The invention relates to a process for preparing linear α-olefins by oligomerizing ethylene in the presence of an organic solvent and of a homogeneous liquid catalyst in a reactor.
A process of this type for preparing linear α-olefins by oligomerization of ethylene is disclosed, for example, in DE 4338414. According to the prior art, the oligomerization takes place in the liquid phase in the lower section of an oligomerization reactor. Since the reaction is exothermic and too high a reaction temperature would lead to a deterioration in the product quality, the heat of reaction has to be removed. According to the prior art, this is accomplished by a cooling circuit by means of direct cooling and gaseous ethylene as a coolant. Gaseous ethylene from the ethylene circuit is conducted into the reactor and dissolved in the liquid phase. This maintains the ethylene concentration required for the oligomerization reaction. The excess of ethylene is used to control the reaction temperature. Since the reaction is strongly exothermic, a large amount of gaseous ethylene is needed for the removal of the heat of reaction, i.e. for direct cooling of the reaction. Only a small amount of the ethylene used reacts in the actual oligomerization reaction.
The prior art will now be explained in detail with reference to
Alternatively, the temperature of the gaseous ethylene 1 which is conducted into the reactor 2 as an input can be regulated with a heat exchanger 6. In this case, however, the temperature of the heat exchanger 6 must be variable.
The process outlined according to the prior art has a series of disadvantages. In order to remove the heat of reaction of the oligomerization reactor, a large amount of gaseous ethylene has to be circulated. Correspondingly, the dimensions of the circulation compressor have to be very large. Secondly, the control of the reaction temperature via the input temperature of the gaseous ethylene with the two heat exchangers or one regulable heat exchanger is inconvenient and complicated.
To avoid these disadvantages, EP 1 748 038 proposes using, as a feedstock for the oligomerization reactor, a small amount of gaseous ethylene and a large amount of inert gas. The inert gases proposed here are principally hydrocarbons such as methane, ethane, propane and propylene, and also hydrogen. Here too, it is necessary to circulate a large amount of gas.
EP 1 749 806 discloses a process for preparing linear α-olefins by oligomerizing ethylene, in which the top of the reactor is cooled by means of a coolant, with the temperature in the top of the reactor kept at 15 to 20° C. and cooling by means of a condenser, the coolant used being propylene. In this case, propylene is liquefied at the top of the reactor and vaporized in the base region of the reactor. This process has the disadvantage that an increased extent of deposit formation occurs on the cold surfaces of the condenser, for example as a result of polymers introduced.
The present invention is based on the problem of alternatively configuring a process for preparing linear α-olefins by oligomerizing ethylene.
A further problem addressed by the present invention is that of reducing the amount of ethylene in the circuit.
In addition, deposit formation in the plant parts is to be reduced.
The present problems are solved by the features of claim 1. Further advantageous configurations of the invention are specified in the dependent claims.
According to the invention, the ethylene is introduced into the reactor at least partly in the liquid state. This significantly increases the capacity to absorb heat of the ethylene introduced. In the case of introduction of the ethylene in the liquid state, the ethylene can absorb much more heat which arises in the oligomerization reaction. The heat absorption capacity of the oligomerization reaction is increased by the amount of heat of vaporization. It is thus possible to absorb the same amount of heat of the oligomerization reaction by means of a significantly smaller amount of ethylene. This allows the amount in the ethylene circuit to be reduced significantly compared to the prior art, and the temperature regulation of the oligomerization reaction to be simplified significantly. By virtue of the small amount circulated, deposit formation is also reduced in the particular plant parts, since a significantly smaller amount of potential deposit formers is also circulated. By virtue of the significantly smaller amount of ethylene which is circulated, the probability of entrained droplets from the biphasic layer of the reactor is also minimized. As a result, a significantly lower level of potential deposit formers passes from the reactor into the circuit. In addition, supply in the liquid phase allows good mixing of the ethylene with the catalyst material present in the liquid phase. Therefore, the oligomerization reaction proceeds with unreduced yield.
In an advantageous configuration of the invention, a liquefied inert gas is additionally introduced into the reactor. An inert gas is understood in the context of the application to mean any gas which behaves inertly with regard to the reactions which take place in the reactor. The liquefied inert gases used are preferably hydrocarbons, preferably propylene, propane and/or hydrocarbons having four carbon atoms. In this configuration of the invention, in addition to ethylene, a liquefied inert gas is introduced into the reaction as a coolant. The liquefied inert gas evaporates in the reactor and is condensed again together with the vaporized ethylene, and recycled into the reactor as a feedstock. The liquefied inert gas selected is readily vaporizable and condensable at acceptable temperatures. The inert gases mentioned here are a good compromise between easy vaporizability under reaction conditions and condensability at coolant temperature. In addition, it has been found that, surprisingly, ethylene can be condensed significantly more easily together with the inert gases mentioned than ethylene alone. The energy expenditure for the liquefaction therefore falls further in this configuration of the invention.
In one configuration of the invention, the reactor has a mechanical stirrer, preferably a gas-introducing stirrer, more preferably a hollow-shaft introducing stirrer. The mechanical stirrer significantly improves the mixing of the gas phase, the liquid phase and the liquid catalyst material. In the case of supply of ethylene via the mechanical stirrer, no further internals are required, and the mixing becomes significantly more efficient. Particularly the use of a hollow-shaft introducing stirrer is appropriate. The hollow-shaft introducing stirrer sucks in the gas phase of the reactor, which further improves the mixing in the reactor.
