Process for making three-dimensional foam-laid nonwovens

Information

  • Patent Grant
  • 11788221
  • Patent Number
    11,788,221
  • Date Filed
    Wednesday, March 16, 2022
    2 years ago
  • Date Issued
    Tuesday, October 17, 2023
    8 months ago
Abstract
A method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.
Description
BACKGROUND

A bowel movement (BM) leaking from a diaper (i.e., leak around the leg area or at the waist) causes an unpleasant mess needing clean up by a caregiver. The consumer/chooser becomes dissatisfied with the absorbent product of choice, which can lead to the consumer/chooser deciding to switch to different diaper brand. As many as one in seven diapers containing BM result in BM leaking from the diaper. In addition, BM that is in contact with skin can result in compromising skin health and promoting development of diaper rash. Non-diaper skin can be healthier than diapered skin because current diapers do a poor job of keeping BM off of skin.


There is a lack of material/nonwoven solutions to reduce BM leakage occurrences and keep BM off of skin. Current materials in absorbent products, such as spunbond, SMS, and BCW, are mostly flat, dense, and do a poor job of handling runny BM and keeping BM off of skin. There are materials such as aperture films and textured BCW/SB composite nonwovens (e.g., TEXTOR brand nonwovens) that are used as liners. TEXTOR brand nonwovens can improve BM management properties compared to spunbond liner and is used in current products. Too many current products, however, that contain BM result in BM leakage. As a result, there is a great opportunity to identify materials that improve absorbent product BM management performance.


SUMMARY

The materials of the present disclosure are the next step in producing a diaper that completely absorbs runny BM at the point of insult, leaving no BM spreading and no BM on the skin, to deliver zero BM leakage and a cleaner skin experience. Identifying solutions to reduce BM blow outs and BM on skin is beneficial both to the wearer of the product and because it would result in a consumers having a more positive experience with such products by reducing the occurrence of diaper rash and providing a point of differentiation from other products.


The solutions disclosed herein are nonwoven materials having high degrees of three-dimensional (3D) topography and that have high compression resistance while also having a high level of openness. Such materials have demonstrated significantly better BM intake compared to current commercial materials being using in current products. The BM Flat Plate test method has demonstrated that three-dimensional foam-laid webs of the present disclosure reduce BM pooling to 2% wt/wt versus TEXTOR brand nonwovens at 40% wt/wt. BM pooling values are similar to rewet values and represent BM on skin.


The present disclosure describes novel extreme 3D nonwoven materials that have superior BM management properties. Such materials can improve absorbent products by reducing BM leakage and BM on skin. The nonwoven structures are made possible by templating foam-laid webs, otherwise labeled as 3D foam-laid nonwovens. The process involves dispersing bicomponent fibers in foam and templating such foam during drying & thermal bonding. This method results in extreme 3D nonwoven webs with features as high as 12 mm in height and as low as 8 mm in diameter. Because of these 3D features, there is high level of Z-direction fiber orientation that results in webs having high compression resistance while also having a high level of openness/porosity, which are key properties in being able to handle runny BM. In addition, a wide variety of 3D features, shapes, and sizes can be produced depending on template design.


The present disclosure is generally directed to a method for making a high topography nonwoven substrate, the method including generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein each projection element has a height, a diameter or width, a cross-section, a sidewall, a proximal end where the projection element meets the base layer, and a distal end opposite the proximal end, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.


In another aspect, the present disclosure is generally directed to a method for making a high topography nonwoven substrate, the method including generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes synthetic binder fibers, wherein the fibers of the substrate are entirely synthetic binder fibers; a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein each projection element has a height, a diameter or width, a cross-section, a sidewall, a proximal end where the projection element meets the base layer, and a distal end opposite the proximal end, wherein the projection elements are distributed in both the X- and Y-directions, wherein the shape of a cross-section of a projection element at the proximal end of the projection element is the same as the shape of a cross-section of a projection element at the distal end of the projection element, and wherein the density of a projection element is the same as the density of the base layer.


In still another aspect, the present disclosure is generally directed to a method for making a high topography nonwoven substrate, the method including generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes synthetic binder fibers, wherein the fibers of the substrate are entirely synthetic binder fibers, the substrate including a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein each projection element has a height, a diameter or width, a cross-section, a sidewall, a proximal end where the projection element meets the base layer, and a distal end opposite the proximal end, wherein the projection elements are distributed in both the X- and Y-directions, wherein each projection element has a uniform density, wherein the height of a projection element is greater than the width or diameter of that projection element, and wherein the density of a projection element is the same as the density of the base layer.


Various features and aspects of the present disclosure will be made apparent from the following detailed description.





BRIEF DESCRIPTION OF THE FIGURES

A full and enabling disclosure of the present disclosure, including the best mode thereof to one of ordinary skill in the art, is set forth more particularly in the specification, including reference to the accompanying figures in which:



FIG. 1 is a flowchart view of an exemplary aspect of a process for producing 3D foam-laid nonwovens in accordance with the present disclosure;



FIG. 2 is a perspective schematic illustration of one aspect of a template for use in the process of FIG. 1;



FIG. 3 photographically illustrates the results of Flow Through testing of various nonwovens including those produced by the process of FIG. 1;



FIG. 4 graphically illustrates the results of Flow Through testing of various nonwovens including those produced by the process of FIG. 1;



FIG. 5 graphically illustrates the results of Compression Resistance testing of various nonwovens including those produced by the process of FIG. 1; and



FIG. 6 graphically illustrates the results of Air Permeability testing of various nonwovens including those produced by the process of FIG. 1.





Repeated use of reference characters in the present specification and drawings is intended to represent the same or analogous features or elements of the present disclosure.


DETAILED DESCRIPTION

Reference now will be made to the aspects of the disclosure, one or more examples of which are set forth below. Each example is provided by way of explanation of the disclosure, not as a limitation of the disclosure. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the disclosure without departing from the scope or spirit of the disclosure. For instance, features illustrated or described as part of one aspect can be used on another aspect to yield a still further aspect. Thus, it is intended that the present disclosure cover such modifications and variations as come within the scope of the appended claims and their equivalents. It is to be understood by one of ordinary skill in the art that the present discussion is a description of exemplary aspects only, and is not intended as limiting the broader aspects of the present disclosure, which broader aspects are embodied in the exemplary constructions.


The present disclosure describes novel extreme 3D nonwoven materials that have superior BM management properties. Such materials can improve absorbent products by reducing BM leakage and BM on skin. The nonwoven structures are made possible by templating foam-laid webs, otherwise labeled as 3D foam-laid webs. The process involves dispersing bicomponent fibers in foam and templating such foam during drying & thermal bonding. This method results in extreme 3D nonwoven webs with relatively tall and narrow 3D features. Because of these 3D features, there is high level of Z-direction fiber orientation that results in webs having high compression resistance while also having a high level of openness/porosity, which are key properties in being able to handle runny BM. In addition, a wide variety of 3D features, shapes, and sizes can be produced depending on template design.


Foam processes are normally used for making planar webs having a uniform thickness, such as two-dimensional shaped forms. As described herein, a three-dimensional nonwoven web is created by using a three-dimensional template to mold foam into a 3D topography. Drying and heating the templated foam results in a nonwoven having the topographical characteristics of the template.


The process of the present disclosure obviates any further molding of the nonwoven web as any desired topography is created along with the creation of the nonwoven. Prior methods of processing nonwovens require post-creation manipulation, cutting, embossing, or molding of an existing nonwoven web, resulting in weakening the web along with broad variations in web density and basis weight.


Creation of the nonwoven structures described herein requires three major steps: 1) Disperse binder fiber and a foaming agent in water to create a foam solution with a consistency some describe as shaving cream-like. 2) Template the fiber/foam blend. 3) Dry and heat the blend to remove water and to activate the binder fibers, thus setting the 3D structure in the nonwoven. These webs are referred to herein as 3D foam-laid nonwovens.


In the first step, binder fiber and a foaming agent are dispersed in water to create a foam solution with a consistency some describe as shaving cream-like. This step involves dispersing a blend of fibers capable of forming fiber-fiber bonds (e.g., bicomponent fibers/binder fibers) in a foam solution. This is done by mixing fibers, water, and foaming agent such as sodium dodecyl sulfate (SDS) surfactant simultaneously to create a foam and to uniformly suspend the fibers in the foam. This foaming process creates a stable foam containing a fibrous network that is uniformly dispersed through the foam solution. The foam has high viscosity, preventing fibers from floating, sinking, and/or agglomerating.


Many types of fibers can be included in the fiber blend, but the blend must include binder fibers in a quantity sufficient to ensure the final 3D foam-laid nonwoven has integrity and can maintain its 3D structural features. In one example, the fiber blend is 100% wt/wt binder fibers having a polyethylene sheath and a polypropylene core. The binder fibers are typically synthetic, thermoplastic bonder fibers. In other aspects, the binder fibers can be bi- and/or multi-component binder fibers. In other aspects, the fiber blend can include cellulosic fibers.


In another aspect of the present disclosure, nanovoided technology has produced lightweight, uncrimped bicomponent staple fiber with a fiber density reduction of 20-33%. Use of such lightweight fibers in the fiber blend can increase the fiber count for the same basis weight, thus increasing the web compression resistance. In various aspects, the low-density fiber can have density as low as 0.5 grams/cubic centimeter or even lower. In an example, the low density-voided fibers used can have a density of 0.62 g/cc, which equates to the polyolefin-based fiber having a 33% reduction in overall density with a 47% void volume in the core. Foam forming is a preferred method of forming a nonwoven web containing low-density fibers and enables lofty webs using voided fibers that do not require stuffer box crimped fibers. For example, carded webs require fibers to be stuffer box crimped to form a web. Stuff box crimping is a high pressure process that results in internal fiber void structure destruction and thus cannot generate a carded web including low-density voided fibers. Because of the high viscosity foam, low-density fibers are able to be properly laid into a web using the foam as carrier, thus enabling the ability to form webs including low-density fibers.


