The invention relates to a process for the preparation of polycarbonates or copolymers thereof. In particular the invention relates to a process for the preparation of polycarbonates, or copolymers thereof, by ring opening polymerization of five-membered ring cyclic carbonates.
Polycarbonates are becoming more important as alternatives to synthetic polymers. There already exist commercially available polycarbonates with excellent electrical insulating properties, transparency, and heat resistance and polycarbonates are present in many products, like adhesives for compact discs, in packaging, and optical lenses, to name a few.
One of the most widely used polycarbonates is bisphenol A polycarbonate (BPA-PC), which has interesting thermal and mechanical properties but has recently been reported as being a potential hazard in food/human contact applications. Other commercially available polycarbonates such as propylene polycarbonate (PPC), ethylene polycarbonate (PEC), poly(butylene carbonate) (PBC), or poly(trimethylene carbonate) (PTMC), while presenting particular thermo-mechanical properties, still do not provide a durable and attractive alternative, especially as commodity polymers for packaging or as elastomers.
One alternative to bisphenol A polycarbonate is poly(cyclohexene carbonate) (PCHC). PCHC has a melting temperature of 115° C., lower than that of BPA-PC (150° C.) and a degradation temperature of ca. 310° C., similar to that of BPA-PC (300° C.). It has an elongation at break (εr) of 2% and a Young's modulus (E) of 3500 MPa, significantly higher than that of BPA-PC (2400 MPa). Due to these properties, PCHC is a promising replacer for BPA-PC.
Since the late 90s different groups have synthesized PCHC by copolymerizing CO2 with cyclohexene oxide. This synthesis presents problems in controlling the stereochemistry and the chemoselectivity of the PCHC, such that an ether-free polycarbonate sequence is difficult to obtain.
Consequently, it is an object of the present invention to provide an improved process for the polymerization of five-membered cyclic carbonates. It is also an object of the present invention to provide an improved process for the copolymerization of five-membered cyclic carbonates with cyclic esters. It is an object of the present invention to provide novel polycarbonates, particularly poly(cyclic carbonates), more particularly PCHC, with improved mechanical properties.
The present inventors have now found that any one of the objects above can be attained by using the processes as presently claimed.
According to a first aspect of the present invention, a process for preparing a polycarbonate or a copolymer thereof is provided. The process for preparing a polycarbonate or a copolymer thereof comprises the step of homo- or copolymerizing in the presence of at least one catalyst, one or more compounds of formula (I), stereoisomers, racemics, or mixtures thereof; optionally with one or more cyclic esters, stereoisomers, racemics, or mixtures thereof;
wherein
Preferably, the present invention provides a process for preparing a polycarbonate or copolymer thereof, said process comprising copolymerizing in the presence of at least one catalyst, one or more compounds of formula (I), stereoisomers, racemics, or mixtures thereof; with one or more cyclic esters, stereoisomers, racemics, or mixtures thereof;
wherein
More preferably, the present invention provides a process for preparing a polycarbonate or copolymer thereof, said process comprising homo- or copolymerizing in the presence of at least one catalyst, one or more compounds of formula (I), stereoisomers, racemics, or mixtures thereof; optionally with one or more cyclic esters, stereoisomers, racemics, or mixtures thereof;
wherein
According to a second aspect, the present invention further encompasses a process for the synthesis of a compound of formula (I) as defined above, a stereoisomer or racemate thereof, comprising the step of contacting a compound of formula (V), a stereoisomer, or racemate thereof; with at least one reagent selected from the group consisting of an alkyl- or cycloalkyl-chloroformate derivative of formula (VI); an urea; phosgene or a derivative/substitute of phosgene, e.g. triphosgene; a cyclic carbonate; and carbon dioxide;
Preferably, the present invention further provides a process for the synthesis of a compound of formula (I) a stereoisomer or racemate thereof, comprising the step of contacting a compound of formula (V), a stereoisomer, or racemate thereof; with at least one reagent selected from the group consisting of an alkyl- or cycloalkyl-chloroformate of formula (VI); an urea; a phosgene or derivative thereof; a cyclic carbonate; and carbon dioxide;
wherein
According to a third aspect, the present invention also encompasses a polycarbonate or copolymer thereof comprising a recurring unit of formula (VII1) and/or (VII2),
wherein
R21 and R22 are each independently selected from C1-6alkyl, C3-6cycloalkyl, and C6-10aryl; or R21 and R22 taken together with the carbon atoms 4 and 5 to which they are attached form a ring selected from C3-9cycloalkylene, C5-9cycloalkenylene, and C6-12arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino.
Preferably, the present invention also encompasses a polycarbonate or copolymer thereof comprising a recurring unit of formula (VII1) and/or (VII2),
wherein
R21 and R22 taken together with the carbon atoms to which they are attached form a ring selected from C3-9cycloalkylene, C5-9cycloalkenylene, and C6-12arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino.
