Process for making PMR writer with constant side wall angle

Information

  • Patent Grant
  • 9263067
  • Patent Number
    9,263,067
  • Date Filed
    Thursday, June 27, 2013
    10 years ago
  • Date Issued
    Tuesday, February 16, 2016
    8 years ago
Abstract
A process for manufacturing a writer main pole for a perpendicular magnetic recording system is provided. The writer pole may have a constant sidewall angle from the ABS to yoke and may be formed out of an insulating material and a magnetic material. The sidewall angle of the yoke region may be adjusted during manufacture. The ABS region may correspond to the magnetic material and the yoke region may correspond to the insulating material. The insulating material may comprise Alumina. The magnetic material may comprise a NiFe alloy.
Description
TECHNICAL FIELD

This invention relates to the field of perpendicular magnetic recording (PMR) technology and more specifically, to the manufacture of PMR write heads.


BACKGROUND

PMR systems have been developed to meet the growing demand for improved magnetic disk drive data rate and capacity. With the ever increasing need for higher recording areal densities (over 920 GB/in2) and track densities (over 500K tracks per inch), improved processes for manufacturing PMR writers with wrap around shields (WAS) continue to be developed.


Damascene processes may be used to build up structures for use in a PMR writer head, as opposed to methods which rely upon material removal to form such structures. As applied to the formation of PMR writing heads, the damascene process involves forming trapezoidal trenches in a material, and then depositing (e.g., electroplating) a magnetic pole material into the trenches to form write poles. The PMR writer pole is the trapezoidal formation of the magnetic material deposited in the trapezoidal trench etched in a surrounding material.


An important consideration during the manufacture of PMR writers is the sidewall angle of the structure, which affects both on track performance and neighboring track impact from the head skew angle. In current magnetic disk drives, the head generally has a skew angle relative to the track direction when the head operates at inner and outer radii of the recording medium surface. This skew may cause magnetic fields from the writer pole surface to erase data in neighboring tracks. A high sidewall angle for a writer pole at an air bearing surface (ABS) prevents this skew impact on neighboring tracks. However, a high sidewall angle may also cause on track reverse overwrite loss. Optimization of the sidewall angle is thus needed to achieve acceptable on track performance while avoiding skew impact in neighboring tracks.


Existing processes for manufacturing PMR writer poles, however, generally produce a varying sidewall angle from the pole's yoke to its air-bearing surface (ABS). FIG. 1 illustrates this variation for four PMR writer main poles manufactured using existing processes. The sidewall angle continuously increases from the ABS through the yoke region. This sidewall angle increase from the ABS to the yoke results in an increase in on track reverse overwrite loss without any corresponding benefit to skew impact.


For example, existing Alumina (Al2O3) based damascene reactive ion etching (“RIE”) processes produce an inconsistent sidewall angle from the ABS 120 through the yoke region 110 due to the RIE loading effect. Under the RIE loading effect, the yoke region etches at a faster rate than the ABS region (assuming the same etching chemistry and selectivity in both regions) because the yoke region has a larger surface area. The faster etching process in the yoke region results in a larger sidewall angle in the yoke region in contrast to the ABS region.





BRIEF DESCRIPTION OF THE DRAWINGS

The present application is illustrated by way of example, and not limitation, in the figures of the accompanying drawings in which:



FIG. 1 shows sidewall angle plotted against the distance from ABS for four PMR writer main poles manufactured using existing processes.



FIG. 2 is a flowchart describing a process used for manufacturing a PMR writer main pole.



FIGS. 3-11 are diagrams illustrating an exemplary embodiment of a PMR writer main pole during fabrication in accordance with the process of FIG. 2.





DETAILED DESCRIPTION

In the following description, numerous specific details are set forth, such as examples of specific layer compositions and properties, to provide a thorough understanding of various embodiment of the preside sent invention. It will be apparent however, to one skilled in the art that these specific details need not be employed to practice various embodiments of the present invention. In other instances, well known components or methods have not been described in detail to avoid unnecessarily obscuring various embodiments of the present invention.


The terms “over,” “under,” “between,” and “on” as used herein refer to a relative position of one media layer with respect to other layers. As such, for example, one layer disposed over or under another layer may be directly in contact with the other layer or may have one or more intervening layers. Moreover, one layer disposed between two layers may be directly in contact with the two layers or may have one or more intervening layers. By contrast, a first layer “on” a second layer is in contact with that second layer. Additionally, the relative position of one layer with respect to other layers is provided assuming operations are performed relative to a substrate without consideration of the absolute orientation of the substrate.



FIGS. 2-11 illustrate an exemplary damascene process 200 for fabricating a PMR writer main pole. Implementations of the process allow for an approximately constant (i.e. range of 2 degrees) sidewall angle from the ABS of the pole to the yoke. This in turn improves on track write field performance in the writer main pole while not affecting skew impact on neighboring tracks.



FIGS. 3-11 illustrate side, cross-sectional, and top views of the PMR pole after various process operations and will be described in conjunction with FIG. 2, which details the process operations themselves.


For simplicity, some process operations may be omitted. The PMR writer pole being fabricated may be part of a merged head that also includes a read head (not shown) and resides on a slider (not shown) in a disk drive. The process 200 also may commence after formation of other portions of the PMR writer pole.


At operation 202, a substrate 305 is provided with a bottom layer 320′ and an intermediate layer of magnetically insulating material 310 and magnetic material 320 deposited over the substrate. The intermediate layer may be planarized (i.e. both materials are same height) and has a thickness of 0.6 to 1.5 microns. In the illustrated embodiment, bottom layer 320′ comprises magnetic material 320. For ease of reference, bottom layer 320′ is given the same label as magnetic material 320 in subsequent FIGS. 4-11. However, this labeling only indicates that bottom layer 320′ comprises the same material as magnetic material 320 and does not mean that any of the operations of process 200 act on bottom layer 320′. Moreover, in other embodiments bottom layer 320′ may comprise a different material than magnetic material 320.


As further described in exemplary embodiments below, the insulating material 310 and magnetic material 320 may be etched to form a yoke and ABS region of a PMR main pole as indicated by dotted pattern 325 in FIG. 3 (provided for illustration only and not present on substrate 305 at this operation). The yoke region corresponds to the pole's yoke and may be etched out of the insulating material 310. The ABS region corresponds to the region from the ABS (i.e. pole tip) to the start of the yoke region (i.e. neck area of pole) and may be etched out of the magnetic material 320.


