Process for preparing a salt of a sulfurized alkyl-substituted hydroxyaromatic composition

Abstract
Disclosed herein is a process for preparing a salt of a sulfurized alkyl-substituted hydroxyaromatic composition having a reduced content of unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt. The process involves the steps of: (a) providing a composition comprising (i) a salt of a sulfurized alkyl-substituted hydroxyaromatic compound; (ii) an unsulfurized alkyl-substituted hydroxyaromatic compound and (iii) an unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound; wherein the alkyl-substituted hydroxyaromatic compound is derived from alkylation of a hydroxyaromatic compound with one or more olefins comprising C9 to C18 oligomers of monomers selected from propylene, butylene or mixtures thereof; (b) protonating the unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound with an effective amount of an acidic compound capable of protonating the unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound; and (c) removing the unsulfurized alkyl-substituted hydroxyaromatic compound and the protonated unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound from the composition.
Description
BACKGROUND OF THE INVENTION

1. Technical Field


The present invention generally relates to a process for preparing a salt of a sulfurized alkyl-substituted hydroxyaromatic composition having a reduced content of unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt.


2. Description of the Related Art


The lubricant additive industry generally uses alkyl phenols (e.g., tetrapropenyl phenol, TPP) to prepare detergents comprising sulfurized metal alkyl phenates. Metal salts of sulfurized alkylphenols are useful lubricating oil additives which impart detergency and dispersancy properties to the lubricating oil composition for marine, automotive, railroad and air-cooled engines as well as providing for an alkalinity reserve in the oil. Alkalinity reserve is necessary in order to neutralize acids generated during engine operation. Without this alkalinity reserve, the acids so generated would result in harmful engine corrosion. However, there may be some unreacted alkyl phenols such as tetrapropenyl phenol present in the sulfurized metal alkyl phenate as well as in lubricating oils containing one or more of the sulfurized metal alkyl phenates.


A recent reproductive toxicity study in rats sponsored by the Petroleum Additives Panel of the American Chemistry Council shows that free or unreacted TPP may cause adverse effects on male and female reproductive organs. Further, it is believed that TPP may be corrosive or irritating to the skin.


U.S. Patent Application Publication No. 20080070818 (“the '818 publication”) discloses a lubricating oil composition including at least one sulfurized overbased metal phenate detergent prepared from a C9-C15 alkyl phenol, at least one sulfurizing agent, at least one metal and at least one overbasing agent; the detergent including less than 6.0% by combined mass of unsulfurized C9-C15 alkyl phenol and unsulfurized metal salts thereof. Examples A and B disclosed in the '818 publication obtained an overbased detergent having 5.58 and 3.84 mass %, respectively, of unsulfurized alkyl phenol and its unsulfurized calcium salt.


U.S. Patent Application Publication No. 20090143264 (“the '264 publication”) discloses sulfurized metal alkyl phenate compositions having a low alkyl phenol content. The sulfurized metal alkyl phenate compositions of the '264 publication can be prepared by reacting a phenol compound such as tetrapropenyl phenol with an aldehyde to form a phenolic resin and then reacting the phenolic resin simultaneously with a metal base and a first sulfurizing agent.


U.S. Pat. No. 4,328,111 (“the '111 patent”) discloses that overbased phenates, including sulfurized phenates are commonly manufactured in the presence of ethylene glycol which is difficult to remove from the product, thereby wasting raw materials and sometimes leading to undesirable side effects from glycol in the final product. The '111 patent further discloses that in order to remove ethylene glycol, an acidic compound is reacted with a basic compound comprising an overbased metal sulfonate, phenate, or mixtures thereof, and the reaction product is then nitrogen stripped to remove the ethylene glycol.


To reduce any potential health risks to customers and to avoid potential regulatory issues, there is a need to reduce the amount of free unsulfurized alkyl-substituted hydroxyaromatic compound and its metal salt in the salt of a sulfurized alkyl-substituted hydroxyaromatic composition in a simple, cost efficient manner. Accordingly, it is desirable to provide an improved process for preparing a salt of a sulfurized alkyl-substituted hydroxyaromatic composition which has relatively low levels of unsulfurized alkyl-substituted hydroxyaromatic compound and its metal salt.


SUMMARY OF THE INVENTION

In accordance with one embodiment of the present invention, there is provided a process for preparing a salt of a sulfurized alkyl-substituted hydroxyaromatic composition having a reduced content of unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt, the process comprising the steps of:


(a) providing a composition comprising (i) a salt of a sulfurized alkyl-substituted hydroxyaromatic compound; (ii) an unsulfurized alkyl-substituted hydroxyaromatic compound and (iii) an unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound; wherein the alkyl-substituted hydroxyaromatic compound is derived from alkylation of a hydroxyaromatic compound with one or more olefins comprising C9 to C18 oligomers of monomers selected from propylene, butylene or mixtures thereof;


(b) protonating the unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound with an effective amount of an acidic compound capable of protonating the unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound; and


(c) removing the unsulfurized alkyl-substituted hydroxyaromatic compound and the protonated unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound from the composition.


The process of the present invention advantageously provides a salt of a sulfurized alkyl-substituted hydroxyaromatic composition containing relatively low levels of unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt that can be prepared in a simple, cost efficient manner. This is an unexpected improvement in that the presence of the unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfured metal salt in a salt of a sulfurized alkyl-substituted hydroxyaromatic composition is undesirable because of their deleterious estrogenic behavior and there is a growing concern of their potential release into the environment.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Prior to discussing the invention in further detail, the following terms will be defined:


DEFINITIONS

As used herein, the following terms have the following meanings, unless expressly stated to the contrary:


The term “Total Base Number” or “TBN” as used herein refers to the amount of base equivalent to milligrams of KOH in 1 gram of sample. Thus, higher TBN numbers reflect more alkaline products, and therefore a greater alkalinity reserve. The TBN of a sample can be determined by ASTM Test No. D2896-11 issued May 15, 2011 or any other equivalent procedure.


The term “phenate” means a metal salt of a phenol.


The term “alkylphenate” means a metal salt of an alkylphenol.


The term “alkylphenol” means a phenol having one or more alkyl substituents, wherein at least one of the alkyl substituents has a sufficient number of carbon atoms to impart oil solubility to the phenol.


The term “lime” refers to calcium hydroxide, also known as slaked lime or hydrated lime.