According to a fourth aspect, the present invention also encompasses a polycarbonate or copolymer thereof comprising recurring unit of formula (VII3) or (VII4),
wherein
Preferably, the present invention also encompasses a polycarbonate or copolymer thereof comprising recurring units of formula (VII3) or of formula (VII4),
In an embodiment, said polycarbonate or copolymer thereof according to the fourth aspect of the invention also comprises less than 2% of monomer having at least one chiral center of inverse configuration compared to that of the enantiopure monomer. This percentage can be measured, after hydrolysis of the precipitated polymer, by chiral chromatography of the vicinal diol resulting from the hydrolysis.
In a fifth aspect, the present invention also encompasses an article comprising a polycarbonate or copolymer thereof according to the third or fourth aspect of the invention, or a polycarbonate prepared according to the first aspect of the invention.
The processes of the present invention allow the production of polycarbonates and copolymers thereof with controlled tacticity, and improved properties such as high molecular mass and narrow molecular mass distribution, and original thermal features, in an efficient and economical way. In addition, the processes of the present invention allow the preparation of polycarbonates and copolymers thereof in a one-pot and one-step method.
The independent and dependent claims set out particular and preferred features of the invention. Features from the dependent claims may be combined with features of the independent or other dependent claims as appropriate.
The above and other characteristics, features and advantages of the present invention will become apparent from the following detailed descriptions, taken in conjunction with the accompanying drawings, which illustrate, by way of examples, the principles of the invention.
The reference figures quoted below refer to the attached drawings.
Before the present process of the invention is described, it is to be understood that this invention is not limited to particular processes, components, or devices described, as such processes, components, and devices may, of course, vary. It is also to be understood that the terminology used herein is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
As used herein, the singular forms “a”, “an”, and “the” include both singular and plural referents unless the context clearly dictates otherwise.
The terms “comprising”, “comprises” and “comprised of” as used herein are synonymous with “including”, “includes” or “containing”, “contains”, and are inclusive or open-ended and do not exclude additional, non-recited members, elements or method steps. The terms “comprising”, “comprises” and “comprised of” also include the term “consisting of”.
The recitation of numerical ranges by endpoints includes all numbers and fractions subsumed within the respective ranges, as well as the recited endpoints.
The term “about” as used herein when referring to a measurable value such as a parameter, an amount, a temporal duration, and the like, is meant to encompass variations of +/−10% or less, preferably +/−5% or less, more preferably +/−1% or less, and still more preferably +/−0.1% or less of and from the specified value, insofar such variations are appropriate to perform in the disclosed invention. It is to be understood that the value to which the modifier “about” refers is itself also specifically, and preferably, disclosed.
Unless otherwise defined, all terms used in disclosing the invention, including technical and scientific terms, have the meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. By means of further guidance, definitions for the terms used in the description are included to better appreciate the teaching of the present invention.
Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases “in one embodiment” or “in an embodiment” in various places throughout this specification are not necessarily all referring to the same embodiment, but may. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner, as would be apparent to a person skilled in the art from this disclosure, in one or more embodiments. Furthermore, while some embodiments described herein include some but not other features included in other embodiments, combinations of features of different embodiments are meant to be within the scope of the invention, and form different embodiments, as would be understood by those in the art. For example, in the following claims, any of the claimed embodiments can be used in any combination.
When describing the present invention, the terms used are to be construed in accordance with the following definitions, unless a context dictates otherwise.
Whenever the term “substituted” is used in the present invention, it is meant to indicate that one or more hydrogens on the atom indicated in the expression using “substituted” is replaced with a selection from the indicated group, provided that the indicated atom's normal valency is not exceeded, and that the substitution results in a chemically stable compound, i.e. a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture.
The term “C1-20alkyl”, as a group or part of a group, refers to a hydrocarbyl radical of Formula CnH2n+1 wherein n is a number ranging from 1 to 20. Generally, the alkyl groups comprise from 1 to 20 carbon atoms, preferably from 1 to 12 carbon atoms, preferably from 1 to 10 carbon atoms, preferably from 1 to 6 carbon atoms, more preferably 1, 2, 3, 4, 5, 6 carbon atoms. Alkyl groups may be linear, or branched and may be substituted as indicated herein. When a subscript is used herein following a carbon atom, the subscript refers to the number of carbon atoms that the named group may contain. Thus, for example, C1-20alkyl groups include all linear, or branched alkyl groups having 1 to 20 carbon atoms, and thus includes for example methyl, ethyl, n-propyl, i-propyl, 2-methyl-ethyl, butyl and its isomers (e.g. n-butyl, i-butyl and t-butyl); pentyl and its isomers, hexyl and its isomers, heptyl and its isomers, octyl and its isomers, nonyl and its isomers, decyl and its isomers, undecyl and its isomers, dodecyl and its isomers, tridecyl and its isomers, tetradecyl and its isomers, pentadecyl and its isomers, hexadecyl and its isomers, heptadecyl and its isomers, octadecyl and its isomers, nonadecyl and its isomers, icosyl and its isomers, and the like. For example, C1-10alkyl includes all linear, or branched alkyl groups having 1 to 10 carbon atoms, and thus includes for example methyl, ethyl, n-propyl, i-propyl, 2-methyl-ethyl, butyl and its isomers (e.g. n-butyl, i-butyl and t-butyl); pentyl and its isomers, hexyl and its isomers, heptyl and its isomers, octyl and its isomers, nonyl and its isomers, decyl and its isomers and the like. For example, C1-6alkyl includes all linear, or branched alkyl groups having 1 to 6 carbon atoms, and thus includes for example methyl, ethyl, n-propyl, i-propyl, 2-methyl-ethyl, butyl and its isomers (e.g. n-butyl, i-butyl and t-butyl); pentyl and its isomers, hexyl and its isomers. When the suffix “ene” is used in conjunction with an alkyl group, i.e. “alkylene”, this is intended to mean the alkyl group as defined herein having two single bonds as points of attachment to other groups.