Although some level of binder fibers is required, the fiber blend does not need to contain solely binder fibers; other types of fibers can be incorporated into the fiber blend. The selection of fibers can include all types of synthetic fibers to a wide range of natural fibers. The fibers can have a wide range of cut length/fiber length, such as from 3-30 mm. A wide range of fiber diameters can also be used. A wide variety of foaming agents and amounts can be used such as anionic and non-ionic in amounts ranging from 0.1-5 wt %. Typically, SDS has been used at about 0.17 wt % to water. Foam density can range from 100-400 g/L. Foam stability half-life can range from 2-30 min. Fiber consistency (fiber concentration) can range from 0.5-5% wt/wt.


In the second step, the fiber/foam blend is poured onto or applied in any suitable manner to a foraminous belt or other suitable surface. The belt optionally includes a frame-type mold to limit the spread of the fiber/foam blend on the belt. A template is then placed on top of the fiber/foam blend, typically within the mold if present. The template provides a negative pattern to the desired pattern of the 3D foam-laid nonwoven. In one illustrative example, if a convex surface is desired for the nonwoven, then the template will have a concave surface pattern. Upon placement of the template, the fiber/foam blend conforms to the topography of the template, in essence creating bumps of foam where the template has dimples, dimples where the template has bumps, and flat spaces where the template is flat. In this manner, the template creates a 3D topography in the foam.


Typically the template contains cavities into which the fiber/foam blend can flow and fill. Cavity sizes range from 8 mm in diameter or larger and cavity depths can be as large as the thickness of the applied foam, as large as 50 mm or more. In one example, the template cavities are 12 mm deep. The cavities can have any suitable shape, including round, rectangular, square, triangular, mushroom-shaped, symbols, toroidal, or more complex combinations of shapes, and the template cavities can have any combination of shapes, sizes, and depths, or the template cavities can be of one uniform shape, size, and depth, as long as the fiber/foam blend can flow and fill the cavities in the template.


The template material should be selected to withstand bonding temperatures. Examples of template materials include silicon, metal, polyurethane, polytetrafluoroethylene, and any other suitable material. The template material should also be selected such that fibers do not adhere to template, thereby allowing easy removal of the web from the template, or the template from the web, after thermal activation of the binder fiber. In other words, the binder fibers should preferably adhere to other binder fibers rather than the template material. In general, increased fiber-to-fiber bonding overcomes fiber-to-template bonding problems. The template should also be open enough to allow proper air flow and heat transfer to enable drying and heat activation of the binder fiber.


In the third step, the templated fiber/foam blend is placed in an oven or other suitable heating device to dry and thermally bond the binder fibers. It is important that the template is present during the drying/bonding stage to ensure the 3D structure will be present in the final web. Temperatures and time in the oven should be long enough to remove a sufficient amount of water and to sufficiently activate the binding fiber. The time and temperature can be set by one skilled in the art based on the ingredients in the fiber/foam blend, the volume and surface area of the fiber/foam blend, the specifications of the oven used, the initial conditions of the templated fiber/foam blend, and any other relevant conditions.


The process described herein produces unique webs. Different high topography 3D nonwovens can be produced by selecting different templates (e.g., templates with different cavity sizes, shapes, depths, spacing, etc.). The 3D foam-laid nonwovens produced by the process described herein typically have a base layer defining an X-Y plane, where the base layer has an X-Y surface and a backside surface opposite the X-Y surface.


The 3D foam-laid nonwovens also include vertical (Z-direction) features such as projection elements protruding in the Z-direction from and integral with the base layer. This is often called a “peak and valley” type 3D structure. Each projection element has a height, a diameter or width, a cross-section, a sidewall, a proximal end where the projection element meets the base layer, and a distal end opposite the proximal end. The projection elements are typically distributed in both the X- and Y-directions. The projection elements can be uniformly distributed in both the X- and Y-directions, or the pattern of projection elements can be varied in either or both directions.


Depending on the template design, may different vertical feature shapes and sizes can be created. For example, a horizontal cross-section of a projection element can have any suitable shape, including round, rectangular, square, triangular, mushroom-shaped, symbols, toroidal, or more complex combinations of shapes. The height of the vertical features can range from 1 mm to 50 mm or greater, 1 mm to 30 mm, 5 mm to 50 mm, 5 mm to 30 mm, 30 mm to 50 mm, or any other suitable range of heights. The width or diameter of a vertical feature, depending on the shape of its cross-section, can be 8 mm or greater. The heights of the projection elements are preferably greater than the width or diameter of the projection elements. In various aspects, the ratio of the height of a projection element to the width or diameter of that projection element is greater than 0.5.


Because of the manner in which the 3D foam-laid nonwoven is produced, the density of a projection element is generally the same as or similar to the density of the base layer. In various aspects, the shape of a cross-section of a projection element at the proximal end of the projection element is the same as the shape of a cross-section of a projection element at the distal end of the projection element. Alternatively, the shape of a cross-section of a projection element at the proximal end of the projection element can be different from the shape of a cross-section of a projection element at the distal end of the projection element. The density of a projection element at the proximal end of the projection element can be the same as or different from the density of a projection element at the distal end of the projection element. The basis weight of a projection element at the proximal end of the projection element can be the same as or different from the density a projection element at the distal end of the projection element. In other aspects, the size of a cross-section of a projection element at the proximal end of the projection element can be the same as or different from the size of a cross-section of a projection element at the distal end of the projection element.


Each projection element can have an internally-uniform density. In other words, each projection element generally has a homogeneous density largely free of hollow or densified portions. The projection elements can have a density between 0.001 and 0.02 g/cc. The 3D foam-laid nonwovens demonstrate a basis weight range from 15 gsm to 120 gsm, although lower or higher basis weights can be produced using the process described herein.


Because of the manner in which the 3D foam-laid nonwoven is produced, the projection elements and particularly the sidewalls of the projection elements have fibers aligned in the Z-direction. In some aspects, the sidewalls have greater than 50 percent of fibers oriented in the Z-direction. Because of high degree of fiber z-direction orientation, the 3D foam-laid nonwovens described herein demonstrate very high compression resistance while also being very open and having a high level of porosity. For the purpose of comparison, “flat” bonded carded web (BCW) surge provides compression resistance of about 25 cc/g at 0.6 kPa pressure. The 3D foam-laid nonwovens of the present disclosure provide compression resistance from about 35 up to 65 cc/g at 0.6 kPa pressure. In addition, these high level of compression resistance is achievable with very open web structures. Again for the purpose of comparison, 100 gsm MGL9 surge, a standard BCW-type surge material, has an air permeability value of about 440 cfm, while the 3D foam-laid nonwovens measure between 1000 and 2500 cfm.


Bench testing of 3D foam-laid nonwovens has demonstrated superior BM management properties. For example, a test method for BM flow measures the amount of BM simulant that transfers from a BM-simulant-insulted nonwoven to blotter paper. A liner made from TEXTOR brand nonwoven typically results in about 40% of BM simulant remaining on the surface of the liner as shown using the blotter paper (i.e., the amount remaining is also called % pooled). The 3D foam-laid nonwovens of the present disclosure have demonstrated about half the amount of % pooling (i.e., 20%) compared to the TEXTOR brand nonwoven at about half the basis weight of TEXTOR brand nonwoven (55 gsm TEXTOR brand nonwoven compared to 30 gsm 3D foam-laid nonwoven). At higher basis weights, such as a 60 gsm 3D foam-laid nonwoven, demonstrated less than 2% BM simulant % pooled. The % pooled indicator can be consider analogous to “what is on skin” or rewet.


EXAMPLES

Procedures


Air Permeability Test


Air Permeability was measured in cubic feet of air per minute passing through a 38 square cm area (circle with 7 cm diameter) using a Textest FX3300 air permeability tester manufactured by Textest Ltd., Zurich, Switzerland. All tests were conducted in a laboratory with a temperature of 23±2° C. and 50±5% relative humidity. Specifically, a nonwoven sheet is allowed to dry out and condition for at least 12 hours in the 23±2° C. and 50±5% relative humidity laboratory before testing. The nonwoven sheet is clamped in the 7 cm diameter sheet test opening and the tester is set to a pressure drop of 125 Pa. Placing folds or crimps above the fabric test opening is to be avoided if at all possible. The unit is turned on by applying clamping pressure to the sample. The air flow under the 125 Pa pressure drop is recorded after 15 seconds of airflow to achieve a steady state value.


The Air Permeability Test measures the rate of airflow through a known dry specimen area. The air permeability of each sample was measured using a Textest FX3300 air permeability tester available from Schmid Corporation, having offices in Spartanburg, S.C.


A specimen from each test sample was cut and placed so the specimen extended beyond the clamping area of the air permeability tester. The test specimens were obtained from areas of the sample that were free of folds, crimp lines, perforations, wrinkles, and/or any distortions that make them abnormal from the rest of the test material.


The tests were conducted in a standard laboratory atmosphere of 23±1° C. (73.4±1.8° F.) and 50±2% relative humidity. The instrument was turned on and allowed to warm up for at least 5 minutes before testing any specimens. The instrument was calibrated based on the manufacturer's guidelines before the test material was analyzed. The pressure sensors of the instrument were reset to zero by pressing the NULL RESET button on the instrument. Before testing, and if necessary between samples or specimens, the dust filter screen was cleaned, following the manufacturer's instructions. The following specifications were selected for data collection: (a) Unit of measure: cubic feet per minute (cfm); (b) test pressure: 125 Pascal (water column 0.5 inch or 12.7 mm); and (c) test head: 38 square centimeters (cm2). Because test results obtained with different size test heads are not always comparable, samples to be compared should be tested with the same size test head.


The NULL RESET button was pressed prior to every series of tests, or when the red light on the instrument was displayed. The test head was open (no specimen in place) and the vacuum pump was at a complete stop before the NULL RESET button was pressed.