The term “metal” means alkali metals, alkaline earth metals, or mixtures thereof.


The term “alkaline earth metal” refers to calcium, barium, magnesium, and strontium.


The term “alkali metal” refers to lithium, sodium, potassium, rubidium, and cesium.


The term “metal base” refers to a metal hydroxide, metal oxide, metal alkoxides and the like and mixtures thereof, wherein the metal is an alkaline earth metal or alkali metal.


The term “overbased” refers to a class of metal salts or complexes. These materials have also been referred to as “basic”, “superbased”, “hyperbased”, “complexes”, “metal complexes”, “high-metal containing salts”, and the like. Overbased products are metal salts or complexes characterized by a metal content in excess of that which would be present according to the stoichiometry of the metal and the particular acidic organic compound reacted with the metal, e.g., a carboxylic acid. Suitable overbasing metals include alkaline earth metals such as magnesium, calcium, barium, and strontium. Suitable overbasing metals can be provided from the corresponding metal hydroxides, for example, calcium hydroxide and magnesium hydroxide provide the source for the alkaline earth metals calcium and magnesium, respectively. Additional overbasing can be achieved by the addition of acidic overbasing compounds for example, carbon dioxide and boric acid.


The terms “alkenyl succinic acid or anhydride” and “alkyl succinic acid or anhydride” may be used interchangeably.


The present invention is directed to a process for preparing a salt of a sulfurized alkyl-substituted hydroxyaromatic composition having a reduced content of unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt. In general, the process of the present invention includes the steps of (a) providing a composition comprising (i) a salt of a sulfurized alkyl-substituted hydroxyaromatic compound; (ii) an unsulfurized alkyl-substituted hydroxyaromatic compound and (iii) an unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound; wherein the alkyl-substituted hydroxyaromatic compound is derived from alkylation of a hydroxyaromatic compound with one or more olefins comprising C9 to C18 oligomers of monomers selected from propylene, butylene or mixtures thereof; (b) protonating the unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound with an effective amount of an acidic compound capable of protonating the unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound; and (c) substantially removing the unsulfurized alkyl-substituted hydroxyaromatic compound and the protonated unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound from the composition to provide a composition having a reduced content of the unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt.


In step (a), a salt of a sulfurized alkyl-substituted hydroxyaromatic composition containing an unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt is provided. In general, the composition is obtained by (i) alkylating a hydroxyaromatic compound with one or more olefins comprising C9 to C18 oligomers of monomers selected from propylene, butylene or mixtures thereof, to provide an alkyl-substituted hydroxyaromatic compound; (ii) sulfurizing and neutralizing the alkyl-substituted hydroxyaromatic compound in any order to provide a salt of a sulfurized alkyl-substituted hydroxyaromatic composition; and (iii) optionally overbasing the salt of a sulfurized alkyl-substituted hydroxyaromatic composition. In one embodiment, the unsulfurized alkyl-substituted hydroxyaromatic compound is tetrapropenyl phenol. In certain embodiments, the tetrapropenyl phenol comprises a mixture of the isomers of tetrapropenyl phenol, such as a mixture of p-dodecylphenol, m-dodecylphenol and o-dodecylphenol.


The alkyl-substituted hydroxyaromatic compound employed in the present invention is prepared by methods that are well known in the art. Useful hydroxyaromatic compounds that may be alkylated include mononuclear monohydroxy and polyhydroxy aromatic hydrocarbons having 1 to 4, and preferably 1 to 3, hydroxyl groups. Suitable hydroxyaromatic compounds include phenol, catechol, resorcinol, hydroquinone, pyrogallol, cresol, and the like and mixtures thereof. In one embodiment, the hydroxyaromatic compound is a phenol.


The alkylating agent employed to alkylate the hydroxyaromatic compound includes one or more olefins comprising C9 to C18 oligomers of monomers selected from propylene, butylene or mixtures thereof. Generally, the one or more olefins will contain a major mount of the C9 to C18 oligomers of monomers selected from propylene, butylene or mixtures thereof. Examples of such olefins include propylene tetramer, butylene trimer and the like. As one skilled in the art will readily appreciate, other olefins may be present. For example, the other olefins that can be used in addition to the C9 to C18 oligomers include linear olefins, cyclic olefins, branched olefins other than propylene oligomers such as butylene or isobutylene oligomers, arylalkylenes and the like and mixtures thereof. Suitable linear olefins include 1-hexene, 1-nonene, 1-decene, 1-dodecene and the like and mixtures thereof. Especially suitable linear olefins are high molecular weight normal alpha-olefins such as C16 to C30 normal alpha-olefins, which can be obtained from processes such as ethylene oligomerization or wax cracking. Suitable cyclic olefins include cyclohexene, cyclopentene, cyclooctene and the like and mixtures thereof. Suitable branched olefins include butylene dimer or trimer or higher molecular weight isobutylene oligomers, and the like and mixtures thereof. Suitable arylalkylenes include styrene, methyl styrene, 3-phenylpropene, 2-phenyl-2-butene and the like and mixtures thereof.


Alkylation of the hydroxyaromatic compound with the one or more olefins comprising C9 to C18 oligomers of monomers selected from propylene, butylene or mixtures thereof is generally carried out in the presence of an alkylation catalyst. Useful alkylation catalysts include acid catalysts, trifluoromethanesulfonic acid, and acidic molecular sieve catalysts. Representative examples of acid catalysts include, by way of example, Lewis acid catalysts, solid acid catalysts and the like and mixtures thereof.


Useful Lewis acid catalysts include, but are not limited to, aluminum trichloride, aluminum tribromide, aluminum triiodide, boron trifluoride, boron tribromide, boron triiodide and the like.


Useful solid acidic catalysts include, but are not limited to, zeolites, acid clays, and/or silica-alumina. The catalyst may be a molecular sieve. Eligible molecular sieves are silica-aluminophosphate molecular sieves or metal silica-aluminophosphate molecular sieves, in which the metal may be, for example, iron, cobalt or nickel. In one embodiment, a solid catalyst is a cation exchange resin in its acid form, for example, crosslinked sulfonic acid catalyst. Suitable sulfonated acidic ion exchange resin type catalysts include Amberlyst 36®, available from Rohm and Hass (Philadelphia, Pa.). The acid catalyst may be recycled or regenerated when used in a batch process or a continuous process.