The term “C1-6alkoxy” or “C1-6alkyloxy”, as a group or part of a group, refers to a group having the Formula —ORa wherein Ra is C1-6alkyl. Non-limiting examples of suitable C1-6alkoxy include methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy and hexyloxy.
The term “C3-9cycloalkyl”, as a group or part of a group, refers to a cyclic alkyl group, that is to say, a monovalent, saturated, hydrocarbyl group having 1 or more cyclic structure, and comprising from 3 to 9 carbon atoms, more preferably from 3 to 8 carbon atoms, more preferably from 3 to 6 carbon atoms, still more preferably from 5 to 6 carbon atoms. Cycloalkyl includes all saturated hydrocarbon groups containing 1 or more rings, including monocyclic or bicyclic groups. The further rings of multi-ring cycloalkyls may be either fused, bridged and/or joined through one or more spiro atoms. Examples of C3-6cycloalkyl groups include but are not limited to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl. When the suffix “ene” is used in conjunction with a cycloalkyl group, i.e. cycloalkylene, this is intended to mean the cycloalkyl group as defined herein having two single bonds as points of attachment to other groups.
The term “C5-9cycloalkenyl”, as a group or part of a group, refers to a group derived from a cycloalkyl group, as defined above, comprising from 5 to 9 carbon atoms, and comprising one or more double bonds. For example, this could be the group cyclopentenyl, cyclohexenyl, cyclopenta-1,3-dienyl, cycloheptenyl, cyclooctenyl, cycloocta-1,4-dienyl. When the suffix “ene” is used in conjunction with a cycloalkenyl group, i.e. cycloalkenylene, this is intended to mean the cycloalkenyl group as defined herein having two single bonds as points of attachment to other groups.
The term “C6-30aryl”, as a group or part of a group, refers to a polyunsaturated, aromatic hydrocarbyl group having a single ring (i.e. phenyl) or multiple aromatic rings fused together (e.g. naphthalene), or linked covalently, typically containing 6 to 30 atoms; wherein at least one ring is aromatic. Examples of suitable aryl include C6-12aryl, more preferably C6-10aryl. Non-limiting examples of C6-12aryl comprise phenyl, biphenylyl, biphenylenyl, or 1-or 2-naphthanelyl. When the suffix “ene” is used in conjunction with an aryl group, this is intended to mean the aryl group as defined herein having two single bonds as points of attachment to other groups.
The term “C6-30arylC1-20alkyl”, as a group or part of a group, means a C1-20alkyl as defined herein, wherein at least one hydrogen atom is replaced by at least one C6-30aryl as defined herein. Preferred C6-30arylC1-20alkyl includes C6-12arylC1-6alkyl. Non-limiting examples of C6-12arylC1-6alkyl group include benzyl, phenethyl, dibenzylmethyl, methylphenylmethyl, 3-(2-naphthyl)-butyl, and the like.
The term “halo” or “halogen”, as a group or part of a group, is generic for fluoro, chloro, bromo or iodo.
The term “haloC1-6alkyl”, as a group or part of a group, refers to a C1-6alkyl group having the meaning as defined above wherein one or more hydrogens are replaced with a halogen as defined above. Non-limiting examples of such haloC1-6alkyl radicals include chloromethyl, 1-bromoethyl, fluoromethyl, difluoromethyl, trifluoromethyl, 1,1,1-trifluoroethyl and the like.
The term “haloC1-6alkoxy”, as a group or part of a group, refers to a group of Formula —O—Rb wherein Rb is haloC1-6alkyl as defined herein. Non-limiting examples of suitable haloC1-6alkoxy include fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy, 2,2,2-trichloroethoxy, trichloromethoxy, 2-bromoethoxy, pentafluoroethyl, 3,3,3-trichloropropoxy, 4,4,4-trichlorobutoxy.
The term “hydroxyl” or “hydroxy”, as a group or part of a group, refers to the group —OH.
The term “C1-6alkylthio”, as a group or part of a group, refers to a group having the Formula —SRa wherein Ra is C1-6alkyl. Non-limiting examples of C1-6alkylthio groups include methylthio (—SCH3), ethylthio (—SCH2CH3), n-propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio, tert-butylthio, and the like.
The term “amino” refers to the group —NH2.