Each specimen was placed over the lower test head of the instrument. The test was started by manually pressing down on the clamping lever until the vacuum pump automatically started. The Range Indicator light on the instrument was stabilized in the green or yellow area using the RANGE knob. After the digital display was stabilized, the air permeability of the specimen was displayed, and the value was recorded. The test procedure was repeated for 10 specimens of each sample, and the average value for each sample was recorded as the air permeability.


Compression Test Method


From the target nonwoven, a 38 mm by 25 mm test sample was cut. The upper and lower platens made of stainless steel were attached to a tensile tester (Model: Alliance RT/1 manufactured by MTS System Corporation, a business having a location in Eden Prairie, Minn., U.S.A.). The top platen had a diameter of 57 mm while the lower platen had a diameter of 89 mm. The upper platen was connected to a 100 N load cell while the lower platen was attached to the base of the tensile tester. TestWorks Version 4 software program provided by MTS was used to control the movement of the upper platen and record the load and the distance between the two platens. The upper platen was activated to slowly move downward and touch the lower platen until the compression load reached around 5000 g. At this point, the distance between the two platens was zero. The upper platen was then set to move upward (away from the lower platen) until the distance between the two platens reaches 15 mm. The crosshead reading shown on TestWorks Version 4 software program was set to zero. A test sample was placed on the center of the lower platen with the projections facing toward the upper platen. The upper platen was activated to descend toward the lower platen and compress the test sample at a speed of 25 mm/min. The distance that the upper platen travels was indicated by the crosshead reading. This was a loading process. When 345 grams of force (about 3.5 kPa) was reached, the upper platen stopped moving downward and returned at a speed of 25 mm/min to its initial position where the distance between the two platens was 15 mm. This was an unloading process. The compression load and the corresponding distance between the two platens during the loading and unloading were recorded on a computer using TestWorks Version 4 software program provided by MTS. The compression load was converted to the compression stress by dividing the compression force by the area of the test sample. The distance between the two platens at a given compression stress represented the thickness under that particular compression stress. A total of three test samples were tested for each test sample code to get representative loading and unloading curves for each test sample code.


Flow Through Test Method


The Flow Through Test was performed using Simulant A, which was applied to the targeted nonwoven. The BM simulant was applied using a BM gun and the absorption test conducted using the BM Plate Test Method. The targeted nonwoven was the material described herein. The four corners of the BM plate were then adjusted to match nonwoven thickness and checked to make sure the plate was level. The nonwoven was placed between the lower and upper plates and insulted with BM simulant. The nonwoven was left in the test apparatus for 2 minutes after insult, and then placed on a vacuum box to measure the amount of BM simulant pooling on the nonwoven. Four paper towels were placed on top of the nonwoven and the nonwoven was flipped with the paper towels down on top of the vacuum box and covered with a silicone sheet to seal the vacuum. The vacuum box was turned on pulling a pressure of 5 inches of water for 1 minute. In addition to the BM simulant picked-up by paper towels on the vacuum box, the excess BM simulant left on the BM plate was removed using an additional paper towel. The BM simulant amount picked up by the paper towels from the vacuum box along with the excess BM simulant left on the plate was recorded as the total pooled BM simulant.


Three (N=3) samples were tested for each of the examples. The amounts of BM simulant in each layer in the 3 samples were then averaged to get BM simulant pooled on the nonwoven.


Materials


Fibers


Voided bicomponent fibers with a diameter of 33 microns, a denier of 5.5 dpf, and a density of 0.705 g/cc. Non-voided bicomponent fibers with a diameter of 33 microns, a denier of 7.1 dpf, and a density of 0.913 g/cc. Note that the density of the voided bicomponent fibers was 23 percent less than the density of the non-voided bicomponent fibers. The fiber density was measured using sink/float after web thermal bonding at 133° C. The fibers were cut to a length of 18 mm, then heat set at 118° C. for a final length of 15 mm. The codes tested are listed in Table 1.









TABLE 1







Codes Tested









Code

Target Basis


Number
Fiber
Weight, in gsm












1
Voided
30


2
Voided
60


3
Voided
120


4
Non-Voided
30


5
Non-Voided
60


6
Non-Voided
120









The three-dimensional foam-laid handsheets tested herein were produced by combining 300 grams of deionized water, 5 grams of 10% SDS, and fibers. The combination was mixed to foam and poured into an 8 inch by 8 inch by 2 inch frame. This was then templated with a template having square holes of 1 cm, an openness of 40%, and a thickness of 12 mm, with a nylon spunbond backing. The assembly was dried and thermal bonded at 133° C. for 1 to 1.5 hours. This was then wet dipped in 0.2% wt/wt of SILWET brand DA63 surfactant in water and dried in ambient conditions.


Fecal Material Simulant


The following is a description of the fecal material simulant A used in the examples described herein.


Ingredients:


DANNON brand All Natural Low-fat Yogurt (1.5% milkfat grade A), Vanilla with other natural flavor, in 32 oz container.


MCCORMICK brand Ground Turmeric


GREAT VALUE brand 100% liquid egg whites


KNOX brand Original Gelatin—unflavored and in powder form


DAWN brand Ultra Concentrated original scent dishwashing liquid


Distilled Water


Note: All fecal material simulant ingredients can be purchased at grocery stores such as WAL-MART brand stores or through on-line retailers. Some of the fecal material simulant ingredients are perishable food items and should be incorporated into the fecal material simulant at least two weeks prior to their expiration date.


Mixing Equipment:


Laboratory Scale with an accuracy to 0.01 gram


500 mL beaker


Small lab spatula


Stop watch


IKA-WERKE brand Eurostar Power Control-Vise with R 1312 Turbine stirrer available from IKA Works, Inc., Wilmington, N.C., USA.


Mixing Procedure:


1. A 4-part mixture is created at room temperature by adding, in the following order, the following fecal material simulant ingredients (which are at room temperature) to the beaker at a temperature between 21° C. and 25° C.: 57% yogurt, 3% turmeric, 39.6% egg white, and 0.4% gelatin. For example, for a total mixture weight of 200.0 g, the mixture will have 114.0 g of the yogurt, 6.0 g of the turmeric, 79.2 g of the egg whites, and 0.8 g of the gelatin.


2. The 4-part mixture should be stirred to homogeneity using the IKA-WERKE brand Eurostar stirrer set to a speed of 50 RPM. Homogeneity will be reached in approximately 5 minutes (as measured using the stop watch). The beaker position can be adjusted during stirring so the entire mixture is stirred uniformly. If any of the mixture material clings to the inside wall of the beaker, the small spatula is used to scrape the mixture material off the inside wall and place it into the center part of the beaker.


3. A 1.3% solution of DAWN brand dishwashing liquid is made by adding 1.3 grams of DAWN brand Ultra Concentrated dishwashing liquid into 98.7 grams of distilled water. The IKA-WERKE brand Eurostar and the R 1312 Turbine stirrer is used to mix the solution for 5 minutes at a speed of 50 RPM.


4. An amount of 2.0 grams of the 1.3% DAWN brand dishwashing liquid solution is added to 200 grams of the 4-part mixture obtained from Step 2 for a total combined weight of 202 grams of fecal material simulant. The 2.0 grams of the 1.3% DAWN brand dishwashing liquid solution is stirred into the homogenous 4-part mixture carefully and only to homogeneity (approximately 2 minutes) at a speed of 50 RPM, using the IKA-WERKE brand Eurostar stirrer. Final viscosity of the final fecal material simulant should be 390±40 cP (centipoise) when measured at a shear rate of 10 s−1 and a temperature of 37° C.


5. The fecal material simulant is allowed to equilibrate for about 24 hours in a refrigerator at a temperature of 7° C. It can be stored in a lidded and airtight container and refrigerated for up to 5 days at around 7° C. Before use, the fecal material simulant should be brought to equilibrium with room temperature. It should be noted that multiple batches of fecal material simulant of similar viscosity can be combined. For example, five batches of fecal material simulant of similar viscosity and each 200 grams can be combined into one common container for a total volume of 1000 cc. It will take approximately 1 hour for 1000 cc of fecal material simulant to equilibrate with room temperature.


Results


Results of the Flow Through Tests are illustrated in FIGS. 3 and 4. 3D foam-laid nonwovens using voided and non-voided binder fibers behaved similarly in the tests. When compared to the results of the TEXTOR brand nonwoven test, the 3D foam-laid nonwoven test demonstrated approximately half the % pooling at nearly half the basis weight. Higher basis weight 3D foam-laid nonwovens demonstrated approximately less than 2% % pooling. In addition, there is a higher level of BM simulant passing through the 3D foam-laid nonwoven, even at a basis weight of 60 gsm.


Results of compression and air permeability tests are illustrated in FIGS. 5 and 6. The 3D foam-laid nonwovens of the present disclosure exhibit high compression resistance and high air permeability. In this peak and valley model, the combination of open valleys and compression resistant peaks is an arrangement resulting in low % pooling values.


The solutions disclosed herein are nonwoven materials having high degrees of 3D topography, high compression resistance, and a high level of openness. Such materials demonstrate significantly better BM intake compared to current commercial materials used in current products. The BM Flat Plate test method has demonstrated that the 3D foam-laid nonwovens of the present disclosure can reduce BM pooling to 2% wt/wt, as compared to TEXTOR brand nonwovens at 40% wt/wt. BM pooling values can be considered analogous to rewet values and represent BM on skin.


In a first particular aspect, a method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein each projection element has a height, a diameter or width, a cross-section, a sidewall, a proximal end where the projection element meets the base layer, and a distal end opposite the proximal end, wherein the projection elements are distributed in both the X- and Y-directions, and wherein the density of a projection element is the same as the density of the base layer.


A second particular aspect includes the first particular aspect, wherein the binder fibers are bi- and/or multi-component binder fibers.


A third particular aspect includes the first and/or second aspect, wherein the shape of a cross-section of a projection element at the proximal end of the projection element is the same as the shape of a cross-section of a projection element at the distal end of the projection element.


A fourth particular aspect includes one or more of aspects 1-3, wherein the shape of a cross-section of a projection element at the proximal end of the projection element is different from the shape of a cross-section of a projection element at the distal end of the projection element.