The reaction conditions for the alkylation depend upon the type of catalyst used, and any suitable set of reaction conditions that result in high conversion to the alkylhydroxyaromatic product can be employed. In one embodiment, the reaction temperature for the alkylation reaction will be in the range of about 25° C. to about 200° C. In another embodiment, the reaction temperature for the alkylation reaction will be in the range of about 85° C. to about 135° C. The reaction pressure will generally be atmospheric, although higher or lower pressures may be employed. The alkylation process can be practiced in a batchwise, continuous or semi-continuous manner. In one embodiment, the molar ratio of the hydroxyaromatic compound to one or more olefins is in the range of about 10:1 to about 0.5:1. In another embodiment, the molar ratio of the hydroxyaromatic compound to one or more olefins is in the range of about 5:1 to about 3:1.


The alkylation reaction may be carried out neat or in the presence of a solvent which is inert to the reaction of the hydroxyaromatic compound and the olefin mixture. When employed, a typical solvent is hexane.


Upon completion of the reaction, the desired alkylhydroxyaromatic compound can be isolated using conventional techniques. Typically, excess hydroxyaromatic compound is distilled from the reaction product.


The alkyl group of the alkyl-substituted hydroxyaromatic compound is typically attached to the hydroxyaromatic compound primarily in the ortho and para positions, relative to the hydroxyl group.


The alkyl-substituted hydroxyaromatic compound is subsequently sulfurized and neutralized in any order to provide a salt of a sulfurized alkyl-substituted hydroxyaromatic composition. The sulfurization and neutralization steps can be performed in any order so as to provide the salt of the sulfurized alkyl-substituted hydroxyaromatic composition. Alternatively, the neutralization and sulfurization steps can be carried out simultaneously.


In general, sulfurization is carried out by contacting the alkyl-substituted hydroxyaromatic compound with a sulfur source which introduces Sx bridging groups between alkyl-substituted hydroxyaromatic compounds, wherein x is 1 to 7, in the presence of a base. Any suitable sulfur source can be used such as, for example, elemental sulfur or a halide thereof such as sulphur monochloride or sulphur dichloride, hydrogen sulfide, sulfur dioxide and sodium sulfide hydrates. The sulfur can be employed either as molten sulfur or as a solid (e.g., powder or particulate) or as a solid suspension in a compatible hydrocarbon liquid.


The base catalyzes the reaction to incorporate sulfur onto the alkyl-substituted hydroxyaromatic compound. A suitable base includes, but is not limited to, NaOH, KOH, Ca(OH)2 and the like and mixtures thereof.


The base is generally employed at from about 0.5 to about 5 moles per mole of the alkyl-substituted hydroxyaromatic compound in the reaction system. In one embodiment, the base is employed at from about 1 to about 1.5 moles per mole of the alkyl-substituted hydroxyaromatic compound in the reaction system. The base can be added to the reaction mixture as a solid or a liquid.


Sulfur is generally employed at from about 0.5 to about 4 moles per mole of the alkyl-substituted hydroxyaromatic compound in the reaction system. In one embodiment, sulfur is employed at from about 0.8 to 2 moles per mole of the alkyl-substituted hydroxyaromatic compound. In one embodiment, sulfur is employed at from about 1 to 1.5 moles per mole of alkyl-substituted hydroxyaromatic compound.


The temperature range in which the sulfurization reaction is carried out is generally from about 150° C. to about 200° C. In one embodiment, the temperature range is from about 160° C. to about 180° C. The reaction can be conducted under atmospheric pressure (or slightly lower) or at elevated pressures. In one embodiment the reaction is carried out under vacuum to facilitate H2S elimination. The exact pressure developed during the reaction is dependent upon such factors as the design and operation of the system, the reaction temperature, and the vapor pressure of the reactants and products and it may vary during the course of the reaction. In one embodiment, the process pressures are at atmospheric to about 20 mm Hg.


Neutralization of the sulfurized or unsulfurized alkyl-substituted hydroxyaromatic compound may be carried out in a continuous or batch process by any method known to a person skilled in the art. Numerous methods are known in the art to neutralize the sulfurized or unsulfurized alkyl-substituted hydroxyaromatic compounds and to produce basic phenates by incorporation of a source of base. In general, neutralization can be carried out by contacting the sulfurized or unsulfurized alkyl-substituted hydroxyaromatic compound with a metal base under reactive conditions, preferably in an inert-compatible liquid hydrocarbon diluent. If desired, the reaction can be conducted under an inert gas, typically nitrogen. The metal base may be added either in a single addition or in a plurality of additions at intermediate points during the reaction.


Suitable metal basic compounds include hydroxides, oxides or alkoxides of the metal such as (1) an alkali metal salt derived from a metal base selected from an alkali hydroxide, alkali oxide or an alkali alkoxide, or (2) an alkaline earth metal salt derived from a metal base selected from an alkaline earth hydroxide, alkaline earth oxide or alkaline earth alkoxide. Representative examples of metal basic compounds with hydroxide functionality include lithium hydroxide, potassium hydroxide, sodium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, aluminum hydroxide and the like. Representative examples of metal basic compounds with oxide functionality include lithium oxide, magnesium oxide, calcium oxide, barium oxide and the like. In one embodiment, the alkaline earth metal base is slaked lime (calcium hydroxide), because of its handling convenience and cost versus, for example, calcium oxide.


Neutralization is typically conducted in a suitable solvent or diluents oil, such as toluene, xylene and commonly with a promoter such as an alcohol, e.g., a C1 to C16 alcohol, such as methanol, decyl alcohol, or 2-ethyl hexanol; a diol, e.g., C2 to C4 alkylene glycols, such as ethylene glycol; and/or carboxylic acids. Suitable diluent oils include naphthenic oils and mixed oils, e.g., paraffinic oils such as 100 neutral oil. The quantity of solvent or diluent oil used is such that the amount of solvent or oil in the final product constitutes from about 25% to about 65% by weight of the final product, preferably from about 30% to about 50%. For example, the source of alkaline earth metal is added in excess as a slurry (i.e., as a pre-mixture of source of an alkaline earth metal lime, solvent or diluent oil) and then reacted with the sulfurized or unsulfurized alkyl-substituted hydroxyaromatic compound.