The term “mono- or di-C1-6alkylamino”, as a group or part of a group, refers to a group of formula —N(Rc)(Rd) wherein Rc and Rd are each independently selected from hydrogen, or C1-6alkyl, wherein at least one of Rc or Rd is C1-6alkyl. Thus, alkylamino include mono-alkyl amino group (e.g. mono-C1-6alkylamino group such as methylamino and ethylamino), and di-alkylamino group (e.g. di-C1-6alkylamino group such as dimethylamino and diethylamino). Non-limiting examples of suitable alkylamino groups include n-propylamino, isopropylamino, n-butylamino, i-butylamino, sec-butylamino, t-butylamino, pentylamino, n-hexylamino, di-n-propylamino, di-i-propylamino, ethylmethylamino, methyl-n-propylamino, methyl-i-propylamino, n-butylmethylamino, i-butylmethylamino, t-butylmethylamino, ethyl-n-propylamino, ethyl-i-propylamino, n-butylethylamino, i-butylethylamino, t-butylethylamino, di-n-butylamino, di-i-butylamino, methylpentylamino, methylhexylamino, ethylpentylamino, ethylhexylamino, propylpentylamino, propylhexylamino, and the like.
The term “carboxy” or “carboxyl”, as a group or part of a group, refers to the group —CO2H.
The term “C1-6alkoxycarbonyl”, as a group or part of a group, refers to a carboxy group linked to a C1-6alkyl radical i.e. to form —C(═O)ORa, wherein Ra is as defined above for C1-6alkyl.
The term “C1-6alkylcarbonyloxy”, as a group or part of a group, refers to a group of Formula —O—C(═O)Ra wherein Ra is as defined above for C1-6alkyl.
The term “heterocyclyl”, as a group or part of a group, refers to a saturated, unsaturated or aromatic ring system of 4 to 18 atoms including at least one N, O, S, or P. Heterocyclyl thus include heteroaryl groups. Heterocyclyl as used herein includes by way of example and not limitation the heterocycles described in Paquette, Leo A. “Principles of Modern Heterocyclic Chemistry” (W.A. Benjamin, New York, 1968), particularly Chapters 1, 3, 4, 6, 7, and 9; “The Chemistry of Heterocyclic Compounds, A series of Monographs” (John Wiley & Sons, New York, 1950 to present), in particular Volumes 13, 14, 16, 19, and 28; Katritzky, Alan R., Rees, C. W. and Scriven, E. “Comprehensive Heterocyclic Chemistry” (Pergamon Press, 1996); and J. Am. Chem. Soc. (1960) 82:5566. In a preferred embodiment, heterocyclyl is selected from the group comprising saturated, unsaturated and aromatic ring systems comprising 4 to 10 atoms including at least one N, O, or S. In a preferred embodiment, heterocyclyl is selected from the group comprising saturated, unsaturated and aromatic ring systems comprising 5 to 9 atoms including at least one N, O, or S. In a preferred embodiment, heterocyclyl is selected from the group comprising saturated, unsaturated and aromatic ring systems comprising 5 to 9 atoms including at least one N, or O. Heterocyclyl thus include heteroaryl groups. In a particular embodiment, heterocyclyl is selected from the group comprising 1,3-dioxanyl, 1,4-dioxanyl; pyridyl, dihydroypyridyl, tetrahydropyridyl (piperidyl), thiazolyl, tetrahydrothiophenyl, sulfur oxidized tetrahydrothiophenyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, thianaphthalenyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, bis-tetrahydrofuranyl, tetrahydropyranyl, bis-tetrahydropyranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, azocinyl, triazinyl, 6H-1,2,5-thiadiazinyl, 2H,6H-1,5,2-dithiazinyl, thianthrenyl, pyranyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxathinyl, 2H-pyrrolyl, isothiazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, 1H-indazoly, purinyl, 4H-quinolizinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, 4aH-carbazolyl, carbazolyl, β-carbolinyl, phenanthridinyl, acridinyl, pyrimidinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, benzothienyl, benzothiazolyl and isatinoyl; preferably heterocyclyl is selected from the group comprising 1,3-dioxanyl, 1,4-dioxanyl; pyridyl, dihydroypyridyl, tetrahydropyridyl (piperidyl), thiazolyl, tetrahydrothiophenyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, tetrazolyl, benzofuranyl, indolyl, indolenyl, quinolinyl, isoquinolinyl, benzimidazolyl, piperidinyl, 4-piperidonyl, pyrrolidinyl, 2-pyrrolidonyl, pyrrolinyl, tetrahydrofuranyl, bis-tetrahydrofuranyl, tetrahydropyranyl, bis-tetrahydropyranyl, tetrahydroquinolinyl, tetrahydroisoquinolinyl, decahydroquinolinyl, octahydroisoquinolinyl, azocinyl, triazinyl, thianthrenyl, pyranyl, isobenzofuranyl, chromenyl, xanthenyl, phenoxathinyl, 2H-pyrrolyl, isothiazolyl, isoxazolyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, 3H-indolyl, 1H-indazoly, purinyl, 4H-quinolizinyl, phthalazinyl, naphthyridinyl, quinoxalinyl, quinazolinyl, cinnolinyl, pteridinyl, pyrimidinyl, furazanyl, phenoxazinyl, isochromanyl, chromanyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperazinyl, indolinyl, isoindolinyl, quinuclidinyl, morpholinyl, oxazolidinyl, benzotriazolyl, benzisoxazolyl, oxindolyl, benzoxazolinyl, benzothienyl, benzothiazolyl and isatinoyl. The term “heteroaryl”, as a group or part of a group, refers to an aromatic ring system of 5 to 18 atoms including at least one N, O, S, or P and thus refers to aromatic heterocycles. Examples of heteroaryl include but are not limited to pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, s-triazinyl, oxazolyl, imidazolyl, thiazolyl, isoxazolyl, pyrazolyl, isothiazolyl, furyl, thienyl, and pyrrolyl. The term “non-aromatic heterocyclyl”, as a group or part of a group, refers to a saturated or unsaturated non-aromatic ring system of 4 to 18 atoms including at least one N, O, S, or P.