A fifth particular aspect includes one or more of aspects 1-4, wherein the shape of a cross-section of a projection element is circular, oval, rectangular, or square.


A sixth particular aspect includes one or more of aspects 1-5, wherein the density of a projection element at the proximal end of the projection element is the same as the density of a projection element at the distal end of the projection element.


A seventh particular aspect includes one or more of aspects 1-6, wherein the basis weight of a projection element at the proximal end of the projection element is the same as the density a projection element at the distal end of the projection element.


An eighth particular aspect includes one or more of aspects 1-7, wherein the size of a cross-section of a projection element at the proximal end of the projection element is different from the size of a cross-section of a projection element at the distal end of the projection element.


A ninth particular aspect includes one or more of aspects 1-8, wherein each projection element has a uniform density.


A tenth particular aspect includes one or more of aspects 1-9, wherein the height of a projection element is greater than the width or diameter of that projection element.


An eleventh particular aspect includes one or more of aspects 1-10, wherein the substrate has a compression resistance that provides 20 cubic centimeters or more of void volume per gram of substrate at 0.6 kPa pressure.


A twelfth particular aspect includes one or more of aspects 1-11, wherein the ratio of the height of a projection element to the width or diameter of a projection element is greater than 0.5.


A thirteenth particular aspect includes one or more of aspects 1-12, wherein the height of a projection element is greater than 3 mm.


A fourteenth particular aspect includes one or more of aspects 1-13, wherein the sidewalls have greater than 50 percent of fibers oriented in the Z-direction.


A fifteenth particular aspect includes one or more of aspects 1-14, wherein the synthetic binder fibers have an average length greater than 3 mm.


A sixteenth particular aspect includes one or more of aspects 1-15, wherein the projection elements have a density between 0.001 and 0.02 g/cc.


A seventeenth particular aspect includes one or more of aspects 1-16, wherein the projection elements are uniformly distributed in both the X- and Y-directions.


In an eighteenth particular aspect, a method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes synthetic binder fibers, wherein the fibers of the substrate are entirely synthetic binder fibers; a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein each projection element has a height, a diameter or width, a cross-section, a sidewall, a proximal end where the projection element meets the base layer, and a distal end opposite the proximal end, wherein the projection elements are distributed in both the X- and Y-directions, wherein the shape of a cross-section of a projection element at the proximal end of the projection element is the same as the shape of a cross-section of a projection element at the distal end of the projection element, and wherein the density of a projection element is the same as the density of the base layer.


In a nineteenth particular aspect, a method for making a high topography nonwoven substrate includes generating a foam including water and synthetic binder fibers; depositing the foam on a planar surface; disposing a template form on the foam opposite the planar surface to create a foam/form assembly; heating the foam/form assembly to dry the foam and bind the synthetic binder fibers; and removing the template from the substrate after heating the foam/form assembly, wherein the substrate includes synthetic binder fibers, wherein the fibers of the substrate are entirely synthetic binder fibers, the substrate including a planar base layer having an X-Y surface and a backside surface opposite the X-Y surface; and a plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein each projection element has a height, a diameter or width, a cross-section, a sidewall, a proximal end where the projection element meets the base layer, and a distal end opposite the proximal end, wherein the projection elements are distributed in both the X- and Y-directions, wherein each projection element has a uniform density, wherein the height of a projection element is greater than the width or diameter of that projection element, and wherein the density of a projection element is the same as the density of the base layer.


A twentieth particular aspect includes the nineteenth particular aspect, wherein the shape of a cross-section of a projection element at the proximal end of the projection element is the same as the shape of a cross-section of a projection element at the distal end of the projection element.


These and other modifications and variations to the present disclosure may be practiced by those of ordinary skill in the art, without departing from the spirit and scope of the present disclosure, which is more particularly set forth in the appended claims. In addition, it should be understood that aspects of the various aspects may be interchanged both in whole and in part. Furthermore, those of ordinary skill in the art will appreciate that the foregoing description is by way of example only, and is not intended to limit the disclosure so further described in such appended claims.