The separation boundary between the yoke region and ABS region of the PMR pole (not yet etched) may be defined as the separation boundary between insulating material 310 and magnetic material 320 at dotted line 322 as shown in the top view of FIG. 3. Accordingly, the distance from the ABS to the separation boundary is the distance that the yoke region is from or behind the ABS. In some embodiments, the yoke region (separation boundary) may be 20 to 250 nm behind the ABS. In the embodiment illustrated by process 200, the yoke region is 50 to 150 nm behind the ABS.


The separation boundary 322 may be defined during an initial process (not shown) used to create the structure provided in FIG. 3. In the illustrated embodiment, the separation boundary 322 is defined by shield or shield pattern 321, which comprises magnetic material 320. Shield pattern 321 may have been created during photolithography, RIE, and plating processes (preceding operation 202) used to form magnetic material 320 in the intermediate layer of substrate 305, where the intermediate layer comprised only insulating material 310 prior to these processes. During the photolithography process, the placement of a photoresist mask with pattern 321 relative to the substrate may define the placement of the separation boundary. Accordingly, the substrate provided at operation 202 may have a predefined separation boundary 322 between insulating material 310 and magnetic material 320.


In the illustrated embodiment, insulating material 310 comprises Alumina (Al2O3) and magnetic material 320 comprises a Nickel-Iron (NiFe) alloy. In other embodiments, the insulating material 310 may comprise Silicon Dioxide (SiOx). The magnetic material 320 and insulating material 310 may be provided such that they have similar etching rates, for example, an etch selectivity range of 1 to 1.1 between the two materials.


At operation 204, hard mask 330 and hard mask 340 are deposited on the substrate. As illustrated by FIG. 4, hard mask 330 is deposited on the intermediate layer. Hard mask 330 may be deposited over some or all of the intermediate layer. In the illustrated embodiment, hard mask 330 is deposited over all of the intermediate layer and has a thickness between 50 and 100 nm. As further described in exemplary embodiments below, hard mask 330 may be used as an etching mask for adjusting a sidewall angle corresponding to a yoke region etched out of the insulating material.


A second hard mask 340 is then deposited on hard mask 330. Hard mask 340 may be deposited over some or all of the first hard mask 330. In the illustrated embodiment, hard mask 340 is deposited over all of hard mask 330 and has a thickness between 100 and 200 nm. As further described in exemplary embodiments below, hard mask 330 may be used as an etching mask for etching a PMR main pole yoke and ABS region in insulating material 310 and magnetic material 320.


In the illustrated embodiment, hard mask 330 comprises Nickel-Chrome (NiCr) and hard mask 340 comprises Tantalum (Ta). In other embodiments, hard mask 330 may comprise Nickel-Iron-Chrome (NiFeCr). Further, in other embodiments hard mask 340 may comprise Titanium (Ti).


Operations 206-214 illustrate an exemplary process for forming a PMR main pole yoke and ABS region in hard mask 340 using lithography and etching processes. This process may prepare hard mask 340 as a hard mask for etching a PMR pole opening in insulating material 310 and magnetic material 320.


At Operation 206 a lithography process is used to form a resist pattern layer 350 over the hard mask 340. Lithographic techniques for forming the resist pattern layer 350 can include any technique such as photolithography. The resist pattern layer 350 may cover some of hard mask layer 340. In the illustrated embodiment, the resist pattern layer 350 has a writer main pole photo pattern (VP3 photo pattern), which comprises a yoke and ABS region as described above.


A hard mask layer 360 is deposited over the resist pattern layer 350 and the hard mask layer 340 at operation 208. Hard mask layer 360 may be deposited over some or all of the resist pattern layer 350 and over all or some of the hard mask layer 340 not covered by the resist pattern. In the illustrated example, hard mask layer 360 is deposited over all of the resist pattern layer 350 and over all of hard mask layer 340 not covered by the resist pattern 350. Hard mask layer 360 may comprise Chromium (Cr) or Ruthenium (Ru), or any other material that has a high etching selectivity with respect to the material being patterned.


At operation 210, hard mask layer 360 is side milled to prepare for a lift-off of resist pattern layer 350. As illustrated in FIG. 5, side milling removes hard mask layer 360 on lateral sides 355 of the resist pattern layer 350. The operation exposes some portions (e.g. lateral sides) of the resist pattern layer 350 so that an etchant can access the layer during an etching operation.


At operation 212 the resist layer 350 and hard mask layer 360 are lifted off to transfer the ABS region and yoke region pattern from the resist pattern layer 350 to hard mask layer 360. This forms a corresponding ABS region and yoke region opening in layer 360. Thus, a hard mask layer 360A has been formed. Hard mask layer 340 is then etched using hard mask layer 360A as a hard mask (operation 214). In this exemplary process an RIE is performed. The RIE may be performed with a CO—NH3 etch chemistry or an etch chemistry that includes Cl, for example Cl2O2. The RIE transfers the yoke and ABS region openings from hard mask layer 360A to hard mask layer 340. Thus, a hard mask layer 340A has been formed from hard mask 360A. This is illustrated by aperture 361 and the top view in FIG. 6.


A PMR pole opening may then be formed in insulating material 310 and magnetic material 320. At operation 216, hard mask layer 330, and the intermediate layer (insulating material 310 and magnetic 320) are etched using hard mask layer 340A as a hard mask. In this exemplary process a RIE is performed. The RIE may be performed with a CO—NH3 etch chemistry or an etch chemistry that includes Cl, for example Cl2O2. As illustrated in FIG. 7, the RIE forms a hard mask layer 330A, an insulating material 310A, and a magnetic material 320A. Magnetic material 320A may have a trench opening 362 corresponding to the ABS region of the formed pole opening. Insulating material 310A may have a trench opening 363 corresponding to the yoke region of the formed pole opening.


The sidewall angle corresponding to insulating material's 310A formed trench opening (yoke region) may be larger than the sidewall angle corresponding to magnetic material's 320A formed trench opening (ABS region). For example, the yoke region may have a sidewall angle between 13 and 17 degrees and the ABS region may have a sidewall angle between 11 and 13 degrees. The sidewall angle in each region may be continuous or variable. Moreover, the sidewall angle may continuously increase from the ABS (beginning of ABS region) to the end of the yoke region. The difference in side wall angles between the two regions after etching may be caused by the yoke region having a larger surface area than the ABS region. The difference may also be caused by the differing etching rates between insulating material 310A and magnetic material 320A.


