acid and pharmaceutically-acceptable salts thereof, citric acid and alkali metal citrates and mixtures thereof. Chelating agents are able to complex calcium found in the cell walls of the bacteria. Chelating agents can also disrupt plaque by removing calcium from the calcium bridges which help hold this biomass intact. However, it is possible to use a chelating agent which has an affinity for calcium that is too high, resulting in tooth demineralisation. In certain embodiments the chelating agents have a calcium binding constant of about 101 to about 105 to provide improved cleaning with reduced plaque and calculus formation. The amounts of chelating that may be used in the formulations of the present invention are about 0.1% to about 2.5%, from about 0.5% to about 2.5% or from about 1.0% to about 2.5%. The tartaric acid salt chelating agent can be used alone or in combination with other optional chelating agents.


Another group of agents particularly suitable for use as chelating agents in the present invention are the water soluble polyphosphates, polyphosphonates, and pyro-phosphates which are useful as anticalculus agents. The pyrophosphate salts used in the present compositions can be any of the alkali metal pyrophosphate salts. An effective amount of pyrophosphate salt useful in the present composition is generally enough to provide at least 1.0% pyrophosphate ion or from about 1.5% to about 6% of such ions. The pyrophosphate salts are described in more detail in Kirk & Othmer, Encyclopedia of Chemical Technology, Second Edition, Volume 15, Interscience Publishers (1968).


Water soluble polyphosphates such as sodium tripolyphosphate, potassium tripolyphosphate and sodium hexametaphosphate may be used. Other long chain anticalculus agents of this type are described in WO98/22079. Also preferred are the water soluble diphosphonates. Suitable soluble diphosphonates include ethane-1-hydroxy-1,1,-diphosphonate (EHDP) and aza-cycloheptane-diphosphonate (AHP). The tripolyphosphates and diphosphonates are particularly effective as they provide both anti-tartar activity and stain removal activity without building viscosity as much as much as less water soluble chemical stain removal agents and are stable with respect to hydrolysis in water. The soluble polyphosphates and diphosphonates are beneficial as destaining actives. Without wishing to be bound by theory, it is believed that these ingredients remove stain by desorbing stained pellicle from the enamel surface of the tooth. Suitable levels of water soluble polyphosphates and diphosphonates are from about 0.1% to about 10%, from about 1% to about 5%, or from about 1.5% to about 3% by weight of the oral care composition.


Still another possible group of chelating agents suitable for use in the present invention are the anionic polymeric polycarboxylates. Such materials are well known in the art, being employed in the form of their free acids or partially or preferably fully neutralised water-soluble alkali metal (e.g. potassium and preferably sodium) or ammonium salts. Additional polymeric polycarboxylates are disclosed in U.S. Pat. No. 4,138,477 and U.S. Pat. No. 4,183,914, and include copolymers of maleic anhydride with styrene, isobutylene or ethyl vinyl ether, polyacrylic, polyitaconic and polymaleic acids, and sulphoacrylic oligomers of MW as low as 1,000 available as Uniroyal ND-2.


Also useful for the present invention are antimicrobial agents. A wide variety of antimicrobial agents can be used, including stannous salts such as stannous pyrophosphate and stannous gluconate; zinc salt, such as zinc lactate and zinc citrate; copper salts, such as copper bisglycinate; quaternary ammonium salts, such as cetyl pyridinium chloride and tetradecylethyl pyridinium chloride; bis-biguanide salts; and nonionic antimicrobial agents such as triclosan. Certain flavour oils, such as thymol, may also have antimicrobial activity. Such agents are disclosed in U.S. Pat. No. 2,946,725 and U.S. Pat. No. 4,051,234. Also useful is sodium chlorite, described in WO 99/43290.


Antimicrobial agents, if present, are typically included at levels of from about 0.01% to about 10%. Levels of stannous and cationic antimicrobial agents can be kept to less than about 5% or less than about 1% to avoid staining problems.


In certain embodiments antimicrobial agents are non-cationic antimicrobial agent, such as those described in U.S. Pat. No. 5,037,637. A particularly effective antimicrobial agent is 2′,4,4′-trichloro-2-hydroxy-diphenyl ether (triclosan).


An optional ingredient in the present compositions is a silicone oil. Silicone oils can be useful as plaque barriers, as disclosed in WO 96/19191. Suitable classes of silicone oils include, but are not limited to, dimethicones, dimethiconols, dimethicone copolyols and aminoalkylsilicones. Silicone oils are generally present in a level of from about 0.1% to about 15%, from about 0.5% to about 5%, or from about 0.5% to about 3% by weight.


Sweetening agents such as sodium saccharin, sodium cyclamate, Acesulfame K, aspartame, sucrose and the like may be included at levels from about 0.1 to 5% by weight. Other additives may also be incorporated including flavours, preservatives, opacifiers and colorants. Typical colorants are D&C Yellow No. 10, FD&C Blue No. 1, FD&C Red No. 40, D&C Red No. 33 and combinations thereof. Levels of the colorant may range from about 0.0001 to about 0.1%.