Claims
  • 1. A method for making a high topography nonwoven substrate, the method comprising: generating a foam including water and synthetic binder fibers;depositing the foam on a foraminous belt;disposing a template form on the foam opposite the foraminous belt to create a foam/form assembly;heating the foam to dry the foam and bind the synthetic binder fibers to form the substrate; andremoving the template from the substrate after heating, wherein the substrate includes a base layer having an X-Y surface and a backside surface opposite the X-Y surface, the base layer having a density; anda plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein each projection element has a height, a diameter or width, a cross-section, a sidewall, a density, a proximal end where the projection element meets the base layer, and a distal end opposite the proximal end, and wherein the density of a projection element is the same as the density of the base layer.
  • 2. The method of claim 1, wherein the foraminous belt is planar.
  • 3. The method of claim 1, wherein heating the foam comprises heating the foam/form assembly.
  • 4. The method of claim 1, wherein the projection elements are distributed in both X- and Y-directions.
  • 5. The method of claim 1, wherein the binder fibers are bi- and/or multi-component binder fibers.
  • 6. The method of claim 1, wherein the foam further comprises natural fibers.
  • 7. The method of claim 1, wherein the foam further comprises cellulosic fibers.
  • 8. The method of claim 1, wherein the foam further comprises voided fibers.
  • 9. The method of claim 1, wherein the template form provides a negative pattern.
  • 10. The method of claim 9, wherein the negative pattern comprises cavities.
  • 11. The method of claim 1, wherein the template form is configured to allow air flow to the foam to activate the synthetic binder fibers.
  • 12. The method of claim 1, wherein a shape of a cross-section of the projection element at the proximal end of the projection element is the same as a shape of a cross-section of the projection element at the distal end of the projection element.
  • 13. The method of claim 1, wherein a shape of a cross-section of the projection element is circular, oval, rectangular, or square.
  • 14. The method of claim 1, wherein a density of a projection element at the proximal end of the projection element is the same as a density of the projection element at the distal end of the projection element.
  • 15. The method of claim 1, wherein a basis weight of a projection element at the proximal end of the projection element is the same as a basis weight of a projection element at the distal end of the projection element.
  • 16. The method of claim 1, wherein a size of a cross-section of a projection element at the proximal end of the projection element is different from a size of a cross-section of the projection element at the distal end of the projection element.
  • 17. The method of claim 1, wherein the substrate has a compression resistance that provides 20 cubic centimeters or more of void volume per gram of substrate at 0.6 kPa pressure.
  • 18. The method of claim 1, wherein a ratio of the height of a projection element to the width or diameter of the projection element is greater than 0.5.
  • 19. A method for making a high topography nonwoven substrate, the method comprising: generating a foam including water and synthetic binder fibers;depositing the foam on a foraminous belt;disposing a template form on the foam opposite the foraminous belt to create a foam/form assembly;heating the foam to dry the foam and bind the synthetic binder fibers to form the substrate; andremoving the template from the substrate after heating, wherein the substrate includes a base layer having an X-Y surface and a backside surface opposite the X-Y surface; anda plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein each projection element has a height, a diameter or width, a cross-section, a sidewall, a proximal end where the projection element meets the base layer, and a distal end opposite the proximal end, and wherein the projections elements comprises an internally-uniform density.
  • 20. A method for making a high topography nonwoven substrate, the method comprising: generating a foam including water and a plurality of fibers, the plurality of fibers comprising synthetic binder fibers;depositing the foam on a foraminous belt;disposing a template form on the foam opposite the foraminous belt to create a foam/form assembly;heating the foam to dry the foam and bind the synthetic binder fibers to form the substrate; andremoving the template from the substrate after heating, wherein the substrate includes a base layer having an X-Y surface and a backside surface opposite the X-Y surface, the base layer having a density; anda plurality of projection elements integral with and protruding in a Z-direction from the X-Y surface, wherein each projection element has a height, a diameter or width, a cross-section, a sidewall, a proximal end where the projection element meets the base layer, and a distal end opposite the proximal end, and wherein the sidewall comprises fibers oriented in the Z-direction such that the substrate has a compression resistance that provides 20 cubic centimeters or more of void volume per gram of substrate at 0.6 kPa pressure.
US Referenced Citations (699)
Number Name Date Kind
2105711 Weathered Jan 1938 A
2791523 Schoen May 1957 A
3007840 Wilcox Nov 1961 A
3506538 Friedberg et al. Apr 1970 A
3542640 Friedberg et al. Nov 1970 A
3544417 Corzine Dec 1970 A
3546060 Hoppe et al. Dec 1970 A
3615975 Gillern et al. Oct 1971 A
3716449 Gatward et al. Feb 1973 A
3741854 De Gioia Jun 1973 A
3765810 Smarook Oct 1973 A
3798122 Appel Mar 1974 A
3837999 Chung Sep 1974 A
3839142 Clarke et al. Oct 1974 A
3871952 Robertson Mar 1975 A
3929560 Holik et al. Dec 1975 A
3938782 Robertson Feb 1976 A
3966540 Selander et al. Jun 1976 A
4007083 Ring et al. Feb 1977 A
4049491 Brandon et al. Sep 1977 A
4062721 Guyer et al. Dec 1977 A
4123787 Leclerc du Sablon et al. Oct 1978 A
4200488 Brandon et al. Apr 1980 A
4285767 Page Aug 1981 A
4288475 Meeker Sep 1981 A
4299655 Skaugen Nov 1981 A
4394930 Korpman Jul 1983 A
4415388 Korpman Nov 1983 A
4443232 Kaiser Apr 1984 A
4443297 Cheshire et al. Apr 1984 A
4443299 Cheshire et al. Apr 1984 A
4464224 Matolcsy Aug 1984 A
4478615 Kaiser Oct 1984 A
4498956 Cheshire et al. Feb 1985 A
4543156 Cheshire et al. Sep 1985 A
4613627 Sherman et al. Sep 1986 A
4637949 Manning et al. Jan 1987 A
4655950 Michalek Apr 1987 A
4686006 Cheshire et al. Aug 1987 A
4734321 Radvan et al. Mar 1988 A
4764253 Cheshire et al. Aug 1988 A
4773408 Cilento et al. Sep 1988 A
4773409 Cilento et al. Sep 1988 A
4778477 Lauchenauer Oct 1988 A
4883478 Lerailler et al. Nov 1989 A
4939030 Tsuji et al. Jul 1990 A
4944843 Wallace et al. Jul 1990 A
4948007 Berg et al. Aug 1990 A
4952448 Bullock et al. Aug 1990 A
4969975 Biggs et al. Nov 1990 A
4973382 Kinn et al. Nov 1990 A
4985467 Kelly et al. Jan 1991 A
5006373 Woodmansee et al. Apr 1991 A
5008306 Goguelin Apr 1991 A
5013405 Izard May 1991 A
5064653 Sessions et al. Nov 1991 A
5065752 Sessions et al. Nov 1991 A
5073416 Avakian et al. Dec 1991 A
5098778 Minnick Mar 1992 A
5102501 Eber et al. Apr 1992 A
5134959 Woodmansee et al. Aug 1992 A
5137551 Ahrens et al. Aug 1992 A
5147345 Young et al. Sep 1992 A
5153058 Hall et al. Oct 1992 A
5164045 Awofeso et al. Nov 1992 A
5178729 Janda Jan 1993 A
5196090 Corbellini et al. Mar 1993 A
5200035 Bhat et al. Apr 1993 A
5227023 Pounder et al. Jul 1993 A
5238534 Manning et al. Aug 1993 A
5260017 Giles Nov 1993 A
5260345 DesMarais et al. Nov 1993 A
5268224 DesMarais et al. Dec 1993 A
5300565 Berg et al. Apr 1994 A
5308565 Weber et al. May 1994 A
5318554 Young et al. Jun 1994 A
5328935 Van Phan et al. Jul 1994 A
5330822 Berg et al. Jul 1994 A
5331015 DesMarais et al. Jul 1994 A
5338766 Phan et al. Aug 1994 A
5344866 Hall Sep 1994 A
5348453 Baran et al. Sep 1994 A
5369007 Kidwell Nov 1994 A
5372766 Roe Dec 1994 A
5384179 Roe et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5393379 Parrinello Feb 1995 A
5397316 LaVon et al. Mar 1995 A
5397626 Berg et al. Mar 1995 A
5409572 Kershaw et al. Apr 1995 A
5428076 Roe Jun 1995 A
