This disclosure relates to a process for making a glove for operating an electronic device, particularly a device with a touchscreen. To operate capacitive touchscreens requires electric conductivity between the screen and a user's fingers. Thus, users of such electronic devices can find it difficult to operate the device while wearing gloves. The exemplary gloves described herein overcome this difficulty by providing gloves with conductive fingertips.
While a variety of gloves have been made and used, it is believed that no one prior to the inventor(s) has made or used gloves as described herein.
A glove comprises a plurality of fingertips, an outer surface, and an inner surface, wherein at least one of the fingertips comprises conductive thread or yarn extending from the outer surface of the glove to the inner surface of the glove.
While the specification concludes with claims which particularly point out and distinctly claim the invention, it is believed the present invention will be better understood from the following description of certain examples taken in conjunction with the accompanying drawings, in which like reference numerals identify the same elements and in which:
The drawings are not intended to be limiting in any way, and it is contemplated that various embodiments of the invention may be carried out in a variety of other ways, including those not necessarily depicted in the drawings. The accompanying drawings, incorporated in and forming a part of the specification, illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention; it being understood, however, that this invention is not limited to the precise arrangements shown.
The following description of certain examples of the invention should not be used to limit the scope of the present invention. Other examples, features, aspects, embodiments, and advantages of the invention will become apparent to those skilled in the art from the following description. As will be realized, the invention is capable of other different and obvious aspects, all without departing from the invention. Accordingly, the drawings and descriptions should be regarded as illustrative in nature and not restrictive.
In this application, the word “finger” and “fingertip” apply equally to fingers/fingertips and thumbs/thumbtips. Similarly, the word “thumb” and “thumbtips” apply equally to thumbs/thumbtips and fingers/fingertips. “Glove” can also mean mitten. The words “yarn” and “thread” can be used interchangeably.
Glove (10) is knit substantially from non-conductive yarn (26) and also includes conductive yarn (28) knit into fingertips (12) at index finger position (14) and thumb position (16). Of course, conductive yarn (28) can be knit into fingertips (12) at only a single finger position, at all finger positions, or even throughout all of glove (10) in some versions. In the present example, glove (10) is first knit of yarn (26), then conductive yarn (28) is knit into glove (10) at index finger position (14) and thumb position (16) as best shown in
The shape of the knit area and the length of fingertips (12) that include conductive yarn (28) can take into consideration the portion of the finger and/or thumb that is used to operate a touchscreen. In the present example, about one and one-half inches at the end of fingertips (12) at index finger position (14) and thumb position (16) include conductive yarn (28); of course greater or lesser lengths may be used. Also, conductive yarn (28) can be knit into all areas of fingertips (12). For instance, in the illustrated version, at index finger position (14) and thumb position (16), conductive yarn (28) is located on the pad (34), the back (36), the sides (38), and the distal-most tip (40) of those fingertips (12). In some other versions, conductive yarn (28) is located in select areas of fingertips (12) instead of all areas. In the illustrated version, the user can operate the touchscreen by contacting the touchscreen with any part of fingertip (12) containing conductive yarn (28) (e.g., pad (34), sides (38), tip (40), etc.) in an amount and arrangement sufficient to create the electrical pathway between the user's finger and the touchscreen.
The non-conductive portions of glove (10) can be knit using processes known in the art, using materials known in the art, including but not limited to acrylic yarn, Lycra, or feather yarn (100% nylon). The conductive portions of glove (10) can also be knit using processes known in the art, using any conductive yarn. In some versions conductive yarn (28) is comprised of two ends of conductive thread mixed with non-conductive thread. In some versions, conductive yarn (28) can conduct 82 ohms/foot to 14 ohms/foot. Glove (10) can be machine-knit or hand-knit.
In view of the teachings herein, various other configurations and modifications to glove (10) will be apparent to those of ordinary skill in the art. By way of example only, and not limitation, conductive yarn (28) may be knit into any decorative pattern so long as there is sufficient conductive thread to conduct an electrical impulse from the user's finger to the touchscreen. In some versions, all or some of fingertips (12) of one glove (10) from a pair of gloves are conductive, while in other versions all or some of fingertips (12) of both gloves (10) from the pair are conductive.