An operation may then be performed to adjust the sidewall angle in the yoke region corresponding to insulating material 310A such that it is within a desired range of the sidewall angle in the ABS region (e.g. within 4 degrees, 2 degrees, or 1 degree). At operation 218, insulating material 310A is etched using hard mask layer 330A as a hard mask. Thus, an insulating material 310B has been formed. In this exemplary process a RIE is performed. The RIE may be performed with a CO—NH3 etch chemistry or an etch chemistry that includes Cl, for example Cl2O2. As illustrated in FIG. 8, operation 218 may remove the remainder of mask 340A and may adjust trench 363 such that the sidewall angle in the yoke region is closer to the sidewall angle in the ABS region. Thus, a trench 363A has been formed with a new sidewall angle.


The RIE may be performed such that the sidewall angle from the ABS to the end of the yoke region is now approximately constant (i.e. varies less than 2 degrees). In one exemplary embodiment, the sidewall angle from the ABS to the end of the yoke region stays within the range of 11.5 to 12.5 degrees after operation 218. As discussed above, this exemplary operation may improve on track reverse overwrite loss in a manufactured PMR writer main pole by lowering the sidewall angle in the yoke region. Thus, a desired PMR main pole opening has been formed.


Next, a PMR main pole may be formed. At operation 220, a non-magnetic gap layer 370 may be deposited on the intermediate layer (insulating material 310B and magnetic material 320A) using an atomic layer deposition (“ALD”) process. Layer 370 may serve as a seed layer for a PMR main pole plating. The structure after operation 220 is illustrated in FIG. 9. In an alternative embodiment, the non-magnetic gap layer 370 may be deposited using a chemical vapor deposition (“CVD”) process. In this exemplary embodiment, layer 370 comprises Ruthenium (“Ru”). In other embodiments, the layer may comprise any material having sufficient conductivity and capable of serving as a seed layer for the upper magnetic materials (i.e. the PMR main pole layer).


As discussed above, the non-magnetic gap layer 370 serves a seed layer for a PMR pole layer. At operation 222, magnetic plating material is deposited over the seed layer 370 to form PMR pole layer 380. As illustrated in FIG. 10, plating material 380 (the PMR pole layer) fills trenches 362 and 363A of insulating material 310B and magnetic material 320A. Moreover, plating material 380 is deposited outside the trenches at lateral sides on seed layer 370. Pole layer 380 may be plated with a hard magnetic material. In the illustrated embodiment, Cobalt-Iron (CoFe) is used to the plate the PMR pole layer 380. In other embodiments Cobalt-Nickel-Iron (CoNiFe) may be used. In yet other embodiments, multiple layers may be used to plate the PMR pole layer.


At operation 224, a chemical mechanical planarization (“CMP”) may be performed to adjust the height of pole layer 380. Thus, a pole layer 380A has been formed. In the illustrated embodiment, the pole height is adjusted using CMP such that the plating material is the same height as trenches 362 and 363A. In an alternative embodiment, an ion beam etch (IBE) may be performed to adjust the pole layer height.


In the foregoing specification, embodiments of the disclosure have been described with reference to specific exemplary features thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the disclosure. The specification and figures are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A method, comprising: forming over a substrate a layer comprising insulating material and magnetic material, wherein the insulating material and magnetic material are planar at a top surface of the layer;depositing a first hard mask and a second hard mask over the top surface of the layer;forming an air-bearing surface (ABS) region in the magnetic material with a first sidewall angle;forming a yoke region in the insulating material with a second sidewall angle; anddecreasing the second sidewall angle by performing a reactive ion etch (RIE) on the insulating material using the first hard mask.
  • 2. The method of claim 1 wherein the ABS region and yoke region are formed using the second hard mask.
  • 3. The method of claim 2, wherein forming the ABS region and the yoke region comprises: forming a resist pattern over a portion of the second hard mask;depositing a third hard mask over the resist pattern;removing a portion of the third hard mask deposited over the resist pattern to form a patterned third hard mask;performing a RIE on the second hard mask using the third hard mask; andperforming a RIE on the first hard mask, insulating material, and magnetic material using the second hard mask.
  • 4. The method of claim 3 wherein the third hard mask comprises at least one of chromium (Cr) or ruthenium (Ru).
  • 5. The method of claim 3 wherein the resist pattern is a writer main pole photo pattern.
  • 6. The method of claim 2, wherein the magnetic material comprises nickel-iron (NiFe).
  • 7. The method of claim 2, wherein the insulating material comprises alumina (Al2O3).
  • 8. The method of claim 7, wherein the second sidewall angle is decreased to within 2 degrees of the first sidewall angle.
  • 9. The method of claim 8 wherein the first and second sidewall angles are between 11 and 13 degrees.
  • 10. The method of claim 2 wherein the first hard mask comprises nickel chromium (NiCr).
  • 11. The method of claim 2 wherein the second hard mask comprises tantalum (Ta).
  • 12. The method of claim 2 wherein the yoke region is 20 to 250 nm behind the ABS.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority to provisional U.S. Patent Application Ser. No. 61/828,267, filed on May 29, 2013, which is hereby incorporated by reference in its entirety.