5434194 Fujimoto et al. Jul 1995 A
5451452 Phan et al. Sep 1995 A
5468437 Hall Nov 1995 A
5506046 Andersen et al. Apr 1996 A
5506277 Griesbach Apr 1996 A
5508072 Andersen et al. Apr 1996 A
5533244 Wadzinski Jul 1996 A
5536264 Hsueh et al. Jul 1996 A
5545450 Andersen et al. Aug 1996 A
5549589 Horney et al. Aug 1996 A
5550167 DesMarais Aug 1996 A
5560878 Dragoo et al. Oct 1996 A
5563179 Stone et al. Oct 1996 A
D375633 Spanagel et al. Nov 1996 S
5571849 DesMarais Nov 1996 A
5580624 Andersen et al. Dec 1996 A
5582670 Andersen et al. Dec 1996 A
5585432 Lee et al. Dec 1996 A
5586842 Bae et al. Dec 1996 A
5599334 Johnston et al. Feb 1997 A
5612385 Ceaser et al. Mar 1997 A
D378876 Spanagel et al. Apr 1997 S
5618341 Andersen et al. Apr 1997 A
5624971 Wilson Apr 1997 A
5626857 Thimineur et al. May 1997 A
5631053 Andersen et al. May 1997 A
5632737 Stone et al. May 1997 A
5633291 Dyer et al. May 1997 A
5649409 Gujer et al. Jul 1997 A
5650222 DesMarais et al. Jul 1997 A
D381810 Schultz et al. Aug 1997 S
5658603 Andersen et al. Aug 1997 A
5660900 Andersen et al. Aug 1997 A
5660903 Andersen et al. Aug 1997 A
5660904 Andersen et al. Aug 1997 A
5662731 Andersen et al. Sep 1997 A
5665442 Andersen et al. Sep 1997 A
5674917 Wilson Oct 1997 A
5679145 Andersen et al. Oct 1997 A
5679218 Vinson et al. Oct 1997 A
5683772 Andersen et al. Nov 1997 A
5691014 Andersen et al. Nov 1997 A
5692939 DesMarais Dec 1997 A
5693403 Brown et al. Dec 1997 A
5695607 Oriaran et al. Dec 1997 A
5702571 Kamps et al. Dec 1997 A
5705203 Andersen et al. Jan 1998 A
5705238 Andersen et al. Jan 1998 A
5705239 Andersen et al. Jan 1998 A
5705242 Andersen et al. Jan 1998 A
5707474 Andersen et al. Jan 1998 A
5707579 Habelski et al. Jan 1998 A
5709827 Andersen et al. Jan 1998 A
5709913 Andersen et al. Jan 1998 A
D390363 Baum et al. Feb 1998 S
5713881 Rezai et al. Feb 1998 A
5716563 Winterowd et al. Feb 1998 A
5716675 Andersen et al. Feb 1998 A
5719201 Wilson Feb 1998 A
5720851 Reiner Feb 1998 A
5728743 Dyer et al. Mar 1998 A
5736209 Andersen et al. Apr 1998 A
5741581 DesMarais et al. Apr 1998 A
5744506 Goldman et al. Apr 1998 A
5744509 Wilson et al. Apr 1998 A
5753308 Andersen et al. May 1998 A
5753359 Dyer et al. May 1998 A
5763499 DesMarais Jun 1998 A
5770634 Dyer et al. Jun 1998 A
5776388 Andersen et al. Jul 1998 A
5783126 Andersen et al. Jul 1998 A
5795921 Dyer et al. Aug 1998 A
5800416 Seger et al. Sep 1998 A
5800647 Andersen et al. Sep 1998 A
5810961 Andersen et al. Sep 1998 A
5817703 Blair et al. Oct 1998 A
5830305 Andersen et al. Nov 1998 A
5843055 Seger Dec 1998 A
5843544 Andersen et al. Dec 1998 A
5849155 Gasland Dec 1998 A
5849805 Dyer Dec 1998 A
5851634 Andersen et al. Dec 1998 A
5851648 Stone et al. Dec 1998 A
5853402 Faulks et al. Dec 1998 A
5863958 Dyer et al. Jan 1999 A
5868724 Dierckes et al. Feb 1999 A
5876643 Biggs et al. Mar 1999 A
5879722 Andersen et al. Mar 1999 A
5882479 Oriaran et al. Mar 1999 A
5899893 Dyer et al. May 1999 A
5900114 Brown et al. May 1999 A
5904809 Rokman et al. May 1999 A
5904812 Salman et al. May 1999 A
5908533 Marinack et al. Jun 1999 A
5916503 Rettenbacher Jun 1999 A
5916928 Sessions et al. Jun 1999 A
5919411 Rezai et al. Jul 1999 A
5922780 Dyer et al. Jul 1999 A
5925299 Dierckes et al. Jul 1999 A
5928741 Andersen et al. Jul 1999 A
5948829 Wallajapet et al. Sep 1999 A
5958186 Holm et al. Sep 1999 A
5976235 Andersen et al. Nov 1999 A
5985434 Qin et al. Nov 1999 A
6001218 Hsu et al. Dec 1999 A
6013293 De Moor Jan 2000 A
6013589 DesMarais et al. Jan 2000 A
6017833 Reiner et al. Jan 2000 A
6019871 Rokman et al. Feb 2000 A
6022615 Rettenbacher Feb 2000 A
6027610 Back et al. Feb 2000 A
6030673 Andersen et al. Feb 2000 A
6037282 Milding et al. Mar 2000 A
D423232 Reid Apr 2000 S
6051104 Oriaran et al. Apr 2000 A
6054022 Helwig et al. Apr 2000 A
6074527 Hsu et al. Jun 2000 A
6077390 Salman et al. Jun 2000 A
6077590 Archer et al. Jun 2000 A
6083211 DesMarais Jul 2000 A
6083586 Andersen et al. Jul 2000 A
6086718 Carter et al. Jul 2000 A
6090195 Andersen et al. Jul 2000 A
6093359 Gauchel et al. Jul 2000 A
6096809 Lorcks et al. Aug 2000 A
6103060 Munerelle et al. Aug 2000 A
6103063 Oriaran et al. Aug 2000 A
D430406 Ingalls Sep 2000 S
D430407 Ingalls Sep 2000 S
D430734 Bredendick et al. Sep 2000 S
6113740 Oriaran et al. Sep 2000 A
D431371 Ingalls et al. Oct 2000 S
D431372 Ingalls et al. Oct 2000 S
6133193 Kajikawa et al. Oct 2000 A
6136153 Rokman et al. Oct 2000 A
6136873 Hahnle et al. Oct 2000 A
6153053 Harper et al. Nov 2000 A
6160028 Dyer Dec 2000 A
6162961 Tanner et al. Dec 2000 A
6163943 Johansson et al. Dec 2000 A
D436738 Bredendick et al. Jan 2001 S
6168857 Andersen et al. Jan 2001 B1
6174152 Rokman et al. Jan 2001 B1
6174929 Hähnle et al. Jan 2001 B1
D437119 Jahner et al. Feb 2001 S
D437120 Jahner et al. Feb 2001 S
D437489 Jahner et al. Feb 2001 S
D438017 Reid Feb 2001 S
6193838 Oriaran et al. Feb 2001 B1
6200404 Andersen et al. Mar 2001 B1
6203663 Kamps et al. Mar 2001 B1
6207244 Hesch Mar 2001 B1
D440051 Bredendick et al. Apr 2001 S
6214907 Tomka Apr 2001 B1
6231960 Dyer et al. May 2001 B1
6231970 Andersen et al. May 2001 B1
6235816 Lorcks et al. May 2001 B1
6238518 Rokman et al. May 2001 B1
D443766 Bredendick et al. Jun 2001 S
6243934 Wadzinski Jun 2001 B1
6245410 Hähnle et al. Jun 2001 B1
6245697 Conrad et al. Jun 2001 B1
6248211 Jennings et al. Jun 2001 B1
6251207 Schultz et al. Jun 2001 B1
6258203 Rokman et al. Jul 2001 B1
6261679 Chen et al. Jul 2001 B1
6274077 Hur et al. Aug 2001 B1
6280570 Harper et al. Aug 2001 B1
6287417 Bhat Sep 2001 B1
6287422 Harper et al. Sep 2001 B1
6296736 Hsu et al. Oct 2001 B1
6296929 Gentile et al. Oct 2001 B1
6309661 Haynes et al. Oct 2001 B1
6355142 Ahrens Mar 2002 B1
6372087 Harper et al. Apr 2002 B2
6376032 Clarke et al. Apr 2002 B1
6387210 Hsu et al. May 2002 B1
D459897 Bredendick et al. Jul 2002 S
6413368 Dwiggins et al. Jul 2002 B1
6419790 Leege et al. Jul 2002 B1
6425983 Marinack et al. Jul 2002 B1
6432272 Hollenberg et al. Aug 2002 B1
6436234 Chen et al. Aug 2002 B1
6440266 George et al. Aug 2002 B1
6443258 Putt et al. Sep 2002 B1
6444088 Rökman et al. Sep 2002 B2
6447640 Watson et al. Sep 2002 B1
6451166 Marinack et al. Sep 2002 B1
6455600 Hähnle et al. Sep 2002 B1
6472497 Loercks et al. Oct 2002 B2
6500302 Dwiggins et al. Dec 2002 B2
6503372 Rokman et al. Jan 2003 B1
6518479 Graef et al. Feb 2003 B1
6525240 Graef et al. Feb 2003 B1
6527913 Johnson et al. Mar 2003 B1
6531078 Laine et al. Mar 2003 B2
6540879 Marinack et al. Apr 2003 B2
6544386 Krzysik et al. Apr 2003 B1
6548132 Clarke et al. Apr 2003 B1
6562193 Elonen et al. May 2003 B1
6589634 Schultz et al. Jul 2003 B2
6596389 Hallett et al. Jul 2003 B1
6600086 Mace et al. Jul 2003 B1
6603054 Chen et al. Aug 2003 B2
6613424 Putt et al. Sep 2003 B1
6616802 Kinsley, Jr. et al. Sep 2003 B1
6630054 Graef et al. Oct 2003 B1
6649025 Mills et al. Nov 2003 B2
6657101 Malmgren et al. Dec 2003 B1
6663611 Blaney et al. Dec 2003 B2
6670522 Graef et al. Dec 2003 B1
6673980 Varona et al. Jan 2004 B1
6673983 Graef et al. Jan 2004 B1
6682215 Kinsley, Jr. et al. Jan 2004 B2
6689934 Dodge, II et al. Feb 2004 B2
6692603 Lindsay et al. Feb 2004 B1
6703330 Marsh Mar 2004 B1
6706944 Qin et al. Mar 2004 B2
6709548 Marinack et al. Mar 2004 B2
6709550 Holz et al. Mar 2004 B2
6733631 Elonen et al. May 2004 B2
6734335 Graef et al. May 2004 B1
6746570 Burazin et al. Jun 2004 B2
6749719 Burazin et al. Jun 2004 B2
6750262 Hähnle et al. Jun 2004 B1
6752907 Edwards et al. Jun 2004 B2
6780356 Putt et al. Aug 2004 B1
6787000 Burazin et al. Sep 2004 B2
6790314 Burazin et al. Sep 2004 B2
6797114 Hu Sep 2004 B2
6808790 Chen et al. Oct 2004 B2
6821385 Burazin et al. Nov 2004 B2
6821387 Hu Nov 2004 B2
6821388 Marsh Nov 2004 B2
6824650 Lindsay et al. Nov 2004 B2
6830656 Kinsley, Jr. Dec 2004 B2
6837956 Cowell et al. Jan 2005 B2
6837972 Marsh Jan 2005 B2
6861477 Wang et al. Mar 2005 B2
6867346 Dopps et al. Mar 2005 B1
6875315 Bakken et al. Apr 2005 B2
6878238 Bakken et al. Apr 2005 B2
6887348 Hermans et al. May 2005 B2
6893535 Hermans et al. May 2005 B2
6921459 Kinsley, Jr. et al. Jul 2005 B2
6939914 Qin et al. Sep 2005 B2
6946058 Hu Sep 2005 B2
6951598 Flugge et al. Oct 2005 B2
6956009 Wang et al. Oct 2005 B2
6962645 Graef et al. Nov 2005 B2
6964725 Shannon et al. Nov 2005 B2
6964726 Chen et al. Nov 2005 B2