Glove (110) is constructed by assembling cut fabrics together using processes known in the art (e.g., sewing together cut fabrics forming seams). In the present example, glove (110) comprises a palm fabric (144), a backhand fabric (146), a seaming fabric (148), an index finger fabric (150), and a thumb fabric (152). These fabrics are generally non-conductive fabrics (126) sewn together as shown to form glove (110). Conductive thread (128) is embroidered or stitched into or onto the fabrics that make up fingertips (112) at index finger position (114) and thumb position (116) to provide conductive pathways between the user's fingertip and a touchscreen. Any well-known embroidery technique may be used to apply conductive thread (128) to fingertips (112) of glove (110). This embroidery or stitching with conductive thread (128) can be done before the fabrics (144, 146, 148, 150, 152) are assembled to form glove (110) or after the fabrics (144, 146, 148, 150, 152) have been assembled to form glove (110). In either approach conductive thread (128) passes from the inner surface (132) of glove (110) to the outer surface (130) of glove (110) to provide conductive pathways between the user's fingertip inside glove (110) and the conductive embroidery or stitching on the outside of glove (110), which in turn would contact the capacitive touchscreen.
In the present example, the embroidery or stitching with conductive thread (128) is directly onto index finger fabric (150) and thumb fabric (152) such that the embroidery or stitching itself extends from outer surface (130) of glove (110) to inner surface (132) of glove (110) as best seen in
While the illustrated version in
The shape and length of the embroidered or stitched area (154) at fingertips (112) that include conductive thread (128) can take into consideration the portion of the finger and/or thumb that is used to operate a touchscreen. In the present example, conductive embroidery or stitching (154) located at index finger position (114) and thumb position (116) comprises an hour glass shape having a top portion (156), a bottom portion (158), and a neck portion (160) having a narrower width compared to top and bottom portions (156, 158). Neck portion (160) of the hour glass shape wraps the distal-most tip (140) of fingertips (112), thus top portion (156) extends to the back (136) of fingertip (112) on backhand side (118) of glove (110) while bottom portion (158) extends to the pad (134) of fingertip (112) on palm side (120) of glove (110). This configuration for conductive embroidery or stitching (154) provides a continuous area of conductive thread (128) from pad (134) to back (136) of fingertips (112) at index finger position (114) and thumb position (116). In this arrangement, the user could operate the touchscreen by contacting the touchscreen with any part of fingertip (112) containing conductive thread (128) (e.g., pad (134), back (136), tip (140)) in an amount and arrangement sufficient to create the electrical pathway between the user's finger and the touchscreen.
As shown in
The non-conductive portions of glove (110) can be assembled using materials known in the art of glove/mitten making. For example, in some versions spandex (77% nylon, 23% Spandex) is laminated to 100% polyester fleece to form glove (110). In some versions glove (110) is made of stretch fleece (94% polyester, 6% Spandex), or glove (110) is made of stretch fleece and jersey sides with gripper silicone printing (142) on palm side (120). In other versions, glove (110) includes textured stretch material (60% Tactel, 30% Coolmax, 10% Lycra Spandex) laminated to 100% polyester fleece for use in backhand side (118). Another version includes stretch ottoman (96% polyester, 4% spandex) in the backhand side (118). In other versions, textured water resistant or water repellant microfiber fabric is laminated to 100% polyester fleece. Still in other versions, gloves (110) are made of textured knit (100% polyester) laminated to 100% polyester fleece. Leather, either hairsheep or goatskin, can be used in the backhand side (118) of glove (110) in some versions. The cuffs, palm, and fourchettes of gloves (110) can be made of a blend of 80% nylon and 20% Lycra Spandex, or a blend of 79% nylon and 21% Lycra Spandex, or a stretch fleece material (94% polyester, 6% Lycra Spandex) that can also be used for seaming fabric (148). Synthetic suede (60% polyurethane, 40% nylon) can be used as appliqués or tabs. Gloves (110), in some versions, include palm patches made of pigsplit or embossed polyurethane. In view of the teachings herein, other materials of construction for gloves (110) will be apparent to those of ordinary skill in the art.