The neutralization reaction between the metal base and the sulfurized or unsulfurized alkyl-substituted hydroxyaromatic compound is typically conducted at temperatures above room temperature (20° C.). In one embodiment, neutralization can be carried out at a temperature between about 20° C. and about 150° C. It is however preferred to carry the neutralization at low temperature. In one embodiment, neutralization can be carried out at a temperature of between about 25° C. and about 30° C. The neutralization reaction itself should take place for a period of time of from about 5 to about 60 minutes. If desired, the neutralization reaction is carried out in the presence of a promoter such as ethylene glycol, formic acid, acetic acid, and the like and mixtures thereof.


Upon completion of the sulfurizing and neutralizing of the alkyl-substituted hydroxyaromatic compound, a neutral salt of a sulfurized alkyl-substituted hydroxyaromatic composition is obtained. If desired, the neutral salt of a sulfurized alkyl-substituted hydroxyaromatic composition can be overbased to provide an overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition. Overbasing can be carried out either during or after one of the sulfurization and neutralization steps and by any method known by a person skilled in the art. Alternatively, sulfurization, neutralization and overbasing can be carried out simultaneously. In general, the overbasing is carried out by reaction with an acidic overbasing compound such as, for example, carbon dioxide or boric acid. In one embodiment, an overbasing process is by way of carbonation, i.e., a reaction with carbon dioxide. Such carbonation can be conveniently effected by addition of solvents: like aromatic solvents, alcohols or a polyols, typically an alkylene diol, e.g., ethylene glycol. Conveniently, the reaction is conducted by the simple expedient of bubbling gaseous carbon dioxide through the reaction mixture. Excess solvents and any water formed during the overbasing reaction can be conveniently removed by distillation either during or after the reaction.


In one embodiment, the overbasing reaction is carried out in a reactor by reacting the salt of the sulfurized alkyl-substituted hydroxyaromatic composition with a source of an alkaline earth metal such as lime (i.e., an alkaline earth metal hydroxide) in the presence of carbon dioxide, and in the presence of an aromatic solvent (e.g., xylene), and a hydrocarbyl alcohol such as methanol. Conveniently, the reaction is conducted by the simple expedient of bubbling gaseous carbon dioxide through the reaction mixture. The carbon dioxide may be introduced over a period of about 1 hour to about 3 hours, at a temperature ranging from about 30° C. to about 60° C. The degree of overbasing may be controlled by the quantity of the source of an alkaline earth metal, carbon dioxide and the reactants added to the reaction mixture and the reaction conditions used during the carbonation process.


In another embodiment, the overbasing reaction can be carried out between 140° C. and 180° C. in the presence of a polyol, typically an alkylene diol, e.g., ethylene glycol, and/or alkanols, e.g., C6 to C16 alkanols, such as decyl alcohols, 2-ethyl hexanol. Excess solvent and any water formed during the overbasing reaction can be conveniently removed by distillation either during or after the reaction.


The overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition may have a TBN of from about 50 to about 500.


In general, the resulting neutral or overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition will contain an amount, by combined mass, of unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt that will need to be further reduced in order to minimize any potential health risks to customers and to avoid potential regulatory issues. In one embodiment, the resulting neutral or overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition will ordinarily contain from about 2 to about 10 wt. %, by combined mass, of the unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt.


In addition, as one skilled in the art would readily understand, the salt of a sulfurized alkyl-substituted hydroxyaromatic composition can contain other components in addition to the unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt.


In step (b), the unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound of the neutral or overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition is protonated with an effective amount of an acidic compound capable of protonating the unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound.


In general, an effective amount of the acidic compound present in step (b) will necessary depend on the type of acidic compound being used in order to provide the resulting neutral or overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition having a sufficient amount of the unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt removed from it. Accordingly, in one embodiment, an effective amount of the acidic compound is an amount to provide the resulting neutral or overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition containing less than about 1.5 wt. % of the unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt. In another embodiment, an effective amount of the acidic compound is an amount to provide the resulting neutral or overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition containing less than about 0.3 wt. % of the unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt. Generally, an effective amount of the acidic compound is an amount ranging from about 1 wt. % to about 25 wt. %, based on the total amount of the neutral or overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition.


In one embodiment, the acidic compound is a saturated or unsaturated carboxylic acid such as a saturated or unsaturated monocarboxylic acid, or a saturated or unsaturated polycarboxylic acid, e.g., a saturated or unsaturated dicarboxylic acid or a saturated or unsaturated tricarboxylic acid. Suitable saturated or unsaturated carboxylic acids include saturated or unsaturated aliphatic monocarboxylic acids, saturated or unsaturated cycloaliphatic monocarboxylic acids, saturated or unsaturated aromatic monocarboxylic acids, saturated or unsaturated aliphatic dicarboxylic acids, saturated or unsaturated cycloaliphatic dicarboxylic acids, saturated or unsaturated aromatic dicarboxylic acids, saturated or unsaturated aliphatic tricarboxylic acids, saturated or unsaturated cycloaliphatic tricarboxylic acids, saturated or unsaturated aromatic tricarboxylic acids and the like.


In one embodiment, a representative saturated or unsaturated carboxylic acid is of the general formula:




embedded image



wherein R1 is H or —COOH and n is 1 or R1 is a linear or branched alkyl, alkenyl, cycloalkyl, cycloalkenyl, cycloalkylalklyl, aryl, alkaryl, or aralkyl group, any of which may or may not be substituted with one or more functional groups other than COOH, e.g., hydroxyl group, a substituted or unsubstituted C1 to C30 alkyl, a substituted or unsubstituted C2 to C30 alkenyl, a substituted or unsubstituted C3 to C30 cycloalkyl, a substituted or unsubstituted C3 to C3 cycloalkylalkyl, a substituted or unsubstituted C3 to C30 cycloalkenyl, a substituted or unsubstituted C5 to C30 aryl or a substituted or unsubstituted C5 to C30 arylalkyl, and n is 1, 2 or 3.


Suitable aliphatic monocarboxylic acids include a saturated or unsaturated aliphatic monocarboxylic acids having from about 1 to 30 carbon atoms. The aliphatic group can be linear or branched, and can have a substituent such as hydroxyl or an alkoxy group. Examples of aliphatic monocarboxylic acids include, but are not limited to, formic acid, acetic acid, phenylacetic acid, propionic acid, alanine, butyric acid, hydroxybutyric acid, valeric acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, 2-methylpropionic acid, 2-methylbutyric acid, 3-methylbutyric acid, 2-methylpentanoic acid, 2-ethylhexanoic acid, 2-propylheptanoic acid, pivalic acid, neononanoic acid, neodecanoic acid, neotridecanoic acid, stearic acid, myristic acid, palmitic acid, linolic acid, linoleic acid, oleic acid, lauric acid, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, and the like and mixtures thereof.


