This application claims priority to French Application No. 0504116 filed Apr. 25, 2005, which is incorporated herein by reference.
1. Field of the Invention
The invention relates to a process for manufacturing a flexible heating sheet comprising two outer plastic layers and a metal foil ribbon arranged sinuously between the outer layers and acting as an electrical heating conductor.
2. Background Art
Flexible heating sheets with an aluminum foil ribbon arranged sinuously between two PVC films and acting as an electrical heating conductor are used in heating applications, for example for floors and ceilings. Heating sheets connected to a power source at a safety voltage, for example equal to 48V, operate at a heating power with an order of magnitude of 100 W/m2 surface area of the sheet.
Nowadays, these heating sheets are manufactured by manual gluing of aluminum foil ribbons sinuously on a PVC sheet and they are covered by gluing another PVC sheet. The sinuous trace is produced by folding the foil ribbon each time at an angle of 45° from the longitudinal axis of the sheet. Manual manufacturing of heating sheets requires a great deal of time, and cost effective industrial manufacturing of large numbers of parts is only feasible if there is a very large number of persons.
The problem that the invention is intended to solve consists of procuring a mechanized and economic process for manufacturing of flexible heating sheets with two outer plastic layers and a metal foil ribbon arranged sinuously between the outer layers and acting as an electrical heating conductor.
According to the invention, a process for manufacturing of a flexible heating sheet comprising a first outer layer and a second outer layer made of plastic material and an electrically conducting ribbon arranged along a sinuous pattern between the said outer layers and acting as an electrical heating conductor using the Joule effect, includes the following steps:
a) a first marked deposit of an anti-bond lacquer is formed on part of a first face of a strip made of an electrically conducting material, typically by a first impression, by forming a sinuous anti-bond ribbon according to the said pattern, the complementary part of the said part forming a pattern complementary to the said pattern not comprising an anti-bond lacquer, and a second marked deposit of the said anti-bond lacquer according to the said complementary pattern is formed on part of the second face of the said strip facing the said complementary pattern, typically by a second impression,
b) a layer of plastic material or a film made of plastic material called a support is applied or formed on the first face of the said strip, so as to mask the said first face, the said layer or the said support film being capable of bonding to the said complementary part of the said first face that does not comprise any anti-bond lacquer,
c) the said strip is sliced in its thickness from its second face, along a delimitation line separating the said pattern from the said complementary pattern, so as to form the said ribbon by cutting,
d) the said first outer layer and typically a first film made of plastic material is applied or formed on the second face of the said strip, the said first outer layer being capable of bonding to part of the said second face on which there is no anti-bond lacquer,
e) the support film and part of the said strip facing the said second marked deposit are separated, so as to obtain an intermediate sheet comprising part of the said strip forming the said ribbon fixed to the said first outer layer,
f) the said ribbon of the said intermediate sheet of the said second outer layer is covered, typically with a second film made of plastic material.
This manufacturing process solves the problems that arise.
As will become clearer later, particularly with reference to the figures, all steps a) to f) may typically be performed automatically with no direct manual action, so that it is thus possible to obtain a flexible heating sheet using a mechanized and economic process. A process according to the invention is very suitable for rational industrial manufacturing, and at least for steps a) to e), and typically steps a) to f), can be executed one after the other continuously.
FIGS. 4 to 10, similar to
In this Figure, a cutting device (32) of the metal strip is shown facing the second face of the metal strip.
a to 11g illustrate another embodiment of the process according to the invention in which the support film is used through its first face (28a) and its second face (28b) so as to solidarise part of a metal strip to be removed in order to form the ribbon (16).
a and 11b, corresponding to
The intermediate metallic strip in
The intermediate metallic strip in
c corresponding to
d corresponding to
e is a variant of
f illustrates step d′) of the process by which a first outer layer is applied or formed on a second face or the outer face of each of the two intermediate metallic strips, the first outer layer typically forming a first film made of plastic material.
g, corresponding to
a to 12c are diagrammatic vertical sectional views in a vertical plane perpendicular to the metal strip illustrating a first embodiment of an automatic separation means according to the invention.
a shows a portion of an incised metalloplastic complex (48′) for which a first face comprises an adhesive part in contact with a mobile support forming a rotating cylinder (510) before part of the metal strip is entrained by the cylinder (510) and separated.