US Referenced Citations (719)
Number Name Date Kind
5277749 Griffith et al. Jan 1994 A
5386332 Jagielinski et al. Jan 1995 A
5801910 Mallary Sep 1998 A
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6034851 Zarouri et al. Mar 2000 A
6043959 Crue et al. Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6049650 Jerman et al. Apr 2000 A
6055138 Shi Apr 2000 A
6058094 Davis et al. May 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6099362 Viches et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6108166 Lederman Aug 2000 A
6118629 Huai et al. Sep 2000 A
6118638 Knapp et al. Sep 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6136166 Shen et al. Oct 2000 A
6137661 Shi et al. Oct 2000 A
6137662 Huai et al. Oct 2000 A
6160684 Heist et al. Dec 2000 A
6163426 Nepela et al. Dec 2000 A
6166891 Lederman et al. Dec 2000 A
6172848 Santini Jan 2001 B1
6173486 Hsiao et al. Jan 2001 B1
6175476 Huai et al. Jan 2001 B1
6178066 Barr Jan 2001 B1
6178070 Hong et al. Jan 2001 B1
6178150 Davis Jan 2001 B1
6181485 He Jan 2001 B1
6181525 Carlson Jan 2001 B1
6185051 Chen et al. Feb 2001 B1
6185077 Tong et al. Feb 2001 B1
6185081 Simion et al. Feb 2001 B1
6188549 Wiitala Feb 2001 B1
6190764 Shi et al. Feb 2001 B1
6193584 Rudy et al. Feb 2001 B1
6195229 Shen et al. Feb 2001 B1
6198608 Hong et al. Mar 2001 B1
6198609 Barr et al. Mar 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6204998 Katz Mar 2001 B1
6204999 Crue et al. Mar 2001 B1
6212153 Chen et al. Apr 2001 B1
6215625 Carlson Apr 2001 B1
6219205 Yuan et al. Apr 2001 B1
6221218 Shi et al. Apr 2001 B1
6222707 Huai et al. Apr 2001 B1
6229782 Wang et al. May 2001 B1
6230959 Heist et al. May 2001 B1
6233116 Chen et al. May 2001 B1
6233125 Knapp et al. May 2001 B1
6237215 Hunsaker et al. May 2001 B1
6252743 Bozorgi Jun 2001 B1
6255721 Roberts Jul 2001 B1
6258468 Mahvan et al. Jul 2001 B1
6266216 Hikami et al. Jul 2001 B1
6271604 Frank, Jr. et al. Aug 2001 B1
6275354 Huai et al. Aug 2001 B1
6277505 Shi et al. Aug 2001 B1
6282056 Feng et al. Aug 2001 B1
6296955 Hossain et al. Oct 2001 B1
6297955 Frank, Jr. et al. Oct 2001 B1
6304414 Crue, Jr. et al. Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6310746 Hawwa et al. Oct 2001 B1
6310750 Hawwa et al. Oct 2001 B1
6317290 Wang et al. Nov 2001 B1
6317297 Tong et al. Nov 2001 B1
6322911 Fukagawa et al. Nov 2001 B1
6330136 Wang et al. Dec 2001 B1
6330137 Knapp et al. Dec 2001 B1
6333830 Rose et al. Dec 2001 B2
6340533 Ueno et al. Jan 2002 B1
6349014 Crue, Jr. et al. Feb 2002 B1
6351355 Min et al. Feb 2002 B1
6353318 Sin et al. Mar 2002 B1
6353511 Shi et al. Mar 2002 B1
6356412 Levi et al. Mar 2002 B1
6359779 Frank, Jr. et al. Mar 2002 B1
6369983 Hong Apr 2002 B1
6376964 Young et al. Apr 2002 B1
6377535 Chen et al. Apr 2002 B1
6381095 Sin et al. Apr 2002 B1
6381105 Huai et al. Apr 2002 B1
6389499 Frank, Jr. et al. May 2002 B1
6392850 Tong et al. May 2002 B1
6396660 Jensen et al. May 2002 B1
6399179 Hanrahan et al. Jun 2002 B1
6400526 Crue, Jr. et al. Jun 2002 B2
6404600 Hawwa et al. Jun 2002 B1
6404601 Rottmayer et al. Jun 2002 B1
6404706 Stovall et al. Jun 2002 B1
6410170 Chen et al. Jun 2002 B1
6411522 Frank, Jr. et al. Jun 2002 B1
6417998 Crue, Jr. et al. Jul 2002 B1
6417999 Knapp et al. Jul 2002 B1
6418000 Gibbons et al. Jul 2002 B1
6418048 Sin et al. Jul 2002 B1
6421211 Hawwa et al. Jul 2002 B1
6421212 Gibbons et al. Jul 2002 B1
6424505 Lam et al. Jul 2002 B1
6424507 Lederman et al. Jul 2002 B1
6430009 Komaki et al. Aug 2002 B1
6430806 Chen et al. Aug 2002 B1
6433965 Gopinathan et al. Aug 2002 B1
6433968 Shi et al. Aug 2002 B1
6433970 Knapp et al. Aug 2002 B1
6437945 Hawwa et al. Aug 2002 B1
6445536 Rudy et al. Sep 2002 B1
6445542 Levi et al. Sep 2002 B1
6445553 Barr et al. Sep 2002 B2
6445554 Dong et al. Sep 2002 B1
6447935 Zhang et al. Sep 2002 B1
6448765 Chen et al. Sep 2002 B1
6451514 Iitsuka Sep 2002 B1
6452742 Crue et al. Sep 2002 B1
6452765 Mahvan et al. Sep 2002 B1
6456465 Louis et al. Sep 2002 B1
6459552 Liu et al. Oct 2002 B1
6462920 Karimi Oct 2002 B1
6466401 Hong et al. Oct 2002 B1
6466402 Crue, Jr. et al. Oct 2002 B1
6466404 Crue, Jr. et al. Oct 2002 B1
6468436 Shi et al. Oct 2002 B1
6469877 Knapp et al. Oct 2002 B1
6477019 Matono et al. Nov 2002 B2
6479096 Shi et al. Nov 2002 B1
6483662 Thomas et al. Nov 2002 B1
6487040 Hsiao et al. Nov 2002 B1
6487056 Gibbons et al. Nov 2002 B1
6490125 Barr Dec 2002 B1
6496330 Crue, Jr. et al. Dec 2002 B1
6496334 Pang et al. Dec 2002 B1
6504675 Shukh et al. Jan 2003 B1
6504676 Hiner et al. Jan 2003 B1
6512657 Heist et al. Jan 2003 B2
6512659 Hawwa et al. Jan 2003 B1
6512661 Louis Jan 2003 B1
6512690 Qi et al. Jan 2003 B1