Example

To determine rate of viscosity generation using compacted rheology modifier addition, a typical high water dentifrice formulation was used, with differing compacted rheology modifiers, as shown in TABLE 2 below.














TABLE 2






Sample 1
Sample 2
Sample 3
Sample 4
Sample 5



(Weight in
(Weight in
(Weight in
(Weight in
(Weight in


Premix Components
grams)
grams)
grams)
grams)
grams)




















Sodium Fluoride
0.104
0.104
0.104
0.104
0.104


Sorbitol
10.517
10.517
10.517
10.517
10.517


Water
19.350
19.350
19.350
18.920
19.350


Silica
6.450
6.450
6.450
6.450
6.450


Sodium Acid Pyrophosphate
1.372
1.372
1.372
1.372
1.372


Sodium Hydroxide
0.731
0.731
0.731
0.731
0.731


Peppermint Oil
0.430
0.430
0.430
0.430
0.430


Saccharin Sodium
0.172
0.172
0.172
0.172
0.172


Titanium Dioxide
0.108
0.108
0.108
0.108
0.108


Polysorbate 80
0.004
0.004
0.004
0.004
0.004


Premix Totals
39.238
39.238
39.238
38.808
39.238


Compacted Rheology







Modifier







Compacted Xanthan Gum
0.430






Compacted

0.430





Hydroxyethylcellulose







(HEC)







Compacted


0.430




Carboxymethylcellulose







(CMC)







Compacted



0.430



Carboxymethylcellulose







(CMC) with Silica







Compacted Carbopol




0.430


with disodium pyrophosphate







Totals
39.238
39.668
39.668
39.238
39.668









Each of the Samples (with different compacted rheology modifier) were prepared using the compacted rheology modifier addition of the present invention and the rate of hydration measured according to the methodology detailed below, and previously described. Rate of Hydration was measured as a way to describe the viscosity of the system in relation to the process times. Measuring product viscosity is common practice for fluids processing. Compaction of the rheology modifier makes the viscosity impact of the rheology modifier during the processing time insignificant. By significantly reducing the rate of hydration of the rheology modifiers to the values listed below in TABLE 3 we realized the benefits of low viscosity processing.


Equipment:


The Test mixing vessel used to prepare the Sample premixes had an internal diameter of 38.3 mm, outside diameter of 42 mm, vessel height of 65 mm, and two injection ports that had a diameter of 5 mm, were spaced 30 mm apart, and positioned 35 mm from the vessel bottom. The Mix impeller used to mix the Sample premixes in the Test mixing vessel had a blade diameter of 32.5 mm, blade width of 13 mm, and the length of the Mix impeller shaft was 55 mm. The rheometer was a TA Instruments ARG2 controlled stress rheometer (TA Instruments, New Castle, Del.) equipped with custom peltier base container holder.


Methodology:


For each Sample, the Premix components were added to the Test mixing vessel in the amounts shown in TABLE 2. The Test mixing vessel was mounted unto a base holder and the Mix impeller aligned within the Test mixing vessel and lowered into the Test mixing vessel chamber with a gap of 5.5 mm. The Rheometer was set to 25° C. The rheometer test parameter was set for a flow peak curve with a shear rate set point of 25 sec−1 and data was collected over 10 minutes with 1 data point per second. With the Mix impeller in place, the TA Rheology Advantage program (TA Instruments, New Castle, Del.) was started and at the fifth second of the test procedure the compacted rheology modifier was added to the top of the mixing vessel. Using the rheometer, viscosity, shear stress, shear rate, and temperature were measured. The shear rate was adjusted to 64 sec−1 using the rheometer and Metzner Otto relationship. The viscosity data from prior to addition of the compacted rheology modifier was used at the υ0, the viscosity data from 3600 seconds after addition of the compacted rheology modifier were added was used as υ3600 s. The Rate of Hydration for each Sample was determined using the following equation:








(


μ3600





s

-
μ0

)



(
μ0
)



(

3600





s

)



=

RH

3600





s






μ3600 s—viscosity measured 3600 seconds after addition of compacted rheology modifier (Pa·s)


μ0—viscosity measured of system prior to addition of compacted rheology modifier (Pa·s)












TABLE 3







Samples
3600s Rate of Hydration (1/s)