Preferred statements (features) and embodiments of the processes and polycarbonates of this invention are set herein below. Each statements and embodiments of the invention so defined may be combined with any other statement and/or embodiments unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous. Numbered statements of this invention are:
R8—OH (IV)
R8—OH (IV)
wherein R20 is selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio; more preferably halo, hydroxyl, C1-6alkyl, C1-6alkoxy, C1-6alkylthio; optionally wherein two R20 can join to form a ring fused to ring C, wherein said ring formed by two R20 can be selected from the group comprising C3-9cycloalkyl, C5-9cycloalkenyl, C6-12aryl, and heterocyclyl, preferably C5-6cycloalkyl, or C6-10aryl, and wherein said ring formed by two R20 can be unsubstituted or substituted with one or more R40, wherein each R40 is independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably halo, hydroxyl, C1-10alkyl; C1-10alkoxy, or C1-6alkylthio; preferably C1-6alkyl; more preferably C1-4alkyl; and
n is an integer selected from 0, 1, 2, 3, or 4; preferably 0, 1, 2, or 3, preferably 0, 1, or 2, more preferably 0 or 1, yet more preferably 0.
The present invention provides a process for preparing a polycarbonate, said process comprising homo- or copolymerizing in the presence of at least one catalyst, one or more compounds of formula (I), stereoisomers, racemics, or mixtures thereof; optionally with one or more cyclic esters, stereoisomers, racemics, or mixtures thereof;
wherein
In a preferred embodiment, R21 and R22 taken together with the carbon atoms 4 and 5 of the cyclic carbonate form a ring selected from C3-9cycloalkylene, C5-9cycloalkenylene, and C6-12arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino.
Preferably, the present invention provides a process for preparing a polycarbonate or copolymer thereof, said process comprising copolymerizing in the presence of at least one catalyst, one or more compounds of formula (I), stereoisomers, racemics, or mixtures thereof; with one or more cyclic esters, stereoisomers, racemics, or mixtures thereof;
In one embodiment, R21 and R22 taken together with the carbon atoms 4 and 5 of the cyclic carbonate form cyclohexylene, phenylene, or cyclopropylene, each optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably R21 and R22 taken together with the carbon atoms 4 and 5 of the cyclic carbonate form a cyclohexylene, or a phenylene, preferably a cyclohexylene.
In an embodiment, the compound of formula (I) can have structural formula (IA) or (IB), preferably structural formula (IA);
wherein
the ring C is selected from C3-9cycloalkylene, C5-9cycloalkenylene, or C6-12arylene; preferably C4-6cycloalkylene, or C6-10arylene; more preferably C5-6cycloalkylene;
each R20 is independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably halo, hydroxyl, C1-10alkyl; C1-10alkoxy, or C1-6alkylthio; preferably C1-6alkyl; more preferably C1-4alkyl; optionally wherein two R20 can join to form a ring fused to ring C, wherein said ring formed by two R20 can be selected from the group comprising C3-9cycloalkyl, C5-9cycloalkenyl, C6-12aryl, and heterocyclyl, preferably C5-9cycloalkyl, or C6-10aryl, and wherein said ring formed by two R20 can be unsubstituted or substituted with one or more R40, wherein each R40 is independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably halo, hydroxyl, C1-10alkyl; C1-10alkoxy, or C1-6alkylthio; preferably C1-6alkyl; more preferably C1-4alkyl;
R21 and R22 are each independently selected from C1-6alkyl; C3-6cycloalkyl, or C6-10aryl, preferably R21 and R22 are each independently selected from C1-6alkyl; more preferably C1-4alkyl; and
n is an integer selected from 0, 1, 2, 3, or 4; preferably 0, 1, 2, or 3, preferably 0, 1, or 2, more preferably 0 or 1, yet more preferably 0.