6515573 Dong et al. Feb 2003 B1
6515791 Hawwa et al. Feb 2003 B1
6532823 Knapp et al. Mar 2003 B1
6535363 Hosomi et al. Mar 2003 B1
6552874 Chen et al. Apr 2003 B1
6552928 Qi et al. Apr 2003 B1
6560076 Yazawa et al. May 2003 B1
6577470 Rumpler Jun 2003 B1
6583961 Levi et al. Jun 2003 B2
6583968 Scura et al. Jun 2003 B1
6597548 Yamanaka et al. Jul 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6618223 Chen et al. Sep 2003 B1
6629357 Akoh Oct 2003 B1
6633464 Lai et al. Oct 2003 B2
6636394 Fukagawa et al. Oct 2003 B1
6639291 Sin et al. Oct 2003 B1
6649486 Balakumar et al. Nov 2003 B1
6650503 Chen et al. Nov 2003 B1
6650506 Risse Nov 2003 B1
6654195 Frank, Jr. et al. Nov 2003 B1
6657816 Barr et al. Dec 2003 B1
6661621 Iitsuka Dec 2003 B1
6661625 Sin et al. Dec 2003 B1
6674610 Thomas et al. Jan 2004 B1
6680863 Shi et al. Jan 2004 B1
6683763 Hiner et al. Jan 2004 B1
6687098 Huai Feb 2004 B1
6687178 Qi et al. Feb 2004 B1
6687977 Knapp et al. Feb 2004 B2
6691226 Frank, Jr. et al. Feb 2004 B1
6697294 Qi et al. Feb 2004 B1
6700738 Sin et al. Mar 2004 B1
6700759 Knapp et al. Mar 2004 B1
6704158 Hawwa et al. Mar 2004 B2
6707083 Hiner et al. Mar 2004 B1
6710973 Okada et al. Mar 2004 B2
6713801 Sin et al. Mar 2004 B1
6721138 Chen et al. Apr 2004 B1
6721149 Shi et al. Apr 2004 B1
6721203 Qi et al. Apr 2004 B1
6722018 Santini Apr 2004 B2
6724569 Chen et al. Apr 2004 B1
6724572 Stoev et al. Apr 2004 B1
6729015 Matono et al. May 2004 B2
6731460 Sasaki May 2004 B2
6735850 Gibbons et al. May 2004 B1
6737281 Dang et al. May 2004 B1
6738223 Sato et al. May 2004 B2
6744608 Sin et al. Jun 2004 B1
6747301 Hiner et al. Jun 2004 B1
6751055 Alfoqaha et al. Jun 2004 B1
6754049 Seagle et al. Jun 2004 B1
6756071 Shi et al. Jun 2004 B1
6757140 Hawwa Jun 2004 B1
6760196 Niu et al. Jul 2004 B1
6762910 Knapp et al. Jul 2004 B1
6762911 Sasaki et al. Jul 2004 B2
6765756 Hong et al. Jul 2004 B1
6775902 Huai et al. Aug 2004 B1
6778358 Jiang et al. Aug 2004 B1
6781927 Heanuc et al. Aug 2004 B1
6785955 Chen et al. Sep 2004 B1
6791793 Chen et al. Sep 2004 B1
6791807 Hikami et al. Sep 2004 B1
6798616 Seagle et al. Sep 2004 B1
6798625 Ueno et al. Sep 2004 B1
6801408 Chen et al. Oct 2004 B1
6801411 Lederman et al. Oct 2004 B1
6803615 Sin et al. Oct 2004 B1
6806035 Atireklapvarodom et al. Oct 2004 B1
6807030 Hawwa et al. Oct 2004 B1
6807332 Hawwa Oct 2004 B1
6809899 Chen et al. Oct 2004 B1
6813116 Nakamura et al. Nov 2004 B2
6816345 Knapp et al. Nov 2004 B1
6828897 Nepela Dec 2004 B1
6829160 Qi et al. Dec 2004 B1
6829819 Crue, Jr. et al. Dec 2004 B1
6833979 Knapp et al. Dec 2004 B1
6834010 Qi et al. Dec 2004 B1
6852472 Lee et al. Feb 2005 B2
6857181 Lo et al. Feb 2005 B2
6859343 Alfoqaha et al. Feb 2005 B1
6859997 Tong et al. Mar 2005 B1
6861937 Feng et al. Mar 2005 B1
6870712 Chen et al. Mar 2005 B2
6873494 Chen et al. Mar 2005 B2
6873547 Shi et al. Mar 2005 B1
6879464 Sun et al. Apr 2005 B2
6888184 Shi et al. May 2005 B1
6888704 Diao et al. May 2005 B1
6891697 Nakamura et al. May 2005 B2
6891702 Tang May 2005 B1
6894871 Alfoqaha et al. May 2005 B2
6894877 Crue, Jr. et al. May 2005 B1
6903900 Sato et al. Jun 2005 B2
6906894 Chen et al. Jun 2005 B2
6909578 Missell et al. Jun 2005 B1
6912106 Chen et al. Jun 2005 B1
6934113 Chen Aug 2005 B1
6934129 Zhang et al. Aug 2005 B1
6940688 Jiang et al. Sep 2005 B2
6942824 Li Sep 2005 B1
6943993 Chang et al. Sep 2005 B2
6944938 Crue, Jr. et al. Sep 2005 B1
6947255 Hsiao et al. Sep 2005 B2
6947258 Li Sep 2005 B1
6950266 McCaslin et al. Sep 2005 B1
6950277 Nguy et al. Sep 2005 B1
6952325 Sato et al. Oct 2005 B2
6954332 Hong et al. Oct 2005 B1
6958885 Chen et al. Oct 2005 B1
6961221 Niu et al. Nov 2005 B1
6969989 Mei Nov 2005 B1
6975486 Chen et al. Dec 2005 B2
6987643 Seagle Jan 2006 B1
6989962 Dong et al. Jan 2006 B1
6989972 Stoev et al. Jan 2006 B1
6995949 Nakamura et al. Feb 2006 B2
7002775 Hsu et al. Feb 2006 B2
7006326 Okada et al. Feb 2006 B2
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7027268 Zhu et al. Apr 2006 B1
7027274 Sin et al. Apr 2006 B1
7035046 Young et al. Apr 2006 B1
7041985 Wang et al. May 2006 B1
7046490 Ueno et al. May 2006 B1
7054113 Seagle et al. May 2006 B1
7057857 Niu et al. Jun 2006 B1
7059868 Yan Jun 2006 B1
7070698 Le Jul 2006 B2
7092195 Liu et al. Aug 2006 B1
7100266 Plumer et al. Sep 2006 B2
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7113366 Wang et al. Sep 2006 B1
7114241 Kubota et al. Oct 2006 B2
7116517 He et al. Oct 2006 B1
7124654 Davies et al. Oct 2006 B1
7126788 Liu et al. Oct 2006 B1
7126790 Liu et al. Oct 2006 B1
7131346 Buttar et al. Nov 2006 B1
7133252 Takano et al. Nov 2006 B2
7133253 Seagle et al. Nov 2006 B1