b shows part entrained by the cylinder (510) due to its adhesive layer (230a).
c shows the part separated from the cylinder (510) by the scraper (511), and the intermediate sheet obtained.
a to 13c corresponding to
a shows a portion of an incised metalloplastic complex (48′) in contact with a mobile support forming a cylinder of a helioengraving printing device supplied with adhesive through a glue application cylinder (521) and capable of applying an unmarked adhesive layer (524) on a first face of the intermediate metallic strip using a scraper, before part is entrained by the cylinder.
b shows the part entrained by the cylinder (510) using the deposited adhesive layer.
c shows the part separated from the cylinder (510) by the scraper (511), and the intermediate sheet obtained. The second outer layer or the second film fixed to the intermediate sheets by the adhesive layer (524) is shown in dashed lines.
a to 14c corresponding to
a shows a portion of an incised metalloplastic complex (48′) similar to that in
b shows the part entrained by the cylinder due to the vacuum present in a quarter of the wall of the cylinder.
c shows the part separated from the cylinder by the scraper (531) and the intermediate sheet obtained.
a to 15g relate to an embodiment of the process similar to that shown in FIGS. 1 to 10.
a corresponding to
b corresponding to
c, similar to
d corresponding to
e corresponds to
f corresponds to
g corresponds to
According to the invention, the strip of an electrically conducting material may be chosen to be a metal strip, typically made of aluminum or copper, a strip of electrically conducting polymers, a strip formed from or comprising a non-organic or inorganic electrically conducting material, typically a ceramic material.
More generally, any material or any metal with sufficient electrical conductivity can be used for a heating application by the Joule effect.
Advantageously, the strip can be a metallic strip that can be coated on both faces with a protective coat or a primer coat providing protection against corrosion or oxidation.
According to one variant of the invention and as shown in
The first assembly layer may be chosen from among a first extruded layer made of plastic material or a first coating layer of an adhesive material or glue.
In this case, in step c) of the process, the strip can be sliced in its thickness from the second face as far as the first assembly layer or the first extruded layer.
According to another variant of the invention and as shown in
The second assembly layer may be chosen from among a second extruded layer made of plastic material (36′), typically a second extruded layer of PE, or a second coating layer of an adhesive material or glue.
However, possibly and as illustrated in
In step e) of the process, and in the case in which a first assembly layer, typically a first extruded layer made of plastic material solidarises the support film to the first face, the support film may be separated from the part of the strip corresponding to the second pattern bonding to the first assembly layer, as illustrated in
As illustrated in
The third assembly layer may be chosen from among a third extruded layer made of plastic material typically a second extruded layer of PE, or a second coating layer made of an adhesive material or glue.
However, the second outer layer may be fixed to the third assembly layer by means of a primer coat or a bond promoter as illustrated in
Regardless of the variant of the invention, the support film may be a film made of a thermoplastic material chosen from among PET, PA, PP, PS. But other films either with similar mechanical characteristics, or used in thicker layers, could be suitable.
This film may be about 30 μm to 100 μm thick.
Typically, the first, second and third extruded layers may be extruded layers of PE, for example with a basis weight varying from about 20 to 50 g/m2.
The first outer layer and the second outer layer may be composed of thermoplastic films (12′, 14′), for example made of PVC. For fire protection reasons, the outer layers are preferably composed of a PVC film that is difficult to inflame, with a thickness of about 100 μm to 300 μm and particularly about 150 μm to 250 μm.
However, when there is no need for fire protection, and particularly when the flexible heating sheet is embedded in a slab or in a wall, the said first outer layer and the second outer layer may be composed of thermoplastic films (12′, 14′) other than PVC.
The strip that will form the ribbon may be a metal strip with a thickness varying from 30 μm to 200 μm, typically from 50 μm to 120 μm and preferably from 70 μm to 90 μm.
These thicknesses firstly provide the means of ensuring sufficient electrical power for the heating strip and provide sufficient flexibility so that the heating sheet can form a coil.
