The present invention relates to a process of manufacturing a boat hull, deck, or other large laminate parts. The process utilizes a closed molded system for producing a unitary laminate part, whereby a pre-core and stringers are integrally molded during a reaction injection molding process.
Large fiberglass parts, such as boat hulls and large containers use stringers and bulkheads inside the part to increase their strength. The ribs or stringers create sections or flat parts between them. These flat parts are where one of the improvements arises. In an attempt to increase the strength of the laminate a closed mold system has been utilized to optimize strength through thickness and shape.
Traditionally, a fiberglass boat hull is fabricated using a one-sided open mold where layers of laminate are applied on top of one another. The first layer is generally the outside layer made of a gel coat and subsequent fiberglass mat and resin layers are put down thereafter. In the middle of the laminate a core of wood, honeycomb, foam, etc. is applied. A final layer of fiberglass and resin is then applied to the core. Stringers, bulkheads and other structures are fabricated later.
There are many disadvantages of the traditional open mold hand lay up process. For example, it takes many labor hours to fabricate a hull using the traditional process because each layer is applied by hand. Further, because the mold is open, workers are often exposed to toxic fumes from the resin. Also, the old method creates voids in the laminate which can require post lamination repair. Moreover, the traditional method only molds one side of the part at a time, which decreases the quality of the part. Moreover, the old method is not very reproducible, which decreases consistency of the final hull thus making no two parts the same. Further, the old method results in an unfinished interior surface, such as the headliner or engine compartment, which is labor intensive to later finish. Accordingly, it is therefore desirable to overcome the aforementioned problems with a new, less expensive, faster producing, higher quality, more repeatable process for molding a hull for a vessel.
One aspect of the present invention uses a two-sided closed mold method of manufacturing a large hull for a boat, container, etc. With closed molding, the shape of both the outside and inside of the part can be controlled. Another aspect of the invention has the shape of the flats of the laminate in a concave manner by which the square or rectangle flat sections of the inside of the part have a slight dish shape to them. An additional aspect of the invention has the stringer, bulkhead, and gusset system built collectively as a unitary structure into the hull.
One form of the present invention creates a hull having one or both sides of the laminate that are dish shaped. The dish shape will enhance the strength of the laminate without increasing the core thickness or matt and resin thickness. If only one side of the laminate is dished then it would actually decrease the amount of the core material in the laminate. If both sides of the core are dish shaped, meaning one side is concave and one side is convex, then the core would be the same thickness assuming both convex and concave shapes are consistent in size and shape. This dish shaped portion of the hull reacts against the pressure that is being applied to the bottom of the boat by the waves, thus making the laminate stronger by shape.
A second form of the present invention provides an improved boat hull design with an integrally molded stringer, bulkhead, and gusset system for creating a one piece unitary structure. The resulting boat hull is stronger, takes less time to manufacture, has improved fit and finish from the inside of the boat hull, and eliminates the need for finishing the engine compartment, a typical additional step in the traditional method of manufacturing a hull.
A third form of the present invention includes a method of manufacturing a boat hull using a two part closed molding process comprising the steps of building hull A and B molds, said molds having a top, bottom and a side, installing inserts into their respective molds, introducing the hull bottom and hull sides with material, and venting excess coring agent out of the top of the mold to allow for expansion. Next hull B mold and hull A mold are separated, sheeting hull bottom core with material, pulling stringer, bulkhead and engine compartment inserts, introducing core agent, pulling core and draping core with fiberglass mat. Pulling remaining inserts from molds, spraying molds with protective agent, inserting core into mold, closing molds, injecting material and releasing part.
A forth form of the invention includes a boat hull constructed using a closed mold processes, comprising a first layer of composite material, a core layer adjacent to the first layer, and a second layer of composite material.