In one embodiment, a suitable monocarboxylic acid is a C4 to C22 linear saturated or unsaturated monocarboxylic acid including, but not limited to, butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, myristic acid, tridecylic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, behenic acid, myristoleic acid, oleic acid, arachidonic acid, linoleic acid, and the like and mixtures thereof.


Examples of an aromatic monocarboxylic acid includes benzoic acid, nitrobenzoic acid, monohydroxybenzoic acid such as salicylic, 3-hydroxybenzoic acid and 4-hydroxybenzoic acid, alkylhydroxybenzoic acid, chlorobenzoic acid, methoxybenzoic acid, t-butyl benzoic acid, methylbenzoic acid, and phenyl alkyl acids, for example, phenyl acetic acid, 3-phenyl propionic acid, 4-phenyl butyric acid, 3-(p-chlorophenyl) butanoic acid, and the like and mixtures thereof.


Examples of aliphatic dicarboxylic acid include, but are not limited to, oxalic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid and fumaric acid. Examples of aromatic dicarboxylic acids include, but are not limited to, phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 2,8-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, traumatic acid, muconic acid (double unsaturation) and the like and mixtures thereof.


Examples of polycarboxylic acids such as tricarboxylic acids include, but are not limited to, citric acid, isocitric acid, aconitic acid (unsaturated), carbalyllic acid mellitic (benzenehexacarboxylic) acid and the like and mixtures thereof.


In one embodiment, a suitable acidic compound includes polyalkenyl succinic acids or anhydrides thereof. In general, polyalkenyl succinic acids or anhydrides thereof are the reaction product of a polyalkenyl reactant and an unsaturated acidic reagent. The polyalkenyl succinic acid or anhydride can be formed, for example, the chlorination reaction process or the thermal reaction process.


The polyalkenyl reactant is a polyalkene that can be a polymer of a single type of olefin or it can be a copolymer of two or more types of olefins. The principal sources of the polyalkenyl radical include olefin polymers, particularly polymers made from mono-olefins having from 2 to about 30 carbon atoms. Especially useful are the polymers of 1-mono-olefins such as ethylene, propene, 1-butene, and isobutene. Polymers of isobutene are preferred.


The polyalkenyl substituent of the succinic compound can have a number average molecular weight of about 350 to 5000. In one embodiment, the polyalkenyl substituent can have a number average molecular weight of from about 700 to 3000. In one embodiment, the polyalkenyl substituent can have a number average molecular weight from about 900 to about 2500. In one embodiment, the polyalkenyl substituent can have a number average molecular weight of about 1000. In one embodiment, the polyalkenyl substituent can have a number average molecular weight of about 2300. The most common sources of these polyalkenes are the polyolefins such as polyethylene, polypropylene, polyisobutene, etc.


The unsaturated acidic reagent for use in reacting with the foregoing polyalkenyl reactant can be any ethylenically unsaturated carboxylic acid or source of carboxylic acid functionality. These reactants typically contain at least one ethylenic bond and at least one and preferably two carboxylic acid groups, an anhydride group or a polar group which is convertible into a carboxylic acid group by oxidation or hydrolysis. In one embodiment, the unsaturated acidic reagent can be a maleic or fumaric reagent of the general formula:




embedded image



wherein X and X′ are the same or different, provided that at least one of X and X′ is a group that is capable of reacting to esterify alcohols, form metal salts with reactive metals or basically reacting metal compounds and otherwise function as acylating agents. Typically, X and X′ comprise functional groups that may comprise one or more of —OH; —O—R3 wherein R3 is a lower alkyl of 1 to 6 carbon atoms; or taken together X and X′ may be —O— so as to form an anhydride. Preferably, X and X′ are such that both carboxylic functions can enter into acylation reactions. Suitable unsaturated acidic reagents include, but are not limited to, electron-deficient olefins such as maleic anhydride, maleic acid, maleic acid monoesters and diesters, fumaric acid, and fumaric acid monoesters and diesters.


In one embodiment, a suitable acidic compound includes organic sulfonic acids such as aliphatic sulfonic acids, aromatic sulfonic acids and the like and mixtures thereof. Suitable aliphatic sulfonic acids include C1 to C20 aliphatic sulfonic acids such as an alkylsulfonic acid having 1 to 6 carbon atoms, for example, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butansulfonic acid, pentanesulfonic acid, hexanesulfonic acid and like and mixtures thereof. Suitable aromatic sulfonic acids include aromatic sulfonic acids having 6 to 10 carbon atoms and alkyl aromatic sulfonic acids having 6 to 40 carbon atoms such as, for example, benzenesulfonic acid, naphthalenesulfonic acid, p-toluenesulfonic acid, p-methoxybenzenesulfonic acid and like and mixtures thereof.


In one embodiment, a suitable acidic compound includes amine or ammonium salts such as ammonium acetate.


In one embodiment, a suitable acidic compound can be a peroxide such as hydrogen peroxide.


As one skilled in the art will readily appreciate, the reaction conditions to protonate the unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound will necessarily depend on the reactants employed and their respective effective amount. In one embodiment, suitable reaction conditions include a temperature ranging from about 40° C. to about 200° C. and time period for the reaction ranging from about 5 minutes to about 24 hours.


If desired, step (b) can be carried out in the presence of a suitable solvent, which can be recovered from the reaction product. Suitable solvents include organic solvents such as, for example, aromatic hydrocarbon solvents such as toluene, benzene, and the like, alcohol solvents such as methanol, ethanol, decylalcohol, 2-ethyl hexanol and the like, and mixtures thereof. If desired, the reaction may be carried out in a mineral lubricating oil and the resulting product is recovered as a lubricating oil concentrate.


Step (c) of the process of the present invention involves removing substantially all of the unsulfurized alkyl-substituted hydroxyaromatic compound and the protonated unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound from the composition to provide a composition substantially free of the unsulfurized alkyl-substituted hydroxyaromatic compound and the protonated unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound. The term “substantially free” as used herein means relatively low levels, if any, of the unsulfurized alkyl-substituted hydroxyaromatic compound and the protonated unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound which remains after the step (c), e.g., less than about 1.5 wt. %, or less than about 0.3 wt. %. In one embodiment, the term “substantially free” ranges from about 0.1 to less than about 1.5 wt. %. In another embodiment, the term “substantially free” ranges from about 0.1 to less than about 1 wt. %. In another embodiment, the term “substantially free” ranges from about 0.1 to about 0.3 wt. %.


