Process for preparing folic acid

Information

  • Patent Grant
  • 6348593
  • Patent Number
    6,348,593
  • Date Filed
    Thursday, February 3, 2000
    25 years ago
  • Date Issued
    Tuesday, February 19, 2002
    23 years ago
Abstract
A process for preparing folic acid, which comprises reacting a tetraalkoxypropanol of the general formula I, in which the substituents R are C1-C4-alkyl, with triaminopyrimidone of the formula II and p-aminobenzoyl-L-glutamic acid of the formula III
Description




The present invention relates to a novel process for preparing folic acid.




Robert B. Angier et al. (JACS, 70 (1948), 25) describe the preparation of folic acid using halogen-free compounds by reacting diethyl p-aminobenzoyl-L-glutamate with 2-hydroxymalonaldehyde, isolating diethyl p-(2,3-dihydroxypropenylideneamino)benzoylglutamate, and reacting the intermediate with triaminopyrimidone.




Other preparation methods are described in: O. Isler, G. Brubacher, S. Ghisla, B. Kräutler, Vitamine II; G. Thieme Verlag Stuttgart (1988).




A low yield of folic acid is common to all these methods.




In addition, EP-A-0 608 693 describes a process for preparing folic acid in which 2-substituted malonaldehydes are reacted with p-aminobenzoyl-L-glutamic acid to form the corresponding diamine, which is reacted with triaminopyrimidone in the presence of sulfite to give folic acid. The disadvantage of this process is the difficulty of obtaining 2-substituted malonaldehyde.




It is an object of the present invention to provide a process for preparing folic acid with which folic acid is obtained in good yields by use of easily obtainable starting materials.




We have found that this object is achieved by a process for preparing folic acid, which comprises reacting a tetraalkoxypropanol of the general formula I,











in which the substituents R are C


1


-C


4


-alkyl, with triaminopyrimidone of the formula II and p-aminobenzoyl-L-glutamic acid of the formula III











Alkyl radicals for R mean C


1


-C


4


-alkyl radicals, for example methyl, ethyl, n-propyl, isopropyl or n-butyl, preferably methyl or ethyl, particularly preferably methyl.




It has now been found, surprisingly, that folic acid can be obtained in high yields by using tetraalkoxypropanol of the formula I, in particular tetramethoxypropanol which is easily obtainable industrially by electrochemical oxidation of methylglyoxal dimethyl acetal.




For the purpose of the process according to the invention, it is possible in the first reaction step to react the tetraalkoxypropanol both with triaminopyrimidone of the formula II and with the p-aminobenzoyl-L-glutamic acid of the formula III, the reaction advantageously taking place under acid conditions at a pH below 4 and at a temperature in the range from 0 to 100° C.




The first reaction is preferably that of the tetraalkoxypropanol with the p-aminobenzoyl-L-glutamic acid of the formula III.




The reaction can take place in aqueous medium, where appropriate with the addition of inert, water-miscible, organic solvents such as acetonitrile, tetrahydrofuran, dimethylformamide, methanol, ethanol etc.




The acid reaction conditions can be adjusted, for example, by adding aqueous mineral acids such as aqueous hydrochloric acid, sulfuric acid, phosphoric acid, by adding organic C


1


-C


4


-carboxylic acids such as formic acid, acetic acid or propionic acid or by means of an acidic ion exchanger. Preferred acids in this connection are aqueous hydrochloric acid, formic acid and acetic acid.




Under the acidic hydrolysis conditions, the ketones of the general formula Ia











in which the substituents R are C


1


-C


4


-alkyl, R


1


is hydrogen or —C(═O)—R


2


and R


2


is hydrogen or C


1


-C


3


-alkyl, can be prepared from the corresponding compounds of the general formula I.




Alkyl radicals for R mean the C


1


-C


4


-alkyl radicals already mentioned above.




Alkyl radicals for R


2


mean C


1


-C


3


-alkyl radicals such as methyl, ethyl, n-propyl or isopropyl.




Preferred radicals for R


2


are hydrogen or methyl.




Very particularly preferred ketones of the formula Ia are those in which R is methyl and R


1


is hydrogen or acetyl [—C(═O)—CH


3


].




The reaction, which has been mentioned at the outset and is preferably carried out, of tetraalkoxypropanol with p-aminobenzoyl-L-glutamic acid of the formula III can, under the abovementioned acidic conditions, lead in situ via the ketones of the general formula Ia to the intermediates of the general formula IV,











in which the substituent Y is











and R is C


1


-C


4


-alkyl, preferably methyl.