In some embodiments, compound of formula (I) can have one of the structural formula (IA), (IA1), (IA2), (IA3), (IA4), (IB), (IB1), (IB2), (IB3), (IB4), preferably (IA), (IA1), (IA2), (IA3), (IA4),
wherein
the ring C is selected from C3-9cycloalkylene, C5-9cycloalkenylene, or C6-12arylene; preferably C4-6cycloalkylene, or C6-10arylene; more preferably C5-6cycloalkylene;
each R20 is independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably halo, hydroxyl, C1-10alkyl; C1-6alkylthio, or C1-10alkoxy, preferably C1-6alkyl, more preferably C1-4alkyl;
R21 and R22 are each independently selected from C1-6alkyl; C3-6cycloalkyl, or C6-10aryl, preferably R21 and R22 are each independently selected from C1-6alkyl; more preferably C1-4alkyl; and
n is an integer selected from 0, 1, 2, 3, or 4; preferably 0, 1, 2, or 3, preferably 0, 1, or 2, more preferably 0 or 1, yet more preferably 0.
Optionally two R20 can join to form a ring fused to ring C, wherein said ring formed by two R20 can be selected from the group comprising C3-9cycloalkyl, C5-9cycloalkenyl, C6-12aryl, and heterocyclyl, preferably C5-6cycloalkyl, or C6-10aryl, and wherein said ring formed by two R20 can be unsubstituted or substituted with one or more R40, wherein each R40 is independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably halo, hydroxyl, C1-10alkyl; C1-10alkoxy, or C1-6alkylthio; preferably C1-6alkyl; more preferably C1-4alkyl.
In some embodiments, compound of formula (I) can have one of the structural formula (IA), (IA1), (IA2), (IA3), (IA4), wherein the ring C, R20 and n are as defined herein above. In some preferred embodiments, compound of formula (I) can have one of the structural formula (IA), (IA1), (IA2), (IA3), (IA4), wherein the ring C is selected from preferably C4-6cycloalkylene, or C6-10arylene; preferably C5-6cycloalkylene; and each R20 is independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably halo, hydroxyl, C1-10alkyl; C1-6alkylthio, or C1-10alkoxy, preferably C1-6alkyl, more preferably C1-4alkyl; and n is an integer selected from 0, 1, 2, 3, or 4; preferably 0, 1, 2, or 3, preferably 0, 1, or 2, more preferably 0 or 1, yet more preferably 0.
In some preferred embodiments, compound of formula (I) can have one of the structural formula (IB), (IB1), (IB2), (IB3), (IB4), wherein R21 and R22 are each independently selected from C1-6alkyl; or C6-10aryl, preferably R21 is C1-6alkyl, and R22 is C1-6alkyl; preferably R21 is C1-4alkyl, and R22 is C1-4alkyl; preferably R21 and R22 are each independently selected from methyl, ethyl, n-propyl.
In some embodiments, compound of formula (I) can be selected from the following compounds of formula (IAa), (IA1a), (IA2a) when n is not 0, (IA3a), (IA4a), (IBa), (IB1a), (IB2a), (IB3a), (IC); preferably (IAa), (IA1a), (IA2a), (IA3a), (IA4a), or (IC);
wherein R20 is selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio; more preferably halo, hydroxyl, C1-6alkyl, C1-6alkoxy, C1-6alkylthio; and
n is an integer selected from 0, 1, 2, 3, or 4; preferably 0, 1, 2, or 3, preferably 0, 1, or 2, more preferably 0 or 1, yet more preferably 0.
Optionally two R20 can join to form a ring fused to ring C, wherein said ring formed by two R20 can be selected from the group comprising C3-9cycloalkyl, C5-9cycloalkenyl, C6-12aryl, and heterocyclyl, preferably C5-6cycloalkyl, or C6-10aryl, and wherein said ring formed by two R20 can be unsubstituted or substituted with one or more R40, wherein each R40 is independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably halo, hydroxyl, C1-10alkyl; C1-10alkoxy, or C1-6alkylthio; preferably C1-6alkyl; more preferably C1-4alkyl.
In some embodiments, compound of formula (I) can be selected from the following compounds of formula (IAa), (IA1a), (IA2a), (IA3a), (IA4a), (IC), wherein R20 and n are as defined herein above.
In some embodiments, the polymerization of the present invention can occur with the same compound of formula (I), or with two or more compounds of formula (I) differing in structural formula, in which case a copolymerization takes place. In some embodiments, the polymerization of the present invention can occur with two or more of the same compounds of formula (I) differing only in stereochemistry.
In some embodiments, the copolymerization of the present invention can occur with the same compound of formula (I) and one or more cyclic esters. In some embodiments, the copolymerization of the present invention can occur with two or more compounds of formula (I) differing in structural formula, or differing in stereochemistry, and one or more cyclic ester.
In some other embodiments, the copolymerization of the present invention can occur with the same compound of formula (I) and two or more differing cyclic esters.
As used herein, the terms “cyclic ester” refers to cyclic monoesters, cyclic diesters, cyclic triesters, and the like. Preferred are the cyclic monoesters also known as lactones and cyclic carbonates, and the cyclic diesters also known as glycolide and lactides. In an embodiment, the cyclic ester is selected from the group comprising lactones, cyclic carbonates, glycolides and lactides, each group can be unsubstituted or substituted with one or more substituents each independently selected from C1-6alkyl, and C1-6alkoxy. In an embodiment, the cyclic ester is selected from the group comprising lactones, glycolides and lactides.
