Claims
- 1. A process for preparing a flexible polyurethane foam having an apparent overall density of 15-150 kg/m3 comprising the step of reacting a polyisocyanate and an isocyanate-reactive composition in the presence of water, wherein the reaction is conducted at an isocyanate index of 50 to 130, and the polyisocyanate comprises:
a) 80-100% by weight of a diphenylmethane diisocyanate comprising at least 40% by weight of 4,4′-diphenylmethane diisocyanate and/or a derivative of said diphenylmethane diisocyanate, which derivative has an NCO value of at least 20% by weight, and b) 20-0% by weight of another polyisocyanate and the isocyanate-reactive composition comprises:
a) 10-100% by weight of a polyether polyol having an average nominal functionality of 2-8, an average equivalent weight of 750-5000, an average molecular weight of 2000-12000, an oxyethylene content of 20-90% by weight calculated on the weight of the polyether polyol, a melting enthalpy, |ΔHm|, of at least 30 J/g and a melting temperature, Tm, of 4° C. or more, excluding such polyols having an oxyethylene content of 60-90% by weight and a primary hydroxyl content of 70-100% and excluding such polyols having an oxyethylene content of at least 50% by weight and being random polyoxyethylene polyoxypropylene polyols, and b) 90-0% by weight of one or more other isocyanate-reactive compounds excluding water.
- 2. The process of claim 1, wherein the flexible polyurethane foam has an apparent overall density of density of 25-60 kg/m3.
- 3. The process of claim 1, wherein the amount of water is 0.8-5% by weight calculated on all other ingredients used.
- 4. The process of claim 2, wherein the amount of water is 0.8-5% by weight calculated on all other ingredients used.
- 5. The process of claim 1, wherein the isocyanate index is 70-120.
- 6. The process of claim 2, wherein the isocyanate index is 70-120.
- 7. The process of claim 3, wherein the isocyanate index is 70-120.
- 8. The process of claim 4, wherein the isocyanate index is 70-120.
- 9. The process of claim 1, wherein the average nominal functionality of polyether polyol a) is 2-6, the average equivalent weight is 1000-4000 and the average molecular weight is 2500-10000 and the diphenylmethane diisocyanate comprises at least 85% by weight of 4,4′-diphenylmethane diisocyanate and/or a derivative of said diphenylmethane diisocyanate which derivative has an NCO value of at least 20% by weight.
- 10. The process of claim 2, wherein the average nominal functionality of polyether polyol a) is 2-6, the average equivalent weight is 1000-4000 and the average molecular weight is 2500-10000 and the diphenylmethane diisocyanate comprises at least 85% by weight of 4,4′-diphenylmethane diisocyanate and/or a derivative of said diphenylmethane diisocyanate which derivative has an NCO value of at least 20% by weight.
- 11. The process of claim 3, wherein the average nominal functionality of polyether polyol a) is 2-6, the average equivalent weight is 1000-4000 and the average molecular weight is 2500-10000 and the diphenylmethane diisocyanate comprises at least 85% by weight of 4,4′-diphenylmethane diisocyanate and/or a derivative of said diphenylmethane diisocyanate which derivative has an NCO value of at least 20% by weight.
- 12. The process of claim 4, wherein the average nominal functionality of polyether polyol a) is 2-6, the average equivalent weight is 1000-4000 and the average molecular weight is 2500-10000 and the diphenylmethane diisocyanate comprises at least 85% by weight of 4,4′-diphenylmethane diisocyanate and/or a derivative of said diphenylmethane diisocyanate which derivative has an NCO value of at least 20% by weight.
- 13. The process of claim 5, wherein the average nominal functionality of polyether polyol a) is 2-6, the average equivalent weight is 1000-4000 and the average molecular weight is 2500-10000 and the diphenylmethane diisocyanate comprises at least 85% by weight of 4,4′-diphenylmethane diisocyanate and/or a derivative of said diphenylmethane diisocyanate which derivative has an NCO value of at least 20% by weight.
- 14. The process of claim 6, wherein the average nominal functionality of polyether polyol a) is 2-6, the average equivalent weight is 1000-4000 and the average molecular weight is 2500-10000 and the diphenylmethane diisocyanate comprises at least 85% by weight of 4,4′-diphenylmethane diisocyanate and/or a derivative of said diphenylmethane diisocyanate which derivative has an NCO value of at least 20% by weight.
- 15. The process of claim 7, wherein the average nominal functionality of polyether polyol a) is 2-6, the average equivalent weight is 1000-4000 and the average molecular weight is 2500-10000 and the diphenylmethane diisocyanate comprises at least 85% by weight of 4,4′-diphenylmethane diisocyanate and/or a derivative of said diphenylmethane diisocyanate which derivative has an NCO value of at least 20% by weight.
- 16. The process of claim 8, wherein the average nominal functionality of polyether polyol a) is 2-6, the average equivalent weight is 1000-4000 and the average molecular weight is 2500-10000 and the diphenylmethane diisocyanate comprises at least 85% by weight of 4,4′-diphenylmethane diisocyanate and/or a derivative of said diphenylmethane diisocyanate which derivative has an NCO value of at least 20% by weight.
Priority Claims (1)
Number |
Date |
Country |
Kind |
00112506.1 |
Jun 2000 |
EP |
|
Cross Reference to Related Applications
[0001] This application is a continuation of international application PCT EP01/05626, filed May 17, 2001.
Continuations (1)
|
Number |
Date |
Country |
Parent |
PCT/EP01/05626 |
May 2001 |
US |
Child |
10198674 |
Jul 2002 |
US |