The reaction of compounds of the formula IV with triaminopyrimidone of the formula II advantageously takes place in the presence of sulfite, or inorganic compounds which form sulfites in water, at a pH of from 3 to 8 and temperatures of about 0 to 100° C.




The employed sulfites or inorganic compounds which form sulfites in water are compounds such as Na


2


SO


3


, K


2


SO


3


, H


2


SO


3


, NaHSO


3


, Na


2


S


2


O


5


or SO


2


and the like. It is likewise possible to employ triaminopyrimidone sulfite.




The intermediates Ia and IV formed in the folic acid preparation according to the invention can be isolated after their preparation and then employed further in the process according to the invention. However, they can also be prepared in situ, and the reaction can accordingly also be carried out in a one-pot reaction.




The invention also relates to ketones of the general formula Ia











in which the substituent R is C


1


-C


4


-Alkyl.




Preferred ketones of the general formula Ib are those in which the substituent R is methyl.




The invention likewise relates to compounds of the general formula IV











in which the substituent Y is











and R is C


1


-C


4


-alkyl, preferably methyl.











EXAMPLE




7.5 g of 2,2,3,3-tetramethoxy-1-propanol were dissolved in 25 ml of acetic acid and heated to reflux. About 1.5 g of a low boiler were distilled off. After a reaction time of two hours, distillation was carried out under 20 mbar. At 110 to 120° C., 5.8 g of a fraction of about 80% acetoxymethylglyoxal dimethyl acetal (A) and 12% hydroxymethylglyoxal dimethyl acetal (B) distilled.










Claims
  • 1. A process for preparing folic acid, which comprises reacting a tetraalkoxypropanol of the general formula I, in which the substituents R are C1-C4-alkyl, with triaminopyrimidone of the formula II and p-aminobenzoyl-L-glutamic acid of the formula III
  • 2. A process as claimed in claim 1, wherein firstly tetraalkoxypropanol of the general formula I is reacted with p-aminobenzoyl-L-glutamic acid of the formula III, and subsequently the product formed in the reaction is reacted with triaminopyrimidone of the formula II to give folic acid.
  • 3. A process as claimed in claim 1, wherein firstly tetraalkoxypropanol of the general formula I is reacted with triaminopyrimidone of the formula II, and subsequently the product formed in the reaction is reacted with p-aminobenzoyl-L-glutamic acid of the formula III to give folic acid.
  • 4. A process as claimed in claim 1, which is carried out as a one-pot reaction.
  • 5. A process as claimed in claim 1, wherein the reaction with triaminopyrimidone takes place in the presence of sodium sulfite.
  • 6. A process as claimed in claim 1, wherein the tetraalkoxypropanol of the general formula I is hydrolyzed with acid before the reaction with the compounds of the formulae II and/or III.
  • 7. A process as claimed in claim 6, wherein the tetraalkoxypropanol of the general formula I is hydrolyzed before the reaction with the compounds of the formulae II and/or III in the presence of a C1-C4-carboxylic acid to give the ketone of the general formula Ia in which the substituents R are C1-C4-alkyl, R1 is hydrogen or —C(═O)—R2 and R2 is hydrogen or C1-C3-alkyl.
  • 8. A process as claimed in claim 1, wherein tetramethoxypropanol is reacted with triaminopyrimidone of the formula II and p-aminobenzoyl-L-glutamic acid of the formula III.
  • 9. A ketone of the general formula Ib in which the substituent R is C1-C4-alkyl.
  • 10. A ketone of the general formula Ib as claimed in claim 9, in which the substituent R is methyl.
  • 11. A compound of the formula IV in which the substituent Y is and R is C1-C4-alkyl.
Priority Claims (1)
Number Date Country Kind
199 04 812 Feb 1999 DE
US Referenced Citations (5)
Number Name Date Kind
2436073 Mowat et al. Feb 1948 A
2956057 Kawanishi et al. Oct 1960 A
4080325 Ellard Mar 1978 A
5159117 Wegner et al. Oct 1992 A
5410056 Wehrli Apr 1995 A
Foreign Referenced Citations (6)
Number Date Country
1254138 Nov 1964 DE
122479 Oct 1984 EP
451835 Oct 1991 EP
472118 Feb 1992 EP
0 608 693 Aug 1994 EP
9920626 Apr 1999 WO
Non-Patent Literature Citations (3)
Entry
Angier et al. “Synthesis of Pteroyglutamic Acid” JACS vol. 70 (1948).
Gangjee et al Journal of Heterocyclic Chemistry 1995, 32, pp. 243-247.*
Hawthorne et al Journal of Organic Chemistry 1963, 28(10), pp. 2831-2835.