Non-limiting examples of suitable cyclic esters can be selected from the group comprising lactide, trimethylene carbonate, glycolide, β-butyrolactone, δ-valerolactone, γ-butyrolactone, γ-valerolactone, 4-methyldihydro-2(3H)-furanone, alpha-methyl-gamma-butyrolactone, ε-caprolactone, 1,3-dioxolan-2-one, propylene carbonate, 4-methyl-1,3-dioxan-2-one, 1,3-doxepan-2-one, 5-C1-4alkoxy-1,3-dioxan-2-one; and mixture thereof; each group can be unsubstituted or substituted with one or more substituents each independently selected from C1-6alkyl and C1-6alkoxy. For example said cyclic esters can be selected from the group comprising lactide, trimethylene carbonate, glycolide, β-butyrolactone, δ-valerolactone, γ-butyrolactone, γ-valerolactone, 4-methyldihydro-2(3H)-furanone, alpha-methyl-gamma-butyrolactone, ε-caprolactone, 4-methyl-1,3-dioxan-2-one, 1,3-doxepan-2-one, and mixture thereof. For example said cyclic esters can be selected from the group comprising lactide, trimethylene carbonate, glycolide, β-butyrolactone, δ-valerolactone, γ-butyrolactone, γ-valerolactone, 4-methyldihydro-2(3H)-furanone, alpha-methyl-gamma-butyrolactone, ε-caprolactone, and mixture thereof. Preferably said cyclic esters can be selected from the group comprising lactide, glycolide, β-butyrolactone, δ-valerolactone, γ-butyrolactone, γ-valerolactone, 4-methyldihydro-2(3H)-furanone, alpha-methyl-gamma-butyrolactone, ε-caprolactone, and mixture thereof. In some embodiment, said cyclic ester is a lactide, such as L-lactide (S,S-lactide), D-lactide (R,R-lactide), or meso-(S,R)-lactide. In some embodiment, said cyclic ester is a cyclic carbonate, such as trimethylene carbonate.
The catalyst employed for this process may have general formula M1(Y1, Y2, . . . YP)q, in which M1 is a metal selected from the group comprising the elements of columns 3 to 12 of the periodic table of the elements, as well as the elements Al, Ga, In, Tl, Ge, Sn, Pb, Sb, Ca, Mg and Bi; whereas Y1, Y2, . . . Yp are each substituents selected from the group comprising alkyl with 1 to 20 carbon atoms, aryl having from 6 to 30 carbon atoms, alkoxy having from 1 to 20 carbon atoms, aryloxy having from 6 to 30 carbon atoms, and other oxide, carboxylate, and halide groups as well as elements of group 15 and/or 16 of the periodic table; p and q are integers of from 1 to 6. As examples of suitable catalysts, we may notably mention the catalysts of Al, Sn, Ti, Zr, Zn, and Bi; preferably an alkoxide or a carboxylate and more preferably Sn(Oct)2, Al(OiPr)3, Ti(OiPr)4, Ti(2-ethylhexanoate)4, Ti(2-ethylhexyloxide)4, Zr(OiPr)4, Bi(neodecanoate)3, (2,4-di-tert-butyl-6-(((2-(dimethylamino)ethyl)(methyl)amino)methyl)phenoxy)(ethoxy)zinc, or Zn(lactate)2.
In one embodiment, the catalyst is an organometallic catalyst of formula (II) or (Ill),
wherein
R1, R2, R3, R4, R5, R6, and R7 are each independently selected from the group consisting of hydrogen, optionally substituted C1-12alkyl, and an inert functional group (e.g., —CN), and wherein two or more of said groups can be linked together to form one or more rings; preferably R1, R2, R3, R4, R5, R6, and R7 are each independently selected from the group consisting of hydrogen, optionally substituted C1-8alkyl, and an inert functional group (e.g., —CN), and wherein two or more of said groups can be linked together to form one or more rings; preferably R1, R2, R3, R4, R5, R6, and R7 are each independently selected from the group consisting of hydrogen, or optionally substituted C1-6alkyl; preferably R1, R2, R3, R4, R5, R6, and R7 are each independently selected from the group consisting of hydrogen, or optionally substituted C1-4alkyl; preferably R2, R3, R4 and R7 are each independently H, and R1, R5, and R6, are each independently C1-6alkyl;
X is —N(SiR273)2, C1-12alkyl, C1-12alkoxy, —NR9R10 or —BH4; preferably X is —N(SiR273)2, C1-6alkyl, C1-6alkoxy, or —NR9R10; preferably X is —N(SiR273)2, C1-6alkyl, C1-6alkoxy, or —NR9R10; preferably X is —N(SiR273)2;
each R27 is independently selected from hydrogen and C1-6alkyl;
each R9 and R10 is independently selected from hydrogen and C1-6alkyl;