The invention comprises a second embodiment of a process illustrated in
a′) a first marked deposit of an adhesive according to a complementary pattern of the pattern is formed on a first face of a strip of an electrically conducting material typically by a first impression, and a second marked deposit of an anti-bond lacquer is formed on the second face facing the first marked deposit, typically by a second impression, according to the complementary pattern, so as to form an intermediate conducting strip in which the first face comprises an adhesive part comprising the adhesive and in which the second face comprises a non-bonding part comprising the anti-bond lacquer,
b′) the first face of the intermediate conducting strip is fixed to each face (28a, 28b) of a support film (28′), possibly using the first assembly layer, due to the adhesive part forming the marked deposit so as to form a three-layer strip, the support film thus being placed between two intermediate conducting strips (23′),
c′) the two intermediate conducting strips of the three-layer strip are sliced within their thickness along the delimitation lines between the pattern and the complementary pattern, so as to form the electrically conducting ribbon by cutting for each intermediate metallic strip, the outer face or the second face of each of the two intermediate conducting strips comprising the anti-bond lacquer forming the second deposit,
d′) the first outer layer is applied onto or formed on the second face or outer face of each of the two intermediate conducting strips, possibly using the second assembly layer, the first outer layer typically forming a first film made of plastic material, the first outer layer being capable of bonding to a part of the second face according to the pattern not including any anti-bond lacquer,
The next steps are steps e′) and f) in which:
e′) the support film is then separated carrying a part of the foil strip corresponding to the second pattern on each of its faces, so as to obtain two intermediate sheets (18′), each comprising the ribbon fixed to the first outer layer,
f) and finally, the ribbon is covered with the second outer layer (14), possibly using the third assembly layer.
In particular, this second embodiment provides the means of typically reducing by half the ratio of the weight of plastic material of the support per weight of metal to be recycled. Thus, the metal in part can be recycled with a reduced quantity of organic or plastic material, which is very advantageous for waste treatment.
In step a′, the first marked deposit of adhesive on the first face and the second deposit of anti-bond lacquer on the second face may be facing each other as illustrated in
In step b′, the adhesive parts of the two intermediate metallic strips have adhesive parts that may face each other as illustrated in
Advantageously, and as illustrated in
In
The invention comprises another manufacturing embodiment of a flexible heating sheet comprising a first outer layer and a second outer layer made of a metal foil ribbon arranged in a sinuous pattern between the outer layers (12, 14) and acting as an electrical heating conductor.
In this embodiment of the process illustrated in
a) a first marked deposit of an adhesive according to a complementary pattern of the pattern is formed on a first face of a strip of an electrically conducting material typically by a first impression, and a second marked deposit of an anti-bond lacquer is formed on the second face facing the first marked deposit, typically by a second impression according to the complementary pattern, so as to form an intermediate conducting strip in which the first face comprises an adhesive part comprising the adhesive and in which the second face comprises a non-bonding part comprising the anti-bond lacquer
b) the first outer layer is applied or is formed on the second face of the intermediate conducting strip, possibly using an assembly layer, the first outer layer and typically a first film made of plastic material, the first outer layer being capable of bonding to a part of the second face not including any anti-bond lacquer,
c) the intermediate conducting strip is sliced in its thickness and from its first face along a delimitation line separating the pattern from the complementary pattern, so as to form the ribbon by cutting,
d) a part of the intermediate conducting strip forming the complementary pattern is cut using an automatic separation means (50), so as to obtain an intermediate sheet comprising a part of the intermediate conducting strip forming the ribbon fixed to the said first outer layer,
e) the ribbon is covered with the intermediate sheet of the second outer layer (14), and typically a second plastic film (14′), possibly using another assembly layer.
The automatic separation means in the previous step d) may include a mobile support (51), typically a rotating metallic cylinder (510) that can temporarily be in contact with the first face so as to entrain the part, and a scraper cooperating with the mobile support so as to separate the part from the mobile support (51), and thus to be able to compact and recycle the part (44).
In this embodiment of the process, the metal of the part can be recycled with a very small quantity of organic or plastic material, which is very advantageous.
The invention also comprises another method of producing a flexible heating sheet including a first outer layer and a second outer layer made of plastic material and an electrically conducting ribbon arranged in a sinuous pattern between the outer layers (12, 14) and acting as an electrical heating conductor.