6969781 Graef et al. Nov 2005 B2
6983821 Putt et al. Jan 2006 B2
D517816 Dwiggins et al. Mar 2006 S
D519739 Schuh et al. May 2006 S
7041196 Lorenz et al. May 2006 B2
7045026 Lorenz et al. May 2006 B2
7052580 Trokhan et al. May 2006 B2
7066006 Minerath, III et al. Jun 2006 B2
7067038 Trokhan et al. Jun 2006 B2
7081559 Fujikawa et al. Jul 2006 B2
7125470 Graef et al. Oct 2006 B2
7141142 Burazin et al. Nov 2006 B2
7155991 Minerath, III et al. Jan 2007 B2
7156954 Farrington, Jr. et al. Jan 2007 B2
7160418 Edwards et al. Jan 2007 B2
7166190 Graef et al. Jan 2007 B2
7169451 Clarke et al. Jan 2007 B2
7182837 Chen et al. Feb 2007 B2
7214293 Trokhan et al. May 2007 B2
7220821 Hähnle et al. May 2007 B2
7229528 Vinson et al. Jun 2007 B2
7235708 Guidotti et al. Jun 2007 B2
D551406 Caruso et al. Sep 2007 S
7285183 Kajander et al. Oct 2007 B2
7287650 Koslow Oct 2007 B2
7291382 Krueger et al. Nov 2007 B2
7294238 Bakken et al. Nov 2007 B2
7300547 Luu et al. Nov 2007 B2
7311800 Russell et al. Dec 2007 B2
7314663 Stelljes, Jr. et al. Jan 2008 B2
7314664 Stelljes, Jr. et al. Jan 2008 B2
7314665 Stelljes, Jr. et al. Jan 2008 B2
7322970 Schmidt et al. Jan 2008 B2
7354502 Polat et al. Apr 2008 B2
7364015 Englert et al. Apr 2008 B2
7374638 Horenziak et al. May 2008 B2
7390378 Carels et al. Jun 2008 B2
7396436 Trokhan et al. Jul 2008 B2
7407560 Hilbig et al. Aug 2008 B2
7413629 Fisher et al. Aug 2008 B2
7416637 Murray et al. Aug 2008 B2
7435266 Sun et al. Oct 2008 B2
7435313 Boatman et al. Oct 2008 B2
7435316 Boatman et al. Oct 2008 B2
7494563 Edwards et al. Feb 2009 B2
7497923 Ward et al. Mar 2009 B2
7497925 Hermans et al. Mar 2009 B2
7497926 Hermans et al. Mar 2009 B2
7503998 Murray et al. Mar 2009 B2
7524399 Hermans et al. Apr 2009 B2
7524404 Boatman et al. Apr 2009 B2
7585388 Yeh et al. Sep 2009 B2
7585389 Yeh et al. Sep 2009 B2
7597777 Wilke, II Oct 2009 B2
7601374 Clarke Oct 2009 B2
7629043 Lindsay et al. Dec 2009 B2
7645359 Lorenz et al. Jan 2010 B2
7662257 Edwards et al. Feb 2010 B2
7670457 Murray et al. Mar 2010 B2
7678229 Wilke, II Mar 2010 B2
7678442 Casey et al. Mar 2010 B2
7682697 Raghavendran et al. Mar 2010 B2
7691228 Edwards et al. Apr 2010 B2
7699959 Ward et al. Apr 2010 B2
7744576 Busam et al. Jun 2010 B2
7750203 Becker et al. Jul 2010 B2
7775958 Mukai et al. Aug 2010 B2
7785696 Boatman et al. Aug 2010 B2
7794565 Shannon et al. Sep 2010 B2
7799161 Schuh et al. Sep 2010 B2
7799968 Chen et al. Sep 2010 B2
7820008 Edwards et al. Oct 2010 B2
7828932 Hermans et al. Nov 2010 B2
7846296 Luu et al. Dec 2010 B2
7850823 Chou et al. Dec 2010 B2
7851057 Englert et al. Dec 2010 B2
7851667 Becker et al. Dec 2010 B2
7857941 Ruthven et al. Dec 2010 B2
7862686 Ward et al. Jan 2011 B2
7887676 Boatman et al. Feb 2011 B2
7918951 Lorenz et al. Apr 2011 B2
7918964 Edwards et al. Apr 2011 B2
7918972 Boatman et al. Apr 2011 B2
7927456 Murray et al. Apr 2011 B2
7972476 Scherb et al. Jul 2011 B2
7994079 Chen et al. Aug 2011 B2
8007640 Boatman et al. Aug 2011 B2
8017827 Hundorf et al. Sep 2011 B2
8056733 Koslow Nov 2011 B2
8083893 Boatman et al. Dec 2011 B2
8092848 Clarke Jan 2012 B2
8102275 McGuire et al. Jan 2012 B2
8110232 Clarke Feb 2012 B2
8123905 Luu et al. Feb 2012 B2
8142612 Murray et al. Mar 2012 B2
8142617 Ruthven et al. Mar 2012 B2
8143472 Bragd et al. Mar 2012 B1
8152957 Edwards et al. Apr 2012 B2
8152958 Super et al. Apr 2012 B2
8158689 Baker et al. Apr 2012 B2
8178025 Awofeso et al. May 2012 B2
8187240 Busam et al. May 2012 B2
8187427 Schuh et al. May 2012 B2
8211078 Noel Jul 2012 B2
8226797 Murray et al. Jul 2012 B2
8257552 Edwards et al. Sep 2012 B2
8293072 Super et al. Oct 2012 B2
8319005 Becker et al. Nov 2012 B2
8324446 Wang et al. Dec 2012 B2
8328985 Edwards et al. Dec 2012 B2
8361278 Fike et al. Jan 2013 B2
8378000 Hintz et al. Feb 2013 B2
8388803 Super et al. Mar 2013 B2
8388804 Super et al. Mar 2013 B2
8394236 Edwards et al. Mar 2013 B2
8398818 Edwards et al. Mar 2013 B2
8398820 Edwards et al. Mar 2013 B2
8425721 Tynkkynen et al. Apr 2013 B2
8435381 Murray et al. May 2013 B2
8461412 Febo et al. Jun 2013 B2
8496637 Hundorf et al. Jul 2013 B2
8512516 Murray et al. Aug 2013 B2
8524040 Edwards et al. Sep 2013 B2
8540846 Miller et al. Sep 2013 B2
8545676 Super et al. Oct 2013 B2
8552252 Hundorf et al. Oct 2013 B2
8562786 Murray et al. Oct 2013 B2
8568559 Murray et al. Oct 2013 B2
8568560 Murray et al. Oct 2013 B2
8603296 Edwards et al. Dec 2013 B2
8632658 Miller et al. Jan 2014 B2
8636874 Super et al. Jan 2014 B2
8647105 Awofeso et al. Feb 2014 B2
8652300 Super et al. Feb 2014 B2
8662344 Gispert Mar 2014 B2
8673115 Edwards et al. Mar 2014 B2
8674170 Busam et al. Mar 2014 B2
8702668 Noel Apr 2014 B2
8741105 Beaupre et al. Jun 2014 B2
8741427 Kim et al. Jun 2014 B2
8766031 Becker et al. Jul 2014 B2
8778138 Super et al. Jul 2014 B2
8791318 Becker et al. Jul 2014 B2
8815056 Araki et al. Aug 2014 B2
8829263 Haggstrom et al. Sep 2014 B2
8841506 Febo et al. Sep 2014 B2
8852397 Super et al. Oct 2014 B2
8864944 Miller et al. Oct 2014 B2
8864945 Miller et al. Oct 2014 B2
8911592 Edwards et al. Dec 2014 B2
8968516 Super et al. Mar 2015 B2
8979815 Roe et al. Mar 2015 B2
8980052 Super et al. Mar 2015 B2
9017517 Super et al. Apr 2015 B2
9044359 Wciorka et al. Jun 2015 B2
9051691 Miller et al. Jun 2015 B2
9057158 Miller et al. Jun 2015 B2
9138360 Febo et al. Sep 2015 B1
9144524 Febo et al. Sep 2015 B2
9216116 Roe et al. Dec 2015 B2
9216118 Roe et al. Dec 2015 B2
9228048 Wibaux et al. Jan 2016 B2
9241845 Hundorf et al. Jan 2016 B2
9243367 Rekoske et al. Jan 2016 B2
9267240 Lee et al. Feb 2016 B2
9279219 Edwards et al. Mar 2016 B2
9309627 Miller et al. Apr 2016 B2
9326896 Schäfer et al. May 2016 B2
9333120 Lavon et al. May 2016 B2
9334610 Kinnunen et al. May 2016 B2
9340363 Jackels et al. May 2016 B2
9365977 Beaupre et al. Jun 2016 B2
9371614 Schuh et al. Jun 2016 B2
9371615 Super et al. Jun 2016 B2
9375358 Ehmsperger et al. Jun 2016 B2
9382665 Miller et al. Jul 2016 B2
9388534 Super et al. Jul 2016 B2
9447543 Matula Sep 2016 B2
9468566 Rosati et al. Oct 2016 B2
9476162 Lee et al. Oct 2016 B2
9492328 Jackels et al. Nov 2016 B2
9493911 Miller et al. Nov 2016 B2
9532910 Rosati et al. Jan 2017 B2
9572728 Ashton et al. Feb 2017 B2
9579238 Noel Feb 2017 B2
9603755 Tanaka Mar 2017 B2
9649232 Hippe et al. May 2017 B2
9649830 Rasch May 2017 B2
9657443 Rekoske et al. May 2017 B2
9662246 Collinson et al. May 2017 B2
9668926 Jackels et al. Jun 2017 B2
9708774 Lee et al. Jul 2017 B2
9713556 Arizti et al. Jul 2017 B2
9713557 Arizti et al. Jul 2017 B2
9739015 Miller et al. Aug 2017 B2
9744755 Thompson, Jr. et al. Aug 2017 B2
9752280 Matula Sep 2017 B2
9763835 Becker et al. Sep 2017 B2
9771675 Altshuler Sep 2017 B2
9789009 Joseph Oct 2017 B2
9789011 Roe et al. Oct 2017 B2
9808554 Swaniker Nov 2017 B2
9822487 Ahoniemi et al. Nov 2017 B2
9877872 Mumby et al. Jan 2018 B2
9879382 Miller et al. Jan 2018 B2
9950309 Lee et al. Apr 2018 B2
9963568 Nakatsuji et al. May 2018 B2
9974697 Lavon et al. May 2018 B2
9974699 Kreuzer et al. May 2018 B2
9987176 Roe et al. Jun 2018 B2
9988763 Ramaratnam et al. Jun 2018 B2
9994712 Cai et al. Jun 2018 B2
9995005 Ramaratnam et al. Jun 2018 B2
10004647 Jackels et al. Jun 2018 B2
10022280 Ehrnsperger et al. Jul 2018 B2
10034800 Febo et al. Jul 2018 B2
10039673 Mumby et al. Aug 2018 B2
10039676 LaVon Aug 2018 B2
10052242 Bianchi et al. Aug 2018 B2
10065175 Lee et al. Sep 2018 B2
10071002 Bianchi et al. Sep 2018 B2
10076449 Allen et al. Sep 2018 B2
10099425 Miller, Iv et al. Oct 2018 B2
10130519 Mumby et al. Nov 2018 B2
10130525 Rosati et al. Nov 2018 B2
10130527 Peri et al. Nov 2018 B2
10137039 Stelzig et al. Nov 2018 B2
10138600 Jannari et al. Nov 2018 B2
10149788 Kreuzer et al. Dec 2018 B2
10190263 Ramaratnam et al. Jan 2019 B2
10196780 Lee et al. Feb 2019 B2
10201644 Haggstrom et al. Feb 2019 B2
10208426 Sealey et al. Feb 2019 B2
10221350 Shalagina et al. Mar 2019 B2
10231874 Mumby et al. Mar 2019 B2
10245188 Jackels et al. Apr 2019 B2
10247195 Manninen et al. Apr 2019 B2
10259151 Kiiskinen et al. Apr 2019 B2
10273635 Miller, IV et al. Apr 2019 B2
10292875 Tapp et al. May 2019 B2
10301775 Nordström et al. May 2019 B2
10301779 Sealey, II et al. May 2019 B2
10322040 Stiehl et al. Jun 2019 B2
10335324 Roe et al. Jul 2019 B2
10619303 Thole et al. Apr 2020 B2