In a further configuration of the invention, the ethylene, or ethylene and inert gas, which leaves the reactor in gaseous form is only partly condensed. In this configuration of the invention, the dimensions of the condensation are such that the complete gas stream from the reactor is not condensed. The result is a biphasic mixture. The biphasic mixture is separated in a separator, and the liquid phase composed of ethylene or ethylene and inert gas is recycled directly into the reactor, while the gas phase, after compression, is recycled in gaseous form into the reactor. In this configuration of the invention too, the apparatus complexity of the compression is reduced significantly compared to the prior art. In addition, the additional supply in the gas phase leads to better mixing of the reactor contents compared to recycling of a pure liquid phase. On entry into the reactor, the gas displaces the liquid phase, and the resulting bubble formation increases turbulence and hence mixing in the reactor.
Advantageously, the temperature regulation of the reactor is controlled by the control of the volume flow of the liquid phase supplied. In the case of use of a circuit with a liquid coolant, i.e. with ethylene in the liquid phase or ethylene and an inert gas in the liquid phase, the reaction temperature in the oligomerization reactor can be regulated by the control of the volume flow of the input of liquid coolant. Temperature regulation by the control of the volume flow is much simpler than regulation of the input temperature. It is therefore possible in this configuration of the invention to dispense with the one heat exchanger for regulation of the input temperature according to the prior art.
It is possible with the present invention, more particularly, to significantly reduce the apparatus complexity in the performance of a process for preparing linear α-olefins by oligomerization of ethylene. The supply of ethylene in the liquid phase into the oligomerization reactor significantly reduces the amount of coolant required. This allows the circulation compressor for the cooling circuit to be designed for a much smaller amount and to be replaced by a simple circulation pump. In addition, in the case of supply of ethylene in the liquid phase, a heat exchanger for regulation of the input temperature is omitted, or the regulation of the inlet temperature of the ethylene is simplified significantly. This significantly reduces the capital costs of such a process compared to the prior art. In addition, a lower level of deposit formers is circulated, and so the risk of deposit formation and the associated cleaning operations are reduced. The present invention forms an alternative process to the prior art for preparation of linear α-olefins by oligomerizing ethylene.
The invention will be illustrated in detail hereinafter by a comparison of a working example of the invention with the prior art.
The figures show:
The amount of ethylene in the cooling circuit has been reduced significantly compared to the prior art shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2010 006 589 | Feb 2010 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2011/000131 | 1/13/2011 | WO | 00 | 9/13/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/095273 | 8/11/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3349148 | Bush | Oct 1967 | A |
3637897 | Cull et al. | Jan 1972 | A |
3655812 | Langer, Jr. | Apr 1972 | A |
3862257 | Buben et al. | Jan 1975 | A |
4020121 | Kister | Apr 1977 | A |
4040121 | Grundy | Aug 1977 | A |
4155946 | Sato et al. | May 1979 | A |
5557023 | Somogyvari et al. | Sep 1996 | A |
5962761 | Sechrist | Oct 1999 | A |
6534691 | Culver et al. | Mar 2003 | B2 |
20020016521 | Culver et al. | Feb 2002 | A1 |
20030153798 | Kobayashi et al. | Aug 2003 | A1 |
20040122271 | Van Zon et al. | Jun 2004 | A1 |
20040192803 | Figovsky et al. | Sep 2004 | A1 |
20090203946 | Chuang | Aug 2009 | A1 |
20090216057 | Fritz | Aug 2009 | A1 |
20090306312 | Fritz et al. | Dec 2009 | A1 |
20100249343 | Kleingeld et al. | Sep 2010 | A1 |
20100268006 | Gildenhuys | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
4338 414 | Mar 1995 | DE |
4338414 | Mar 1995 | DE |
1 748 038 | Jan 2007 | EP |
1 749 806 | Feb 2007 | EP |
1419732 | Dec 1965 | FR |
50-7043 | Mar 1975 | JP |
54-12303 | Jan 1979 | JP |
2001-89399 | Apr 2001 | JP |
2002-255863 | Sep 2002 | JP |
2004-504282 | Feb 2004 | JP |
2006-500412 | Jan 2006 | JP |
2111200 | May 1998 | RU |
1211249 | Feb 1986 | SU |
WO03053890 | Jul 2003 | WO |
WO 03053890 | Jul 2003 | WO |
2009060342 | May 2009 | WO |
2009060343 | May 2009 | WO |
WO 2009060342 | May 2009 | WO |
WO 2009060343 | May 2009 | WO |
WO2009060343 | May 2009 | WO |
WO 2009060343 | May 2009 | WO |
Entry |
---|
Walas, (“Chemical Reactors” in Perry's Chemical Engineer's Handbook, 7th ed., McGraw-Hill, 1997, R. H. Perry and D. W. Green, eds., pp. 23-44 to 23-49—available on-line Mar. 2001. |
Seider et al., “Product and Process Design Principles, Synthesis, Analysis and Evaluation”, Second Edition, 2004, p. 514-515 and 520-521. |
International Search Report of PCT/EP2011/000131 (dated Jul. 28, 2011). |
English Translation Abstract of JP 2001-089399 published Apr. 3, 2001. |
English Translation Abstract of JP 2002-255863 published Sep. 11, 2002. |
English language translation of Decision on Grant for corresponding Russian Patent Application No. 2012137219/04(060376); dated Mar. 11, 2015. |
English language Abstract for Russian Patent Application No. 2111200; published May 20, 1998. |
Thomson Innovation Patent Record View for SU 1211249, published Feb. 15, 1986. |
European Opposition dated Aug. 10, 2016 for corresponding European Application No. 11700391.3. |
English language Abstract for German Application No. DE4338414C1; published Mar. 16, 1995. |
Number | Date | Country | |
---|---|---|---|
20120330078 A1 | Dec 2012 | US |