Compacted CMC
(0.047 Pa · s − 0.011 Pa · s)/




((0.011 Pa · s)(3600 s)) = 8.7 × 10−4



Compacted CMC with
(0.0115 Pa · s − 0.011 Pa · s)/



Silica
((0.011 Pa · s)(3600 s)) = 1.3 × 10−5



Compacted Xanthan
(3.52 Pa · s − 3.52 Pa · s)/



Gum
((3.52 Pa · s)(3600 s)) = 7.6 × 10−5



Compacted HEC
(3.52 Pa · s − 3.52 Pa · s)/




((3.52 Pa · s)(3600 s)) = 1.3 × 10−4



Compacted Carbopol
(0.63 Pa · s − 0.59 Pa · s)/



with SAPP
((0.59 Pa · s)(3600 s)) = 8.3 × 10−4










TABLE 3 shows the rate of hydration data for the Samples generated with the above method. The data supports that compaction of the rheology modifiers allows for delaying of the rheology to such a point that the premix has completed the production steps within the process tank. This allows the making process to occur more efficiently by leaving less residual waste product in the tank. We also see an advantage to processing, with the resulting lower viscosity product until such a time that the compacted particles are dispersed by the high energy mixing device, as described above. This allows low viscosity processing until a time when it is most advantageous to disperse the rheology modifier and start the viscosity build more typically seen for these materials.


The dimensions and values disclosed herein are not to be understood as being strictly limited to the exact numerical values recited. Instead, unless otherwise specified, each such dimension is intended to mean both the recited value and a functionally equivalent range surrounding that value. For example, a dimension disclosed as “40 mm” is intended to mean “about 40 mm”


Every document cited herein, including any cross referenced or related patent or application, is hereby incorporated herein by reference in its entirety unless expressly excluded or otherwise limited. The citation of any document is not an admission that it is prior art with respect to any invention disclosed or claimed herein or that it alone, or in any combination with any other reference or references, teaches, suggests or discloses any such invention. Further, to the extent that any meaning or definition of a term in this document conflicts with any meaning or definition of the same term in a document incorporated by reference, the meaning or definition assigned to that term in this document shall govern.


While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims
  • 1. A method of producing a personal care composition comprising: a) forming in a mix tank a premix having a lower viscosity than a packaged personal care composition;b) adding compacted rheology modifiers to the premix;c) transferring the premix from the mix tank;d) packaging the premix to produce a personal care composition.
  • 2. The method of claim 1, wherein rheology modifier is compacted using a roller compactor to produce compacted rheology modifier.
  • 3. The method of claim 2, wherein the force employed for compaction ranges from about 300 kilograms force/linear centimeter roll width to about 4,000 kilograms force/linear centimeter roll.
  • 4. The method of claim 2, wherein the rheology modifier average particle size ranges from about 0.5 μm to about 1000 μm.
  • 5. The method of claim 2, wherein the compacted rheology modifier is ground to produce compacted rheology modifier particles.
  • 6. The method of claim 5, wherein the compacted rheology modifier particle size ranges from about 44 μm to about 420 μm.
  • 7. The method of claim 5, wherein the compacted rheology modifier particles are coated.
  • 8. The method of claim 7, wherein the compacted rheology modifier particles are coated with at least one of silica or acid salt.
  • 9. The method of claim 1, wherein the compacted rheology modifier is at least one of xanthan gum, carboxymethyl cellulose, carrageenan, carbomer, hydroxyethyl cellulose, guar gum, or thickening silica.
  • 10. The method of claim 1, wherein as the premix is transferred from the mix tank it has a 30 second rate of hydration of about 0.1 l/s to about 60 l/s.
  • 11. The method of claim 1, wherein the premix is under atmospheric conditions in the mix tank at a temperature of about 15° C. to about 55° C. for about 0 to 30 minutes at a System Suspension Ratio (SSR) of about 1.5 or greater.
  • 12. The method of claim 1, wherein the compacted rheology modifier is added in an amount from about 0.1% to about 15% by weight of the premix.
  • 13. The method of claim 1 wherein, a surfactant is added to the premix.
  • 14. A method of producing a personal care composition comprising: a) forming in a mix tank a premix having a lower viscosity than a packaged personal care composition;b) compacting a rheology modifier;c) adding compacted rheology modifiers to the premix;d) transferring the premix from the mix tank; ande) packaging the premix to produce a personal care composition.
  • 15. The method of claim 14, wherein a roller compactor, compacts the rheology modifier.
  • 16. The method of claim 14, wherein as the premix is transferred from the mix tank it has a 30 second rate of hydration of about 0.1 l/s to about 60 l/s.
  • 17. The method of claim 14, wherein the compacted rheology modifier is ground to produce compacted rheology modifier particles.
  • 18. The method of claim 17, wherein the compacted rheology modifier particles are coated.
  • 19. The method of claim 18, wherein the compacted rheology modifier particles are coated with at least one of silica or acid salt.
  • 20. The method of claim 14, wherein the rheology modifier is at least one of xanthan gum, carboxymethyl cellulose, carrageenan, carbomer, hydroxyethyl cellulose, guar gum, or thickening silica.
Provisional Applications (2)
Number Date Country
61896435 Oct 2013 US
61897348 Oct 2013 US