11015292 Venema et al. May 2021 B2
11136700 Venema et al. Oct 2021 B2
11313061 Nhan Apr 2022 B2
20010013389 Fingal et al. Aug 2001 A1
20020007169 Graef et al. Jan 2002 A1
20020013560 Erspamer et al. Jan 2002 A1
20020055310 Falk et al. May 2002 A1
20020088581 Graef et al. Jul 2002 A1
20020092634 Rokman et al. Jul 2002 A1
20020132121 Palacio et al. Sep 2002 A1
20030106656 Johnson et al. Jun 2003 A1
20030139715 Dodge et al. Jul 2003 A1
20030167045 Graef et al. Sep 2003 A1
20030171727 Graef et al. Sep 2003 A1
20030201082 Kinsley Oct 2003 A1
20030220039 Chen et al. Nov 2003 A1
20040045685 Horner et al. Mar 2004 A1
20040063367 Dodge et al. Apr 2004 A1
20040065420 Graef et al. Apr 2004 A1
20040084162 Shannon et al. May 2004 A1
20040084164 Shannon et al. May 2004 A1
20040096642 Maruyama et al. May 2004 A1
20040110017 Lonsky et al. Jun 2004 A1
20040111817 Chen et al. Jun 2004 A1
20040112783 Mukai et al. Jun 2004 A1
20040115419 Qin et al. Jun 2004 A1
20040115451 Lonsky et al. Jun 2004 A1
20040121680 Yahiaoui et al. Jun 2004 A1
20040127873 Varona et al. Jul 2004 A1
20040142620 Kinsley Jul 2004 A1
20040157524 Polat et al. Aug 2004 A1
20040254551 Carnes et al. Dec 2004 A1
20040256066 Lindsay et al. Dec 2004 A1
20050034826 Hu Feb 2005 A1
20050060933 Henson Mar 2005 A1
20050090789 Graef et al. Apr 2005 A1
20050095980 Chang May 2005 A1
20050124709 Krueger et al. Jun 2005 A1
20050136772 Chen et al. Jun 2005 A1
20050142348 Kajander et al. Jun 2005 A1
20050152954 Farrell et al. Jul 2005 A1
20050230069 Hilbig et al. Oct 2005 A1
20050244627 Travelute et al. Nov 2005 A1
20050247397 Kraus et al. Nov 2005 A1
20050247416 Forry et al. Nov 2005 A1
20050267226 Wehr et al. Dec 2005 A1
20060005916 Stelljes et al. Jan 2006 A1
20060011315 Kinsley et al. Jan 2006 A1
20060030632 Krueger et al. Feb 2006 A1
20060063456 Carter Mar 2006 A1
20060081348 Graef et al. Apr 2006 A1
20060135026 Arendt et al. Jun 2006 A1
20060142719 Vogt et al. Jun 2006 A1
20060191357 Minerath et al. Aug 2006 A1
20060266485 Knox et al. Nov 2006 A1
20060266487 Scherb et al. Nov 2006 A1
20070148433 Mallory et al. Jun 2007 A1
20070179210 Swaniker Aug 2007 A1
20070218485 Davis et al. Sep 2007 A1
20070269644 Harper et al. Nov 2007 A1
20080052859 Orlandi Mar 2008 A1
20080179775 Palm et al. Jul 2008 A1
20080312617 Hundorf et al. Dec 2008 A1
20080312618 Hundorf et al. Dec 2008 A1
20080312619 Ashton et al. Dec 2008 A1
20080312620 Ashton et al. Dec 2008 A1
20080312621 Hundorf et al. Dec 2008 A1
20080312622 Hundorf et al. Dec 2008 A1
20080312625 Hundorf et al. Dec 2008 A1
20080312628 Hundorf et al. Dec 2008 A1
20090000753 Vestola et al. Jan 2009 A1
20090001635 Newson et al. Jan 2009 A1
20090008275 Ferrari et al. Jan 2009 A1
20090117365 Mallory et al. May 2009 A1
20090131898 Malmgren et al. May 2009 A1
20090205794 Scherb et al. Aug 2009 A1
20090270005 Takahashi et al. Oct 2009 A1
20100006498 Duello et al. Jan 2010 A1
20100075858 Davis et al. Mar 2010 A1
20100132144 Rautray Jun 2010 A1
20100136294 Manifold et al. Jun 2010 A1
20100251611 Henson Oct 2010 A1
20100273716 Harris Oct 2010 A1
20100327484 Schuh et al. Dec 2010 A1
20120121674 Pedoja May 2012 A1
20120276337 Curro et al. Nov 2012 A1
20130101805 Altshuler et al. Apr 2013 A1
20130108831 Wu et al. May 2013 A1
20140102650 Qin et al. Apr 2014 A1
20140189970 Fingal et al. Jul 2014 A1
20140231037 Beaupre et al. Aug 2014 A1
20140324007 Hundorf et al. Oct 2014 A1
20140366293 Roe et al. Dec 2014 A1
20150038933 Day et al. Feb 2015 A1
20150144829 Grünbauer May 2015 A1
20150284911 Juvonen et al. Oct 2015 A1
20160017112 Naruse et al. Jan 2016 A1
20160219810 Erkkilä et al. Aug 2016 A1
20160353820 Baychar Dec 2016 A1
20170007079 Janese Jan 2017 A1
20170258649 Rosati et al. Sep 2017 A1
20170335521 Lee Nov 2017 A1
20170335522 Heiskanen et al. Nov 2017 A1
20170362775 Juvonen et al. Dec 2017 A1
20180119353 Tolfsson et al. May 2018 A1
20180327973 Siitonen et al. Nov 2018 A1
20180355527 Strandqvist et al. Dec 2018 A1
20190161915 Swails et al. May 2019 A1
20210290450 Nhan Sep 2021 A1
20210292948 Nhan Sep 2021 A1
20220205154 Nhan Jun 2022 A1
Foreign Referenced Citations (190)
Number Date Country
517303 Dec 2016 AT
519414 Jun 2018 AT
519423 Aug 2018 AT
281485 Feb 1965 AU
1973057198 Jan 1975 AU
700394 Jan 1999 AU
721197 Jun 2000 AU
2002300959 Jun 2003 AU
2001285005 Feb 2006 AU
2007272602 Jan 2008 AU
2012298266 Jun 2016 AU
436451 Sep 1939 BE
949706 Jun 1974 CA
979699 Dec 1975 CA
2194176 Dec 1996 CA
2868935 Sep 2014 CA
2998561 Mar 2018 CA
1173122 Feb 1998 CN
1260977 Jul 2000 CN
1270648 Oct 2000 CN
1364182 Aug 2002 CN
1094542 Nov 2002 CN
1518423 Aug 2004 CN
103348062 Oct 2013 CN
101410078 Feb 2014 CN
103993498 Mar 2016 CN
105828763 Aug 2016 CN
105828764 Aug 2016 CN
105899173 Aug 2016 CN
104302834 Nov 2016 CN
106456416 Feb 2017 CN
107250458 Oct 2017 CN
107460764 Dec 2017 CN
107988838 May 2018 CN
109937027 Jun 2019 CN
2041406 Apr 1971 DE
2263704 Aug 1973 DE
2438587 Mar 1975 DE
2902255 Jul 1980 DE
3307736 Sep 1984 DE
3420195 Jun 1987 DE
4207233 Nov 1993 DE
0101319 Mar 1984 EP
0049944 Nov 1984 EP
0136329 Jan 1989 EP
0158938 Dec 1989 EP
0296242 Jul 1991 EP
0443082 Aug 1991 EP
0242361 Sep 1991 EP
0512819 Nov 1992 EP
0150777 Nov 1994 EP
0481745 Jul 1996 EP
0537005 Jul 1997 EP
0671504 Aug 1997 EP
0696333 Mar 1999 EP
0742858 Jun 1999 EP
1160367 Dec 2001 EP
1007784 Feb 2003 EP
1145695 Jan 2004 EP
1194644 Mar 2004 EP
1400224 Mar 2006 EP
1384457 May 2006 EP
1808116 Jul 2007 EP
1649094 Sep 2007 EP
1442173 Mar 2008 EP
1583865 May 2008 EP
1463432 Aug 2008 EP
1576233 Oct 2008 EP
1813237 Dec 2008 EP
1932968 Sep 2009 EP
1967626 Sep 2009 EP
1666240 Mar 2011 EP
1440195 Aug 2011 EP
1812637 Jan 2012 EP
1950343 Apr 2012 EP
1456472 May 2012 EP
1497489 Aug 2012 EP
1808152 Aug 2012 EP
1567718 Apr 2013 EP
2599915 Jun 2013 EP
1268937 Feb 2014 EP
2540892 Apr 2014 EP
1876291 Sep 2014 EP
2843130 Mar 2015 EP
2952164 Dec 2015 EP
2952165 Dec 2015 EP
2737131 Jan 2016 EP
1916333 Jun 2016 EP
2001662 Jun 2016 EP
1380401 Jul 2016 EP
2807212 Apr 2017 EP
2940210 Aug 2017 EP
2622132 Apr 2018 EP
3327395 May 2018 EP
3162956 Mar 2019 EP
3108060 Apr 2021 EP
385106 Mar 1973 ES
8606100 Apr 1986 ES
2362723 Jul 2011 ES
812601 Feb 1982 FI
843904 Oct 1984 FI
83741 Dec 1992 FI
112812 Jan 2004 FI
127377 Apr 2018 FI
128917 Mar 2021 FI
873763 Jul 1942 FR
1449737 Aug 1966 FR
1528992 Jun 1968 FR
2206398 Sep 1976 FR
598610 Feb 1948 GB
1145484 Mar 1969 GB
2109023 May 1983 GB
2136813 Sep 1984 GB
2116882 Oct 1985 GB
2590316 Jun 2021 GB
1182DEL2005 Jan 2007 IN
231170 Mar 2009 IN
2957KOLNP2014 May 2015 IN
3108MUM2014 Apr 2016 IN
283291 May 2017 IN
201717030330 Dec 2017 IN
201837033267 Oct 2018 IN
1983115199 Jul 1983 JP
1989501859 Jun 1989 JP
1993140886 Jun 1993 JP
2002020999 Jan 2002 JP
1020040088545 Oct 2004 KR
100450272 Dec 2005 KR
100637646 Oct 2006 KR
100685522 Feb 2007 KR
100725240 Jun 2007 KR
1020100112299 Oct 2010 KR
1020130077856 Jul 2013 KR
101386319 Apr 2014 KR
1020180007337 Jan 2018 KR
2393093 Jun 2010 RU
7304825 Nov 1977 SE
7304888 Nov 1977 SE
412881 Mar 1980 SE
1651412 Apr 2018 SE
540719 Oct 2018 SE
1986003505 Jun 1986 WO
1991010416 Jul 1991 WO
1992003283 Mar 1992 WO
1996031652 Oct 1996 WO
9813181 Apr 1998 WO
2000001882 Jan 2000 WO
2000050694 Aug 2000 WO
2001068793 Sep 2001 WO
2001083866 Nov 2001 WO
2002055788 Jul 2002 WO
2003069038 Aug 2003 WO
2004025009 Mar 2004 WO
2004112956 Dec 2004 WO
2005060712 Jul 2005 WO
2006052967 May 2006 WO
2006094077 Sep 2006 WO
2007074625 Jul 2007 WO
2009006371 Jan 2009 WO
2009060118 May 2009 WO
2011104427 Sep 2011 WO
2012033449 Mar 2012 WO
2014068196 May 2014 WO
2014080084 May 2014 WO
2014205048 Dec 2014 WO
2015083092 Jun 2015 WO
2015112155 Jul 2015 WO
2015173474 Nov 2015 WO
2016050901 Apr 2016 WO
2016051350 Apr 2016 WO
2016120528 Aug 2016 WO
2016185398 Nov 2016 WO
2016200299 Dec 2016 WO
2017006216 Jan 2017 WO
2017006241 Jan 2017 WO
2017046751 Mar 2017 WO
2017079169 May 2017 WO
2017137879 Aug 2017 WO
17156202 Sep 2017 WO
2018002815 Jan 2018 WO
2018011667 Jan 2018 WO
2018041355 Mar 2018 WO
2018065668 Apr 2018 WO
2018116223 Jun 2018 WO
2018152082 Aug 2018 WO
2018171913 Sep 2018 WO
2018171914 Sep 2018 WO
2020023027 Jan 2020 WO
WO-2020023026 Jan 2020 WO
WO-2020023027 Jan 2020 WO
Related Publications (1)
Number Date Country
20220205154 A1 Jun 2022 US
Continuations (1)
Number Date Country
Parent 17262385 US
Child 17696071 US