In one embodiment, the unsulfurized alkyl-substituted hydroxyaromatic compound and the protonated unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound can be removed from the composition of step (b) by distillation. However the sulfurized alkyhydroxyaromatic reaction product is thermally unstable and tends to rearrange to form longer chain oligomers which leads to an increase of the concentration of the starting alkylhydroxyaromatic. Those rearrangements are described in the literature for sulfurized phenol by, for example, Neale et al., Tetrahedron, Vol. 25, p 4583-4591 (1969). In one embodiment, the distillation step is carried out by continuous falling film distillation or wiped film evaporation taking into account such factors as, for example, the viscosity of the sulfurized alkyhydroxyaromatic compound, e.g., a viscosity measured at 100° C. of from about 100 cst to about 700 cst.


Optionally, an inert liquid medium, such as a diluent oil or a lubricant base oil, may then be added to the reaction mixture to reduce the viscosity of the reaction mixture and/or disperse the product. Suitable diluent oils are known in the art, and are defined, for example, in FUELS AND LUBRICANTS HANDBOOK, (George E. Totten, ed., (2003)) at page 199, as “base fluids . . . of mineral origin, synthetic chemical origin or biological origin.”


The distillation step is typically carried out at a temperature ranging from about 180 to about 250° C. under a pressure of about 1 mbar.


The resulting neutral or overbased salt of the sulfurized alkyl-substituted hydroxyaromatic composition is advantageously employed in a lubricating oil composition containing at least a major amount of an oil of lubricating viscosity. The lubricating oil compositions may also contain other conventional additives that can impart or improve any desirable property of the lubricating oil composition in which these additives are dispersed or dissolved. Any additive known to a person of ordinary skill in the art may be used in the lubricating oil compositions disclosed herein. Some suitable additives have been described in Mortier et al., “Chemistry and Technology of Lubricants,” 2nd Edition, London, Springer, (1996); and Leslie R. Rudnick, “Lubricant Additives: Chemistry and Applications,” New York, Marcel Dekker (2003), both of which are incorporated herein by reference. For example, the lubricating oil compositions can be blended with antioxidants, anti-wear agents, detergents such as metal detergents, rust inhibitors, dehazing agents, demulsifying agents, metal deactivating agents, friction modifiers, pour point depressants, antifoaming agents, co-solvents, package compatibilisers, corrosion-inhibitors, ashless dispersants, dyes, extreme pressure agents and the like and mixtures thereof. A variety of the additives are known and commercially available. These additives, or their analogous compounds, can be employed for the preparation of the lubricating oil compositions of the invention by the usual blending procedures.


The following non-limiting examples are illustrative of the present invention. Reactions were performed in a round bottom flask equipped with a magnetic stirrer or a mechanical stirrer for larger scale batches. Chemicals were purchased from Aldrich, Acros, Fisher and Alfa Aesar and used without further purification. The commercial sulphurized overbased metal phenate detergent used in the examples is from Chevron Oronite Company LLC.


The concentration of total free unsulfurized alkylhydroxyaromatic compound and its unsulfurized metal salts (i.e., “total TPP” or “total residual TPP”) in the salt of a sulfurized alkyl-substituted hydroxyaromatic composition as disclosed herein and exemplified below, as well as lubricants and oil additives containing salts of a sulfurized alkyl-substituted hydroxyaromatic composition is determined by reverse phase High Performance Liquid Chromatography (HPLC). In the HPLC method, samples were prepared for analysis by weighing accurately 80 to 120 mg of sample into a 10 ml volumetric flask, diluting to the level mark with methylene chloride, and mixing until the sample is fully dissolved.


The HPLC system used in the HPLC method included a HPLC pump, a thermostatted HPLC column compartment, HPLC fluorescence detector, and PC-based chromatography data acquisition system. The particular system described is based on an Agilent 1200 HPLC with ChemStation software. The HPLC column was a Phenomenex Luna C8(2) 150×4.6 mm 5 μm 100 Å, P/N 00F4249E0.


The following system settings were used in performing the analyses:


Pump flow=1.0 ml/min


Maximum pressure=200 bars


Fluorescence wavelength: 225 excitation 313 emission: Gain=9


Column Thermostat temperature=25C


Injection Size=1 μL of diluted sample


Elution type: Gradient, reverse phase


Gradient: 0-7 min 85/15 methanol/water switching to 100% methanol linear gradient.


Run time: 17 minutes


The resulting chromatogram typically contains several peaks. Peaks due to the free unsulfurized alkylhydroxyaromatic compound typically elute together at early retention times; whereas peaks due to sulfurized salts of alkylhydroxyaromatic compounds typically elute at longer retention times. For purposes of quantitation, the area of the single largest peak of the free unsulfurized alkylhydroxyaromatic compound and its unsulfurized metal salt was measured, and then that area was used to determine the concentration of the total free unsulfurized alkylhydroxyaromatic compound and its unsulfurized metal salt species. The assumption is that the speciation of alkylhydroxyaromatic compounds does not change; if something does change the speciation of the alkylhydroxyaromatic compounds, then recalibration is necessary.


The area of the chosen peak is compared to a calibration curve to arrive at the wt. % of free alkylphenol and free unsulfurized salts of alkylphenols. The calibration curve was developed using the same peak in the chromatogram obtained for the free unsulfurized alkylhydroxyaromatic compound used to make the phenate product.


Example 1

To 1.36 g of a sulphurized overbased metal phenate detergent (7.1 wt. % of residual total TPP, determined by HPLC method) preheated at 80° C. was added dropwise 38 mg (2.7 wt. % of the total weight of the reaction mixture) of glacial acetic acid. The reaction mixture was stirred overnight and the residual monalkylphenols was removed by distillation under reduced pressure affording the detergent with 0.32 wt. % of residual total alkylphenol (determined by HPLC) after base oil amount adjustment.


Example 2

According to the general procedure described in Example 1, 2 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 182 mg of glacial acetic acid (8 wt. %), to afford after distillation a product with 0.03 wt. % of residual total alkylphenol (determined by HPLC).