The novel process has the capability of not only producing a boat hull or deck, but other large parts as well. Other examples include fuselage and plane parts for the aerospace industry, rocket housings and shells for the military and defense industry, containers for the storage, transportation and aggregate business, trailer shells for the truck and trailer business and housing units for the housing industry. Any large item which can be produced in a closed molded system needing a core for it's laminate can use this invention.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
a-2c illustrate a flow diagram of the steps in the method for manufacturing the present invention; and
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses. For discussion purposes only, a boat hull construction will be described.
With reference to
The interior hull mold 22 forms the inside of the hull mold 10 and has a stringer, bulkhead and gusset system integrally built into the structure. This design allows the manufacturer to include the stringer, bulkhead and gusset system built into the structure as one composite piece. Traditionally, boats have their stringer, bulkhead and gusset systems added after the hull laminate is done. The benefits of including the stringer, bulkhead and gusset components into the hull include 1) a stronger design because the components are an integral part of the hull, not a later addition; 2) It takes less time to build the components into the boat during the closed molding process; 3) the inside of the hull will have a bright, beautiful finish, much like the outside of the part; 4) the engine compartment comes out of the mold already done thus eliminating the need for further finishing; and 5) the inside of the hull forward which makes up the interior space of the boat is finished reducing manufacturing cost.
The interior insert 20 is designed to take up the space that will eventually be the resin, or glue, and mat layer that makes up the inside of the hull laminate. Because each manufacture may use a different laminate depending on demand of physical properties of the part, the insert thickness will vary from mold to mold. The insert 20 allows the manufacture to produce a three dimensional core 18 utilizing the same mold 14 and 22 as the actual part uses. The core 18 must be thinner than the actual part because the manufacture adds resin and mat to the core. Without the inserts 16 and 20, the manufacture would have to produce a separate mold for the core, which would increase the cost of the molds and take up valuable floor space. This invention contemplates a manufacturer producing multiple molds for the part and the core separately if they decide to do so. However, the most economical way to produce the part is with the utilization of the inserts 16 and 20.
The stringer inserts 24, 26, and 28 and bulkhead inserts and core can be made of any material including, but not limited to, foam, fiberglass, plastic, or laminate and are designed to fill the stringers to allow the hull bottom 38 and hull sides 40 to be molded alone or separate from the stringers 24, 26, 28 and bulkheads 34. The stringers often use a different density of foam than the bottom of the boat. This allows the builder to make the stringers separate from the hull bottom and sides. The benefit is to have a balanced laminate. If the stringers, bulkheads and gussets were all part of the hull core, there would not be a complete laminate sandwich. The sandwich aids in laminate strength. It is preferred to have the same amount of mat and resin on both sides of the core 18. If the stringers, bulkheads and gussets are attached to the hull core 18, there wouldn't be an opportunity to get mat underneath the stringers, bulkheads and gussets. This would potentially cause a weak point in the laminate that could jeopardize the strength of the product.
It is contemplated that the stringer inserts 24, 26, 28 could be eliminated and to mold the stringer, bulkhead and gusset systems into the hull core 18 directly. There may be products that don't demand such completely balanced laminates. In which case it would save time and money to include the stringer, bulkhead and gusset system into the core 18 and make them one piece.
The hull core 18 is what the laminate is built around. It is the first part in the lamination process to be built. The hull core 18 will start as an empty cavity in the shape of a boat hull. That cavity will be filled with core material to produce a three dimensional part which will ultimately be draped with mat and reinserted into the molds, less the inserts, and injected, poured, sprayed or rolled by hand. This will then produce the hull part. The foaming core agent will be vented out of the molds to allow for expansion and density control. The vents will be able to be open and closed utilizing a ball valve type vent. Once the core 18 is cured or hardened the vents can be opened and the hardened core can be cleared by use of a stop drill. This drill is slightly smaller diameter of the vent itself and will have a built-in stop to allow for depth control. This will also allow the builder to blow air into the mold to help release it from the mold.