7134185 Knapp et al. Nov 2006 B1
7139153 Hsiao et al. Nov 2006 B2
7154715 Yamanaka et al. Dec 2006 B2
7159302 Feldbaum et al. Jan 2007 B2
7170725 Zhou et al. Jan 2007 B1
7177117 Jiang et al. Feb 2007 B1
7185415 Khera et al. Mar 2007 B2
7193815 Stoev et al. Mar 2007 B1
7196880 Anderson et al. Mar 2007 B1
7199974 Alfoqaha Apr 2007 B1
7199975 Pan Apr 2007 B1
7206166 Notsuke et al. Apr 2007 B2
7211339 Seagle et al. May 2007 B1
7212379 Hsu et al. May 2007 B2
7212384 Stoev et al. May 2007 B1
7238292 He et al. Jul 2007 B1
7239478 Sin et al. Jul 2007 B1
7245454 Aoki et al. Jul 2007 B2
7248431 Liu et al. Jul 2007 B1
7248433 Stoev et al. Jul 2007 B1
7248449 Seagle Jul 2007 B1
7251878 Le et al. Aug 2007 B2
7253992 Chen et al. Aug 2007 B2
7280325 Pan Oct 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7286329 Chen et al. Oct 2007 B1
7289303 Sin et al. Oct 2007 B1
7292409 Stoev et al. Nov 2007 B1
7296338 Le et al. Nov 2007 B2
7296339 Yang et al. Nov 2007 B1
7307814 Seagle et al. Dec 2007 B1
7307818 Park et al. Dec 2007 B1
7310204 Stoev et al. Dec 2007 B1
7318947 Park et al. Jan 2008 B1
7324304 Benakli et al. Jan 2008 B1
7333295 Medina et al. Feb 2008 B1
7337530 Stoev et al. Mar 2008 B1
7342752 Zhang et al. Mar 2008 B1
7349170 Rudman et al. Mar 2008 B1
7349179 He et al. Mar 2008 B1
7354664 Jiang et al. Apr 2008 B1
7363697 Dunn et al. Apr 2008 B1
7367112 Nix et al. May 2008 B2
7369359 Fujita et al. May 2008 B2
7371152 Newman May 2008 B1
7372665 Stoev et al. May 2008 B1
7375926 Stoev et al. May 2008 B1
7379269 Krounbi et al. May 2008 B1
7386933 Krounbi et al. Jun 2008 B1
7389577 Shang et al. Jun 2008 B1
7392577 Yazawa et al. Jul 2008 B2
7417832 Erickson et al. Aug 2008 B1
7419891 Chen et al. Sep 2008 B1
7428124 Song et al. Sep 2008 B1
7430095 Benakli et al. Sep 2008 B2
7430098 Song et al. Sep 2008 B1
7436620 Kang et al. Oct 2008 B1
7436638 Pan Oct 2008 B1
7440220 Kang et al. Oct 2008 B1
7441325 Gao et al. Oct 2008 B2
7443632 Stoev et al. Oct 2008 B1
7444740 Chung et al. Nov 2008 B1
7464457 Le et al. Dec 2008 B2
7467461 Bonhote et al. Dec 2008 B2
7469467 Gao et al. Dec 2008 B2
7493688 Wang et al. Feb 2009 B1
7508626 Ichihara et al. Mar 2009 B2
7508627 Zhang et al. Mar 2009 B1
7522377 Jiang et al. Apr 2009 B1
7522379 Krounbi et al. Apr 2009 B1
7522382 Pan Apr 2009 B1
7535675 Kimura et al. May 2009 B2
7542246 Song et al. Jun 2009 B1
7551406 Thomas et al. Jun 2009 B1
7552523 He et al. Jun 2009 B1
7554767 Hu et al. Jun 2009 B1
7558019 Le et al. Jul 2009 B2
7580222 Sasaki et al. Aug 2009 B2
7583466 Kermiche et al. Sep 2009 B2
7595967 Moon et al. Sep 2009 B1
7639451 Yatsu et al. Dec 2009 B2
7639452 Mochizuki et al. Dec 2009 B2
7639457 Chen et al. Dec 2009 B1
7643246 Yazawa et al. Jan 2010 B2
7649712 Le et al. Jan 2010 B2
7660080 Liu et al. Feb 2010 B1
7663839 Sasaki et al. Feb 2010 B2
7672079 Li et al. Mar 2010 B2
7672080 Tang et al. Mar 2010 B1
7672086 Jiang Mar 2010 B1
7684160 Erickson et al. Mar 2010 B1
7688546 Bai et al. Mar 2010 B1
7691434 Zhang et al. Apr 2010 B1
7695761 Shen et al. Apr 2010 B1
7715152 Okada et al. May 2010 B2
7719795 Hu et al. May 2010 B2
7726009 Liu et al. Jun 2010 B1
7729086 Song et al. Jun 2010 B1
7729087 Stoev et al. Jun 2010 B1
7736823 Wang et al. Jun 2010 B1
7748104 Bonhote et al. Jul 2010 B2
7768743 Guthrie et al. Aug 2010 B2
7785666 Sun et al. Aug 2010 B1
7796356 Fowler et al. Sep 2010 B1
7796360 Im et al. Sep 2010 B2
7796361 Sasaki et al. Sep 2010 B2
7800858 Bajikar et al. Sep 2010 B1
7819979 Chen et al. Oct 2010 B1
7829264 Wang et al. Nov 2010 B1
7841068 Chen et al. Nov 2010 B2
7846643 Sun et al. Dec 2010 B1
7855854 Hu et al. Dec 2010 B2
7869160 Pan et al. Jan 2011 B1
7872824 Macchioni et al. Jan 2011 B1
7872833 Hu et al. Jan 2011 B2
7889456 Jiang et al. Feb 2011 B2
7894159 Lengsfield, III et al. Feb 2011 B2
7898773 Han et al. Mar 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
7916425 Sasaki et al. Mar 2011 B2
7916426 Hu et al. Mar 2011 B2
7918013 Dunn et al. Apr 2011 B1
7920359 Maruyama et al. Apr 2011 B2
7924528 Sasaki et al. Apr 2011 B2
7968219 Jiang et al. Jun 2011 B1
7979978 Han et al. Jul 2011 B2
7982989 Shi et al. Jul 2011 B1
8008912 Shang Aug 2011 B1
8012804 Wang et al. Sep 2011 B1
8015692 Zhang et al. Sep 2011 B1
8018677 Chung et al. Sep 2011 B1
8018678 Zhang et al. Sep 2011 B1
8024748 Moravec et al. Sep 2011 B1
8027125 Lee et al. Sep 2011 B2
8031433 Yan et al. Oct 2011 B2
8056213 Han et al. Nov 2011 B2
8066892 Guthrie et al. Nov 2011 B2
8072705 Wang et al. Dec 2011 B1
8074345 Anguelouch et al. Dec 2011 B1
8077418 Hu et al. Dec 2011 B1
8077434 Shen et al. Dec 2011 B1
8077435 Liu et al. Dec 2011 B1
8077557 Hu et al. Dec 2011 B1
