In the drawings:
Referring to the drawings in particular, the thermotherapy device, also called a patient care unit, has circumferential discharge channels indicated by flow arrows in the area of the bed surface 10 for air conditioned in terms of humidity and/or temperature in the longitudinal direction along the two longer (lateral) sides and on the foot side 3. An exhaust device 11 is driven, for example, by means of a fan located in the interior of the device under the bed surface 10 of the device and is not visible from the outside. The exhaust device 11 has an intake above the bed surface 10 and is in flow connection with the discharge channels and optionally with the ambient air, as is described, for example, in DE 103 20 195 B4, is located in the head area at the top in
The continuously variable discharge angles α of the discharge flow along the bed surface 10 can be embodied technically, for example, with a construction with guide blades mounted rigidly at the foot between two parallel plates. The guide blades are mounted freely on a rod by means of a bolt with a defined distance from the foot. The bolt of the last guide blade is rigidly connected to the plates, but it can still rotate about its longitudinal axis. The loosely mounted bolts rotatable about the longitudinal axis in each guide blade can now rotate about their feet during a tilting motion of the rod and thus set an angle α varying depending on the distance from the axis of rotation of the rod.
The elevation angle β corresponding to
In addition to the direction of flow, the value of the velocity is also continuously variable as a function of the site of discharge from the discharge channels along the bed surface 10.
For example, the air flow being delivered is guided for this purpose, according to the schematic diagram in
Three different embodiment variants of the thermotherapy device will be summarized below in Cases 1 through 3:
The value of the velocity of the discharge flow depends on the distance from the exhaust unit 11, so that this velocity is low on the sides close to the head (˜0.2 m/sec). It increases in the course of the sides 1 of the bed surface up to the corners 4 (˜0.5 m/sec). The discharge flows always remain directed towards the center of the exhaust unit 11. Thus, they are at right angles to the particular side (90°) at the head ends of the bed surface sides 1. The deflection then increases with the path length; the angle α decreases. The angle β of the discharge flows towards the bed surface 10 is ˜45° at the head ends of the sides and likewise decreases with the path length (˜20°).
The value of the discharge velocity and the angles α and β of the bed surface sides 1 and of the foot side 3 are identical in the foot-side corners 4 only. The value of the discharge velocity slightly decreases up to the middle of the foot side 3 (0.46 m/sec). The angle α decreases further towards the middle of the foot side 3, so that the discharge flow is at right angles to the foot side 3 in the middle of the foot side 3 (0°). The angle β remains constant over the length of the foot side 3.
The value of the velocity of the discharge flow at the corners 4 of the foot side 3 is 0.4 m/sec. The value of the velocity of the discharge flow increases to 0.6 m/sec towards the middle. The angle β is constant (˜30°). The angle α increases from the middle of the foot side 3 (0°) towards the corners 4 (˜15°).
The discharge velocity and the angles α and β of the bed surface sides 1 and the foot side 3 are not identical in this case.
The velocity of the discharge flow at the foot-side corners 4 of the bed surface sides 1 is ˜0.1 m/sec and increases to 0.3 m/sec towards the sides near the head. The angle β remains constant (50°) over the side lengths. The angle α decreases from the corners near the head (90°) towards the foot-side corners 4 (25°).
The value of the velocity of the discharge flow at the corners near the head is 0.3 m/sec. It increases to 0.55 m/sec over the lateral path lengths. The velocity over the foot side 3 is constant at 0.55 m/sec. The angle β is constantly 55° on the sides and 30° on the foot side 3. The angle α is at right angles to the particular side (90°) at the corners near the head and decreases to 30° with the path length. The angle α has a deflection of 5° at the corners 4 of the foot side 3 and it equals 0° in the middle.
While specific embodiments of the invention have been shown and described in detail to illustrate the application of the principles of the invention, it will be understood that the invention may be embodied otherwise without departing from such principles.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 044 671.2 | Sep 2006 | DE | national |