The exterior insert 16 is designed to take up the space that will eventually be the resin and mat layer that makes up the outside 42 of the hull laminate. Because each manufacture may use a different laminate depending on demand of physical properties of the laminate, the insert thickness will vary from mold to mold. The exterior hull mold insert 16 will ultimately be the mat and resin layer for the bottom of the boat part.
There are two molds for each part. The interior hull mold 22 that makes the inside of the hull part. The exterior hull mold 14 makes up the outside of the hull part. The following is a brief description of how a mold is made. A CAD or computer-generated drawing is made, that drawing is downloaded then into a CNC machine. The CNC machine mechanically shapes a block (foam, wood, plastic, etc.) into the plug part. This plug is used to make a duplicate, in female form, of the part to be produced. The female form is the master mold. It will be appreciated that the mold 14 could be produced from a CNC type machine, eliminating the forming of the plug and going straight to the mold. Molds made of metals including aluminum, currently utilized by the automotive industry, are made without the use of plugs or models. This invention contemplates the hand-making or lofting the hull plug although most manufacturers now utilize computers and robots.
With reference to
The first step requires building all necessary molds 44 which in this instance includes exterior mold 14 and interior mold 22. The next step requires building inserts 46 that are to be later used inside the mold. These include exterior insert 16, interior insert 20, stringer inserts 24, 26, and 28, bulk head inserts, and transom inserts. Now that the molds and inserts have been created, the manufacturer can begin the specific process of making a hull.
The next step requires locating the inserts into the molds 48. The next step 50 requires blowing, inserting, injecting, or pouring core material into the hull bottom insides. Thereafter the venting step 52 allows excess coring material to come out of the mold to allow for expansion. The drilling step 54 takes place next where the vents are drilled with a stop drill in order to clear excess core material and to allow for a passageway for air to be blown into the core thereafter. The next step 56 requires blowing air into the vents in order to aid in the release of the core from the molds. Separating molds 58 is the next step which opens up the mold and exposes the core 18 to be later processed.
Once the molds are open, the hull core is sheeted 60 with material in order to separate the hull core from stringer and bulk head. It will be appreciated that this step is optional and is done only if the builder desires a separation of the hull core from the stringer and bulk head core. The next step requires removing the stringer and bulkhead inserts 62 from the molds. The next step is optional which includes removing engine compartment and transom inserts 64. This step 64 is only performed if the builder desires separation of the forward stringer and the bulk-head core from the engine compartment stringer and the transom core. The stringer and bulkhead inserts may be joined as one piece to the engine compartment stringers and transom inserts.
The next step 66 is also optional which includes sheeting or separating the engine compartment stringers from the engine compartment bulkheads. This optional step 66 is done only if the builder desires a different density core agent to be used in the engine compartment versus the forward stringers and bulkheads. Thus, the present design provides for a flexible construction that provides for a hull having different performance characteristics. The next step 68 requires joining the interior and exterior molds after the sheeting and removal of insert steps have been completed.
With reference to
The next step requires placing cores 86 into a proper position for mat draping. Thereafter, the step of draping the outside hull core 88 is performed where glue is used if so needed. Thereafter, hull mold insert 16 is removed 90 and then the interior insert 20 is removed at step 92. Thereafter draping the hull core 94 is performed.
With reference to
With reference to
Further illustrated in
An alternate embodiment to the present closed molded system includes modifying the stringers and bulkheads that form part of unitary hull. Typically, the ribs or stringers and bulkheads are glassed or glued into the hull bottom where the transition from the stringer or bulkhead to the hull bottom has no radius or very slight. The closed molding would allow for a predetermined radius to be added or built into the mold, which would increase the strength of the joint. It will also make cleaning easier and look more attractive.
This application claims the benefit of U.S. Provisional Application No. 60/657,645, filed Mar. 1, 2005.
Number | Date | Country | |
---|---|---|---|
60657645 | Mar 2005 | US |