8079135 Shen et al. Dec 2011 B1
8081403 Chen et al. Dec 2011 B1
8091210 Sasaki et al. Jan 2012 B1
8097846 Anguelouch et al. Jan 2012 B1
8104166 Zhang et al. Jan 2012 B1
8116033 Kameda et al. Feb 2012 B2
8116043 Leng et al. Feb 2012 B2
8116171 Lee Feb 2012 B1
8117738 Han et al. Feb 2012 B2
8120874 Hsiao et al. Feb 2012 B2
8125732 Bai et al. Feb 2012 B2
8125856 Li et al. Feb 2012 B1
8134794 Wang Mar 2012 B1
8136224 Sun et al. Mar 2012 B1
8136225 Zhang et al. Mar 2012 B1
8136805 Lee Mar 2012 B1
8141235 Zhang Mar 2012 B1
8146236 Luo et al. Apr 2012 B1
8149536 Yang et al. Apr 2012 B1
8151441 Rudy et al. Apr 2012 B1
8163185 Sun et al. Apr 2012 B1
8164760 Willis Apr 2012 B2
8164852 Lee et al. Apr 2012 B2
8164855 Gibbons et al. Apr 2012 B1
8164864 Kaiser et al. Apr 2012 B2
8165709 Rudy Apr 2012 B1
8166631 Tran et al. May 2012 B1
8166632 Zhang et al. May 2012 B1
8169473 Yu et al. May 2012 B1
8171618 Wang et al. May 2012 B1
8179636 Bai et al. May 2012 B1
8184399 Wu et al. May 2012 B2
8191237 Luo et al. Jun 2012 B1
8194365 Leng et al. Jun 2012 B1
8194366 Li et al. Jun 2012 B1
8196285 Zhang et al. Jun 2012 B1
8200054 Li et al. Jun 2012 B1
8203800 Li et al. Jun 2012 B2
8208350 Hu et al. Jun 2012 B1
8220140 Wang et al. Jul 2012 B1
8222599 Chien Jul 2012 B1
8225488 Zhang et al. Jul 2012 B1
8227023 Liu et al. Jul 2012 B1
8228633 Tran et al. Jul 2012 B1
8231796 Li et al. Jul 2012 B1
8233233 Shen et al. Jul 2012 B1
8233234 Hsiao et al. Jul 2012 B2
8233235 Chen et al. Jul 2012 B2
8233248 Li et al. Jul 2012 B1
8248728 Yamaguchi et al. Aug 2012 B2
8248896 Yuan et al. Aug 2012 B1
8254060 Shi et al. Aug 2012 B1
8257597 Guan et al. Sep 2012 B1
8259410 Bai et al. Sep 2012 B1
8259539 Hu et al. Sep 2012 B1
8262918 Li et al. Sep 2012 B1
8262919 Luo et al. Sep 2012 B1
8264792 Bai et al. Sep 2012 B2
8264797 Emley Sep 2012 B2
8264798 Guan et al. Sep 2012 B1
8270109 Ohtsu Sep 2012 B2
8270126 Roy et al. Sep 2012 B1
8276258 Tran et al. Oct 2012 B1
8277669 Chen et al. Oct 2012 B1
8279719 Hu et al. Oct 2012 B1
8284517 Sun et al. Oct 2012 B1
8288204 Wang et al. Oct 2012 B1
8289649 Sasaki et al. Oct 2012 B2
8289821 Huber Oct 2012 B1
8291743 Shi et al. Oct 2012 B1
8305711 Li et al. Nov 2012 B2
8307539 Rudy et al. Nov 2012 B1
8307540 Tran et al. Nov 2012 B1
8308921 Hiner et al. Nov 2012 B1
8310785 Zhang et al. Nov 2012 B1
8310901 Batra et al. Nov 2012 B1
8315019 Mao et al. Nov 2012 B1
8316527 Hong et al. Nov 2012 B2
8320076 Shen et al. Nov 2012 B1
8320077 Tang et al. Nov 2012 B1
8320219 Wolf et al. Nov 2012 B1
8320220 Yuan et al. Nov 2012 B1
8320722 Yuan et al. Nov 2012 B1
8322022 Yi et al. Dec 2012 B1
8322023 Zeng et al. Dec 2012 B1
8325569 Shi et al. Dec 2012 B1
8333008 Sin et al. Dec 2012 B1
8334093 Zhang et al. Dec 2012 B2
8336194 Yuan et al. Dec 2012 B2
8339738 Tran et al. Dec 2012 B1
8341826 Jiang et al. Jan 2013 B1
8343319 Li et al. Jan 2013 B1
8343364 Gao et al. Jan 2013 B1
8347488 Hong et al. Jan 2013 B2
8349195 Si et al. Jan 2013 B1
8351307 Wolf et al. Jan 2013 B1
8357244 Zhao et al. Jan 2013 B1
8373945 Luo et al. Feb 2013 B1
8375564 Luo et al. Feb 2013 B1
8375565 Hu et al. Feb 2013 B2
8381391 Park et al. Feb 2013 B2
8385157 Champion et al. Feb 2013 B1
8385158 Hu et al. Feb 2013 B1
8394280 Wan et al. Mar 2013 B1
8400731 Li et al. Mar 2013 B1
8404128 Zhang et al. Mar 2013 B1
8404129 Luo et al. Mar 2013 B1
8405930 Li et al. Mar 2013 B1
8409453 Jiang et al. Apr 2013 B1
8413317 Wan et al. Apr 2013 B1
8416540 Li et al. Apr 2013 B1
8419953 Su et al. Apr 2013 B1
8419954 Chen et al. Apr 2013 B1
8422176 Leng et al. Apr 2013 B1
8422342 Lee Apr 2013 B1
8422841 Shi et al. Apr 2013 B1
8424192 Yang et al. Apr 2013 B1
8432637 Bonhote et al. Apr 2013 B2
8441756 Sun et al. May 2013 B1
8441757 Chen et al. May 2013 B2
8443510 Shi et al. May 2013 B1
8444866 Guan et al. May 2013 B1
8449948 Medina et al. May 2013 B2
8451556 Wang et al. May 2013 B1
8451563 Zhang et al. May 2013 B1
8454846 Zhou et al. Jun 2013 B1
8455119 Jiang et al. Jun 2013 B1
8456778 Min et al. Jun 2013 B2
8456961 Wang et al. Jun 2013 B1
8456963 Hu et al. Jun 2013 B1
8456964 Yuan et al. Jun 2013 B1
8456966 Shi et al. Jun 2013 B1
8456967 Mallary Jun 2013 B1
8458892 Si et al. Jun 2013 B2
8462592 Wolf et al. Jun 2013 B1
8468682 Zhang Jun 2013 B1
8470186 Chen et al. Jun 2013 B2
8472288 Wolf et al. Jun 2013 B1
8480911 Osugi et al. Jul 2013 B1
8486285 Zhou et al. Jul 2013 B2
8486286 Gao et al. Jul 2013 B1
8488272 Tran et al. Jul 2013 B1
8491801 Tanner et al. Jul 2013 B1
8491802 Gao et al. Jul 2013 B1
8493693 Zheng et al. Jul 2013 B1
8493695 Kaiser et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8508886 Chen et al. Aug 2013 B2
8514517 Batra et al. Aug 2013 B1