Example 3

According to the general procedure described in example 1, 362 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 51 g of stearic acid (12 wt. %; 97% pure), to afford after distillation a product with 0.23 wt. % of residual total alkylphenol (determined by HPLC).


Example 4

According to the general procedure described in Example 1, 5.0 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 830 mg of palmitic acid (14 wt. %; 95% pure), to afford after distillation a product with 0.10 wt. % of residual total alkylphenol (determined by HPLC).


Example 5

According to the general procedure described in Example 1, 3.3 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 0.29 g of lauric acid (8 wt. %; 99.5% pure), to afford after distillation a product with 0.64 wt. % of residual total alkylphenol (determined by HPLC).


Example 6

According to the general procedure described in Example 1, 12.1 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 0.51 g of oxalic acid (4 wt. %), to afford after distillation a product with 1.45 wt. % of residual total alkylphenol (determined by HPLC).


Example 7

According to the general procedure described in example 1, 10.6 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 351 mg of citric acid (3.2 wt. %), to afford after distillation a product with 2.45 wt. % of residual total alkylphenol (determined by HPLC).


Example 8

According to the general procedure described in Example 1, 6.4 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 0.5 g of terephthalic acid (6.6 wt. %), to afford after distillation a product with 0.81 wt. % of residual total alkylphenol (determined by HPLC).


Example 9

According to the general procedure described in Example 1, 3.2 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 110 mg of propionic acid (3.4 wt. %), to afford after distillation a product with 0.76 wt. % of residual total alkylphenol (determined by HPLC).


Example 10

According to the general procedure described in Example 1, 4.3 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 176 mg of butyric acid (4 wt. %), to afford after by distillation a product with 0.67 wt. % of residual total alkylphenol (determined by HPLC).


Example 11

According to the general procedure described in Example 1, 3.7 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 201 mg of caprylic acid (4 wt. %), to afford after distillation a product with 0.67 wt. % of residual total alkylphenol (determined by HPLC).


Example 12

According to the general procedure described in Example 1, 3.4 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 230 mg of caproic acid (5.2 wt. %), to afford after distillation a product with 0.79 wt. % of residual total alkylphenol (determined by HPLC).


Example 13

According to the general procedure described in Example 1, 11.0 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 714 mg of p-toluene sulfonic acid (8.2 wt. %), to afford after distillation a product with 0.18 wt. % of residual total alkylphenol (determined by HPLC).


Example 14

According to the general procedure described in Example 1, 10.9 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 974 mg of triethylammonium chloride (6.1 wt. %), to afford after distillation a product with 0.13 wt. % of residual total alkylphenol (determined by HPLC).


Example 15

According to the general procedure described in Example 1, 8.7 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 316 mg of ammonium acetate (3.5 wt. %), to afford after distillation a product with 1.2 wt. % of residual total alkylphenol (determined by HPLC).


Example 16

According to the general procedure described in Example 1, 9.0 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 226 mg of ammonium chloride (2.4 wt. %), affording after by distillation a product with 4.1 wt. % of residual total alkylphenol (determined by HPLC).


Example 17

According to the general procedure described in Example 1, 10.3 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 575 mg of pyridinium hydrochloride (5.3 wt. %; 98 wt. % pure), to afford after distillation a product with 1.05 wt. % of residual total alkylphenol (determined by HPLC).


Example 18

According to the general procedure described in Example 1, 4.0 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 1.1 g (21 wt. %) of AS305BD (an alkyl-toluene sulfonic acid that has been degassed), commercially available from Chevron Oronite Company LLC (Belle Chase. LA), to afford after distillation a product with 1.07 wt. % of residual total alkylphenol (determined by HPLC).


Example 19

According to the general procedure described in Example 1, 4.7 g of the sulphurized overbased metal phenate detergent was reacted with 1.0 g (21 wt. %) of AS305D (an alkyl-toluene sulfonic acid that has been degassed), commercially available from Chevron Oronite Company LLC (Belle Chase, La.), to afford after distillation a product with 0.29 wt. % of residual total alkylphenol (determined by HPLC).


Example 20

According to the general procedure described in Example 1, 4.1 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 1.21 g (23 wt. %) of AS584 (a mixture of two different alkyl-benzene sulfonic acids), commercially available from Chevron Oronite Company LLC, to afford after distillation a product with 0.45 wt. % of residual total alkylphenol (determined by HPLC).


Example 21

According to the general procedure described in Example 1, 10.1 g of the sulphurized overbased metal phenate detergent used in Example 1 was reacted with 516 mg of hydrogen peroxide (4.8 wt. %; 31.6 wt. % pure), to afford after distillation a product with 1.93 wt. % of residual total alkylphenol (determined by HPLC).