The following sequence of steps is performed in this embodiment, as illustrated in
a) a marked deposit of an anti-adhesion lacquer according to a complementary pattern of the pattern is formed on a face of a metal strip called the second face (23b), typically by printing, the marked deposit being called the second marked deposit (27), so as to form an intermediate conducting strip for which the second face comprises a non-bonding part comprising the anti-bond lacquer,
b) the first outer layer of the intermediate conducting strip is applied or is formed on the second face (23b), possibly using an assembly layer, followed by the first outer layer and typically a first film made of plastic material, first outer layer being capable of bonding to a part of the second face on which there is no anti-bond lacquer,
c) the intermediate conducting strip is sliced in its thickness and from its first face along a delimitation line separating the pattern from the complementary pattern so as to form the ribbon by cutting,
d) part of the intermediate conducting strip forming the complementary pattern is separated using an automatic separation means (50′), so as to obtain an intermediate sheet comprising a part of the metal strip forming the ribbon fixed to the first outer layer,
e) the ribbon is covered with the intermediate sheet, possibly using another assembly layer, the second outer layer (14), and typically a second film made of plastic material.
According to one variant illustrated in
In this embodiment and according to a variant illustrated in
Regardless of the embodiments of the invention used and as illustrated in
A heating sheet represented in
Manufacturing of this heating sheet is described in detail below with reference to FIGS. 2 to 10.
A metal strip made of aluminum foil with width b coated with a primer providing protection against corrosion and oxidation, is printed on a first face forming a first marked deposit (24) of an anti-bond lacquer according to a first sinuous pattern, and on the second face forming a second marked deposit of an anti-bond lacquer according to a complementary pattern of the pattern (17). In
For continuous manufacturing of heating sheets (10), the metal strip is printed to deposit the anti-bond lacquer on its two faces and to form the deposit (24) according to the patterns and the second deposit according to the complementary pattern, using deposition cylinders arranged transverse to the circulation direction x of the metal strip.
The result is thus the intermediate metallic strip (22′) according to
As illustrated in
As illustrated in
The result is thus a strip of an incised metalloplastic complex (48′), as shown in
As illustrated in
As illustrated in
The extruded layer of PE firstly closes and seals the incisions in the metallic strip and secondly prevents unwanted migration of glue (38) on the surface of the metallic strip.
As illustrated in
Firstly, the extruded layer of PE deposited on the first face of the intermediate metallic strip (22′) bonds on the surface of this strip (22′) in the part of this surface not coated with an anti-bond lacquer, this part forming the complementary part to the part coated with an anti-bond lacquer forming the first marked deposit (24), such that there is no adhesion between the extruded layer of PE and the sinuous ribbon pattern 24 of the anti-bond lacquer.
Secondly, the second extruded layer of PE also results in adhesion with uncoated areas not coated with anti-bond lacquer according to the complementary pattern of the second deposit (26), on the second incised face of the intermediate metallic strip (22′), while there is no adhesion between the extruded layer of PE and the second deposit corresponding to the part of the second face (22b).
Thus, the PET support film may be detached with a part of the metal strip corresponding to the complementary pattern of the second deposit and bonding to the extruded layer of PE.
After separation of the support sheet and the part of the metal strip that does not form part of the future heating conductor, a part of the metal strip forming the metallic ribbon corresponding to the sinuous shaped pattern remains, on the extruded layer of PE covered with the PVC film (40) forming the said first outer layer (12).
Thus, the result is an intermediate sheet as illustrated in
In another step, the surface of the intermediate sheet with the sinuous part of the metal strip was covered with a PVC film by means of a glue layer forming the second outer layer (48) corresponding to the outer layer in
Given that the part of the metal strip was coated with an anti-adhesion lacquer according to the first marked deposit (24), the result is a lesser bond of the PVC film in the outer layer 48 onto the heating sheet (10), such that it can be removed with no great effort at the corresponding location, as shown in
A heating sheet is also manufactured as shown diagrammatically in
Intermediate sheets (18′) were also manufactured, using the process shown in
Intermediate sheets were also manufactured, using the processes shown in
The invention discloses a plurality of processes capable of economically manufacturing flexible heating sheets (10), using traditional technical means used in manufacturing of flexible packagings.
Number | Date | Country | Kind |
---|---|---|---|
0504116 | Apr 2005 | FR | national |