8518279 Wang et al. Aug 2013 B1
8518832 Yang et al. Aug 2013 B1
8520336 Liu et al. Aug 2013 B1
8520337 Liu et al. Aug 2013 B1
8524068 Medina et al. Sep 2013 B2
8526275 Yuan et al. Sep 2013 B1
8531801 Xiao et al. Sep 2013 B1
8532450 Wang et al. Sep 2013 B1
8533937 Wang et al. Sep 2013 B1
8537494 Pan et al. Sep 2013 B1
8537495 Luo et al. Sep 2013 B1
8537502 Park et al. Sep 2013 B1
8545999 Leng et al. Oct 2013 B1
8547659 Bai et al. Oct 2013 B1
8547667 Roy et al. Oct 2013 B1
8547730 Shen et al. Oct 2013 B1
8555486 Medina et al. Oct 2013 B1
8559141 Pakala et al. Oct 2013 B1
8563146 Zhang et al. Oct 2013 B1
8565049 Tanner et al. Oct 2013 B1
8576517 Tran et al. Nov 2013 B1
8578594 Jiang et al. Nov 2013 B2
8582238 Liu et al. Nov 2013 B1
8582241 Yu et al. Nov 2013 B1
8582253 Zheng et al. Nov 2013 B1
8588039 Shi et al. Nov 2013 B1
8593914 Wang et al. Nov 2013 B2
8597528 Roy et al. Dec 2013 B1
8599520 Liu et al. Dec 2013 B1
8599657 Lee Dec 2013 B1
8603593 Roy et al. Dec 2013 B1
8607438 Gao et al. Dec 2013 B1
8607439 Wang et al. Dec 2013 B1
8611035 Bajikar et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8614864 Hong et al. Dec 2013 B1
8619512 Yuan et al. Dec 2013 B1
8625233 Ji et al. Jan 2014 B1
8625941 Shi et al. Jan 2014 B1
8628672 Si et al. Jan 2014 B1
8630068 Mauri et al. Jan 2014 B1
8634280 Wang et al. Jan 2014 B1
8638529 Leng et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8649123 Zhang et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8670211 Sun et al. Mar 2014 B1
8670213 Zeng et al. Mar 2014 B1
8670214 Knutson et al. Mar 2014 B1
8670294 Shi et al. Mar 2014 B1
8670295 Hu et al. Mar 2014 B1
8675318 Ho et al. Mar 2014 B1
8675455 Krichevsky et al. Mar 2014 B1
8681594 Shi et al. Mar 2014 B1
8689430 Chen et al. Apr 2014 B1
8693141 Elliott et al. Apr 2014 B1
8703397 Zeng et al. Apr 2014 B1
8705205 Li et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8760807 Zhang et al. Jun 2014 B1
8760808 Heim et al. Jun 2014 B2
8792208 Liu et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
20030076630 Sato et al. Apr 2003 A1
20040061988 Matono et al. Apr 2004 A1
20040184191 Ichihara et al. Sep 2004 A1
20050117251 Matono et al. Jun 2005 A1
20060044677 Li et al. Mar 2006 A1
20060044681 Le et al. Mar 2006 A1
20060044682 Le et al. Mar 2006 A1
20060067005 Jayasekara Mar 2006 A1
20060082924 Etoh et al. Apr 2006 A1
20060158779 Ota et al. Jul 2006 A1
20060174474 Le Aug 2006 A1
20060225268 Le et al. Oct 2006 A1
20060288565 Le et al. Dec 2006 A1
20070211380 Akimoto et al. Sep 2007 A1
20070236834 Toma et al. Oct 2007 A1
20070247746 Kim et al. Oct 2007 A1
20070253107 Mochizuki et al. Nov 2007 A1
20070258167 Allen et al. Nov 2007 A1
20070263324 Allen et al. Nov 2007 A1
20070283557 Chen et al. Dec 2007 A1
20080002309 Hsu et al. Jan 2008 A1
20080151437 Chen et al. Jun 2008 A1
20080180861 Maruyama et al. Jul 2008 A1
20080253035 Han et al. Oct 2008 A1
20080273276 Guan Nov 2008 A1
20080273277 Guan et al. Nov 2008 A1
20080278861 Jiang et al. Nov 2008 A1
20080304186 Watanabe et al. Dec 2008 A1
20090091861 Takano et al. Apr 2009 A1
20090154019 Hsiao et al. Jun 2009 A1
20090154026 Jiang et al. Jun 2009 A1
20090168241 Mochizuki et al. Jul 2009 A1
20090279206 Yang et al. Nov 2009 A1
20100061016 Han et al. Mar 2010 A1
20100146773 Li et al. Jun 2010 A1
20100155363 Pentek et al. Jun 2010 A1
20100165517 Araki et al. Jul 2010 A1
20100254042 Contreras et al. Oct 2010 A1
20100277832 Bai et al. Nov 2010 A1
20100290157 Zhang et al. Nov 2010 A1
20100302681 Mino et al. Dec 2010 A1
20110051293 Bai et al. Mar 2011 A1
20110086240 Xiang et al. Apr 2011 A1
20110146060 Han et al. Jun 2011 A1
20110151279 Allen et al. Jun 2011 A1
20110222188 Etoh et al. Sep 2011 A1
20120012555 Yan et al. Jan 2012 A1
20120044598 Bai et al. Feb 2012 A1
20120111826 Chen et al. May 2012 A1
20120162811 Ishibashi et al. Jun 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120268845 Sahoo et al. Oct 2012 A1
20120298621 Gao Nov 2012 A1
20130161185 Mao et al. Jun 2013 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20140175050 Zhang et al. Jun 2014 A1
Foreign Referenced Citations (1)
Number Date Country
2006331612 Dec 2006 JP
Non-Patent Literature Citations (4)
Entry
Mallary et al., “One Terabit per Square Inch Perpendicular Recording Conceptual Design”, IEEE Transactions on Magnetics, vol. 38, No. 4, Jul. 2002, pp. 1719-1724.
Feng Liu, et al., U.S. Appl. No. 13/631,808, filed Sep. 28, 2012 ,17 pages.
Ronghui Zhou, et. al., U.S. Appl. No. 13/711,160, filed Dec. 11, 2012 ,28 pages.
Xianzhong Zeng, et. al., U.S. Appl. No. 13/898,160, filed May 20, 2013, 18 pages.
Provisional Applications (1)
Number Date Country
61828267 May 2013 US