Any conductive thread can be used in making glove (110) so long as there is sufficient conductivity to conduct an electrical impulse from the user's finger to the touchscreen. In the present example, conductive thread (128) can conduct 82 ohms/foot to 14 ohms/foot. As mentioned previously, glove (110) is machine-sewn in some versions, with machine embroidery or stitching. In the present example, when embroidering or stitching conductive thread (128) into glove (110), conductive thread (128) is used in both the top and bottom bobbins. In some other versions, when embroidering or stitching conductive thread (128) into glove (110), conductive thread (128) is used in the top bobbin only. Still in some other versions, when embroidering or stitching conductive thread (128) into glove (110), conductive thread (128) is used in the bottom bobbin thread only. In other versions, conductive thread (128) is hand-sewn into glove (110). Conductive thread (128) for stitching or embroidery can be comprised of a finer thread with four ends that conducts 90 ohms/foot to 95 ohms/foot. Such conductive thread (128) can be a 100% nylon thread with silver coating, with a thickness before coating of 280D and 340D after coating. In view of the teachings herein, other types of conductive thread (128) for use in making gloves (110) will be apparent to those of ordinary skill in the art.
In view of the teachings herein, various other configurations and modifications to glove (110) will be apparent to those of ordinary skill in the art. By way of example only, and not limitation, conductive thread (128) may be embroidered or stitched into any decorative pattern so long as there is sufficient conductive thread to conduct an electrical impulse from the user's finger to the touchscreen. In some versions, all or some of fingertips (112) of one glove (110) from a pair of gloves are conductive, while in other versions all or some of fingertips (112) of both gloves (110) from the pair are conductive. In some versions the thumb and index finger of glove (110) can be the only fingertips (112) that are conductive. In some versions conductive portions of fingertips (112) can be placed on the side portions of the index fingertip and thumbtip, especially for users who often press touchscreens with the side of their thumb, rather than directly on the area covering pad (134) of the thumb.
There are several methods of making knitted gloves that are well-known in the art. The assembly methods discussed hereinafter are known to one of ordinary skill in the art, and other methods of knitting and assembling a knitted glove would be apparent to one of ordinary skill in the art. One method of creating a knit glove begins with the glove body (310) being knit on a circular knitting machine. The machine begins knitting at the first end (322) and knits towards the second end (324) stopping approximately at what will be the knuckles (316) of the completed glove (350). This process results in a glove body (310) that looks like a knit tube with two open ends, as shown in
In another embodiment of the present conductive glove, a knit glove can be embroidered with conductive yarn. A glove body is knit by any method known in the art. Fingers without conductive yarn are also made by any method known in the art. To prepare a finger or fingers containing conductive material, as shown in
Another process for creating embroidered conductive knit gloves begins with the glove body (310) and fingers being knit according to any method known in the art. As shown in
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
This application is a continuation-in-part of and claims priority from co-pending U.S. patent application Ser. No. 12/869,827, entitled “GLOVE WITH CONDUCTIVE FINGERTIPS,” filed Aug. 27, 2010, which claims priority from U.S. Provisional Patent Application Ser. No. 61/237,524, filed Aug. 27, 2009, entitled “GLOVE WITH CONDUCTIVE FINGERTIPS,” and it claims priority from U.S. Provisional Patent Application Ser. No. 61/545,351, filed Oct. 10, 2011, entitled “PROCESS FOR MAKING KNIT EMBROIDERED CONDUCTIVE GLOVES,” the disclosure of each of which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
61237524 | Aug 2009 | US | |
61545351 | Oct 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12869827 | Aug 2010 | US |
Child | 13648450 | US |