1. Field of the Invention
This application is a Continuation-In-Part of prior Application No. 11/331041 filed Jan. 13, 2006, the entire contents of which are hereby incorporated by reference.
2. Description of the Prior Art
A conventional container, in consideration of a cost and a purpose, is generally a paper-made or plastics-made container, such as a paper-made or plastics-made cup, bowl, and dish, or a filling container made of this material, such as a packaging container, a heat preservation container, and a lunch box. An existing paper-made container is provided with a single layer that cannot preserve and insulate heat. The container may be provided with two layers with a partition, the cost is, however, extremely high and the cost efficiency is not satisfying since the container is designed for one-time usage.
For heat insulation purpose, the existing paper-made cup is held with an additional plastic cup supporter. However, the addition of the plastic cup supporter is in conflict to the original design intention of the one-time-usage paper-made cup since the cup supporter has to be recycled and stored after the paper-made cup is thrown.
The main object of the present invention is to provide a process for manufacturing a heat insulation container.
To achieve the above object, the process of the present invention includes the following steps:
(a) preparing a coating material by mixing and blending a binder and a thermo-expandable powder consisting of a plurality of thermo-expandable microcapsules, the binder being selected from a group consisting of polyvinyl acetate resin, ethylene vinyl acetate resin, polyurethane resin and a mixture thereof, each thermo-expandable microcapsule consisting of a thermoplastic polymer shell and a low-boiling-point solvent wrapped by the thermoplastic polymer shell;
(b) coating the coating material on at least a part of an area specified on a continuous paper reel or a non-continuous paper sheet making up the container, or on at least a part of an area specified on an outer surface of the container;
(c) heating the coated continuous paper reel, the coated non-continuous paper sheet or the coated container to a soften point of the binder so that the binder having slightly molecular flowability;
(d) further heating the coated continuous paper reel, the coated non-continuous paper sheet or the coated container to a boiling point of the low-boiling-point solvent so that the solvent vaporizing to balloon the thermoplastic polymer shell, whereby the coating material is foamed and integrally attached on the coated continuous paper reel, the coated non-continuous paper sheet or the coated container.
The present invention will become more obvious from the following description when taken in connection with the accompanying drawings, which show, for purpose of illustrations only, the preferred embodiments in accordance with the present invention.
Please refer to
(a) Preparing a coating material by mixing and blending a binder and a thermo-expandable powder. The thermo-expandable powder consists of a plurality of thermo-expandable microcapsules, each of which consists of a thermoplastic polymer shell and a low-boiling-point solvent wrapped by the thermoplastic polymer shell. The binder is selected from a group consisting of polyvinyl acetate resin, ethylene vinyl acetate resin, polyurethane resin and a mixture thereof. Preferably, a mixing ratio of the binder to the thermo-expandable powder is 80-95 to 5-20 by weight.
(b) Coating the coating material on at least a part of an area specified on a continuous paper reel or a non-continuous paper sheet making up the container, or on at least a part of an area specified on an outer surface of the container. The continuous paper reel 1 is a reel of paper sheet, as shown in
(c) Heating the coated continuous paper reel, the coated non-continuous paper sheet or the coated container to a soften point of the binder so that the binder has slightly molecular flowability.
(d) Further heating the coated continuous paper reel, the coated non-continuous paper sheet or the coated container to a boiling point of the low-boiling-point solvent so that the low-boiling-point solvent vaporizes to balloon the thermoplastic polymer shell. Whereby, the coated material is foamed and integrally attached on the coated continuous paper reel, the coated non-continuous paper sheet or the coated container, as shown in
The coating material 6 can be applied on the entire surface of the reel, the sheet or the container 4, thus the coating material is foamed as shown in
As shown in
For aesthetic or advertisement purpose, the foaming area may be further coated with a pigment layer to form patterns or messages. The pigment layer may be applied on the foaming area by conventional method such as printing, spraying or rolling. In addition, the coating material itself may also be mixed with a pigment. As such, the foamed coating material will look colorful and even have patterns. It is noted that since the outer surface of the foamed coating material is smooth, the pigment layer can be applied thereon without difficulty, and the patterns will not be vague.
Number | Date | Country | |
---|---|---|---|
Parent | 11331041 | Jan 2006 | US |
Child | 12566437 | US |