It will be understood that various modifications may be made to the embodiments disclosed herein. Therefore the above description should not be construed as limiting, but merely as exemplifications of preferred embodiments. For example, the functions described above and implemented as the best mode for operating the present invention are for illustration purposes only. Other arrangements and methods may be implemented by those skilled in the art without departing from the scope and spirit of this invention. Moreover, those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims
  • 1. A process for preparing a salt of a sulfurized alkyl-substituted hydroxyaromatic composition having a reduced content of unsulfurized alkyl-substituted hydroxyaromatic compound and its unsulfurized metal salt, the process comprising the steps of: (a) providing a composition comprising (i) a salt of a sulfurized alkyl-substituted hydroxyaromatic compound; (ii) an unsulfurized alkyl-substituted hydroxyaromatic compound and (iii) an unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound; wherein the alkyl-substituted hydroxyaromatic compound is derived from alkylation of a hydroxyaromatic compound with one or more olefins comprising C9 to C18oligomers of monomers selected from propylene, butylene or mixtures thereof;(b) protonating the unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound with an effective amount of an acidic compound capable of protonating the unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound; and(c) removing the unsulfurized alkyl-substituted hydroxyaromatic compound and the protonated unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound from the composition wherein the salt of the sulfurized alkyl-substituted hydroxyaromatic composition obtained in step (c) contains less than or equal to 2.45 wt. % of the unsulfurized alkyl-substituted hydroxyaromatic compound and its metal salt.
  • 2. The process of claim 1, wherein the hydroxyaromatic compound is a phenol and the one or more olefins comprising C9 to C18 oligomers are one or more olefins comprising C9 to C18 propylene oligomers.
  • 3. The process of claim 1, wherein the salt of a sulfurized alkyl-substituted hydroxyaromatic composition provided in step (a) is an overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition.
  • 4. The process of claim 1, wherein the acidic compound is a saturated or unsaturated carboxylic acid.
  • 5. The process of claim 4, wherein the saturated or unsaturated carboxylic acid is selected from the group consisting of a saturated or unsaturated aliphatic monocarboxylic acid, a saturated or unsaturated cycloaliphatic monocarboxylic acid, a saturated or unsaturated aromatic monocarboxylic acid, a saturated or unsaturated aliphatic dicarboxylic acid, a saturated or unsaturated cycloaliphatic dicarboxylic acid, a saturated or unsaturated aromatic dicarboxylic acid, a saturated or unsaturated aliphatic tricarboxylic acid, a saturated or unsaturated cycloaliphatic tricarboxylic acid, a saturated or unsaturated aromatic tricarboxylic acid and mixtures thereof.
  • 6. The process of claim 4, wherein the saturated or unsaturated carboxylic acid is selected from the group consisting of formic acid, acetic acid, phenylacetic acid, propionic acid, alanine, butyric acid, hydroxybutyric acid, valeric acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, 2-methylpropionic acid, 2-methylbutyric acid, 3-methylbutyric acid, 2-methylpentanoic acid, 2-ethylhexanoic acid, 2-propylheptanoic acid, pivalic acid, neononanoic acid, neodecanoic acid, neotridecanoic acid, stearic acid, myristic acid, palmitic acid, linolic acid, linoleic acid, oleic acid, lauric acid, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, and mixtures thereof.
  • 7. The process of claim 4, wherein the saturated or unsaturated carboxylic acid is a C4 to C22 linear saturated or unsaturated monocarboxylic acid selected from the group consisting of butyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, undecylic acid, lauric acid, myristic acid, tridecylic acid, pentadecanoic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, behenic acid, myristoleic acid, oleic acid, arachidonic acid, linoleic acid, and mixtures thereof.
  • 8. The process of claim 4, wherein the saturated or unsaturated carboxylic acid is an aromatic monocarboxylic acid selected from the group consisting of benzoic acid, nitrobenzoic acid, monohydroxybenzoic acid such as salicylic, 3-hydroxybenzoic acid and 4-hydroxybenzoic acid, alkylhydroxybenzoic acid, chlorobenzoic acid, methoxybenzoic acid, t-butyl benzoic acid, methylbenzoic acid, phenyl acetic acid, 3-phenyl propionic acid, 4-phenyl butyric acid, 3-(p-chlorophenyl) butanoic acid, and mixtures thereof.
  • 9. The process of claim 4, wherein the saturated or unsaturated carboxylic acid is an aliphatic dicarboxylic acid selected from the group consisting of oxalic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, malonic acid, succinic acid, glutaric acid, adipic acid, maleic acid and fumaric acid, Examples of aromatic dicarboxylic acids include, but are not limited to, phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 2,8-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, traumatic acid, muconic acid and mixtures thereof.
  • 10. The process of claim 4, wherein the saturated or unsaturated carboxylic acid is an aromatic dicarboxylic acid selected from the group consisting of phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalene dicarboxylic acid, 1,4-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 2,8-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, traumatic acid, muconic acid, and mixtures thereof.
  • 11. The process of claim 4, wherein the saturated or unsaturated carboxylic acid is a tricarboxylic acid selected from the group consisting of citric acid, isocitric acid, aconitic acid (unsaturated), carbalyllic acid mellitic (benzenehexacarboxylic) acid, and mixtures thereof.
  • 12. The process of claim 1, wherein the acidic compound is a polyalkenyl succinic acid or anhydride thereof.
  • 13. The process of claim 1, wherein the acidic compound is an aliphatic sulfonic acid, aromatic sulfonic acid or mixtures thereof.
  • 14. The process of claim 13, wherein the aliphatic sulfonic acid is selected from the group consisting of methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butansulfonic acid, pentanesulfonic acid, hexanesulfonic acid and mixtures thereof.
  • 15. The process of claim 13, wherein the aromatic sulfonic acids is selected from the group consisting of benzenesulfonic acid, naphthalenesulfonic acid, p-toluenesulfonic acid, p-methoxybenzenesulfonic acid and mixtures thereof.
  • 16. The process of claim 1, wherein the acidic compound is an amine or ammonium salt.
  • 17. The process of claim 1, wherein the effective amount of the acidic compound is from about 1 wt. % to about 25 wt. %, based on the total amount of the neutral or overbased salt of a sulfurized alkyl-substituted hydroxyaromatic composition.
  • 18. The process of claim 1, wherein the step of removing the unsulfurized alkyl-substituted hydroxyaromatic compound and the protonated unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound from the composition comprises distilling the unsulfurized alkyl-substituted hydroxyaromatic compound and the protonated unsulfurized metal salt of the alkyl-substituted hydroxyaromatic compound from the composition of step (b).
  • 19. The process of claim 1, wherein the salt of the sulfurized alkyl-substituted hydroxyaromatic composition obtained in step (c) contains less than about 1.5 wt. % of the unsulfurized alkyl-substituted hydroxyaromatic compound and its metal salt.
  • 20. The process of claim 1, wherein the salt of the sulfurized alkyl-substituted hydroxyaromatic composition obtained in step (c) contains less than about 0.3 wt. % of the unsulfurized alkyl-substituted hydroxyaromatic compound and its metal salt.
US Referenced Citations (12)
Number Name Date Kind
4328111 Watson et al. May 1982 A
4973411 Jao et al. Nov 1990 A
5663130 Emert et al. Sep 1997 A
6310011 Karn et al. Oct 2001 B1
20030172582 Carabell et al. Sep 2003 A1
20040224858 Esche Nov 2004 A1
20070027057 Le Coent et al. Feb 2007 A1
20080070818 Arrowsmith et al. Mar 2008 A1
20090143264 Harrison et al. Jun 2009 A1
20090170737 Campbell et al. Jul 2009 A1
20110077182 Jukes Mar 2011 A1
20110124539 Sinquin et al. May 2011 A1
Non-Patent Literature Citations (1)
Entry
International Search Report issued in counterpart PCT application No. PCT/US2013/067188 dated Mar. 10, 2014.
Related Publications (1)
Number Date Country
20140142347 A1 May 2014 US