R11 and R12 are each independently C1-10alkyl; preferably, R11 and R12 are each independently C1-6alkyl; preferably, R11 and R12 are each independently C1-4alkyl; for example, R11 and R12 can be each independently selected from the group consisting of methyl, ethyl, n-propyl, i-propyl, 2-methyl-ethyl, n-butyl, i-butyl and t-butyl; preferably, R11 and R12 can be each independently selected from the group consisting of methyl, ethyl, i-propyl and t-butyl; for example R11 and R12 can be each independently selected from i-propyl or t-butyl; preferably, R11 and R12 are t-butyl;
R13, R14, and R15 are each independently C1-10alkyl; preferably, R13, R14 and R15 are each independently C1-6alkyl; preferably R13, R14 and R15 are each independently C1-4alkyl, for example, R13, R14 and R15 can be each independently selected from the group consisting of methyl, ethyl, n-propyl, i-propyl, 2-methyl-ethyl, n-butyl, i-butyl and t-butyl; for example, R13, R14 and R15 can be each independently selected from the group consisting of methyl, ethyl, i-propyl and t-butyl; for example, R13, R14 and R15 are each independently selected from methyl or ethyl; preferably, R13, R14 and R15 are each independently methyl; or
R13 and R14 are covalently bound to each other and are each a methylene and R15 is C1-10alkyl; preferably R15 is C1-6alkyl; preferably, R15 is C1-4alkyl; for example R15 can be selected from the group consisting of methyl, ethyl, n-propyl, i-propyl, 2-methyl-ethyl, n-butyl, i-butyl and t-butyl; for example R15 can be selected from the group consisting of methyl, ethyl, i-propyl and t-butyl; for example R15 can be selected from methyl or ethyl; for example R15 can be methyl;
X11 is selected from C1-10alkyl, —OR16, and —N(SiR173)2;
R16 is C1-10alkyl; and
each R17 is independently selected from hydrogen and C1-6alkyl;
preferably, X11 is selected from C1-6alkyl, —OR16, or —N(SiR173)2, R16 is C1-6alkyl, and each R17 is independently selected from hydrogen and C1-6alkyl; preferably, X11 is selected from C1-4alkyl, —OR16, or —N(SiR173)2, R16 is C1-4alkyl, and each R17 is independently hydrogen or C1-4alkyl; for example X11 can be selected from the group consisting of methyl, ethyl, n-propyl, i-propyl, 2-methyl-ethyl, n-butyl, i-butyl and t-butyl, or —OR16, or —N(SiR173)2, R16 can be selected from the group consisting of methyl, ethyl, n-propyl, i-propyl, 2-methyl-ethyl, n-butyl, i-butyl and t-butyl, and each R17 can be independently selected from the group consisting of hydrogen, methyl, ethyl, n-propyl, i-propyl, 2-methyl-ethyl, n-butyl, i-butyl and t-butyl; preferably, X11 can be selected from the group consisting of methyl, ethyl, i-propyl and n-butyl, or —OR16, R16 can be selected from the group consisting of methyl, ethyl, i-propyl and t-butyl; preferably, X11 can be selected from —OR16, R16 can be selected from the group consisting of methyl, ethyl, i-propyl and t-butyl; preferably, X11 can be —OR16, and R16 is ethyl.
In the present description, an inert functional group is defined as a group containing one or several heteroatoms selected from O, N, S or halogen, that is(are) not reactive in the polymerization system neither as an initiating species nor as a chain transfer agent.
In one embodiment, R11 and R12 are each independently C1-6alkyl, preferably C1-4alkyl.
In one embodiment, R13, R14 and R15 are each independently C1-6alkyl, preferably C1-4alkyl.
In one embodiment, X11 is selected from C1-6alkyl, —OR16, or —N(SiR173)2, R16 is C1-6alkyl, and each R17 is independently selected from hydrogen and C1-4alkyl.
In one embodiment, the catalyst is selected from [(NNO)ZnEt], [BDI]Zn(N(SiMe3)2), [BDI]Zn(Et), and {[BDI]Zn(OR30)}2, wherein R30 is C1-6alkyl; preferably the catalyst is [(NNO)ZnEt].
Suitable catalyst also include metal amides such as bis(trimethylsilyl)amides such as Y[N(SiMe3)2]3; [Y]+L1; and [Y]+L2, wherein L1 corresponds to the tetradentate ligand depicted below and L2 corresponds to the tetradentate ligand depicted below
In one embodiment, the catalyst is selected from complexes of formulae M(OSO2CF3)m, M(N(OSO2CF3)2)m, M(R23C(O)CR232C(O)R23)m, and (R24CO2)mM, wherein M is a metal of Group 2, 3, including the lanthanide series, or Group 12, 13, 15, wherein each R23 is independently an optionally substituted C1-12alkyl, wherein each R24 is independently a perfluorinated C1-12alkyl or an aryl, and wherein m is the valence of M.
In one embodiment, all R23 are the same and are selected from CH3 and CF3, or R24 is selected from (C6F5), (CF3), and CF3(CF2)p, wherein p is an integer ranging between 1 and 6.
In one embodiment, the catalyst is a Lewis acidic metal salt selected from Al(OTf)3, Al(NTf2)3, Mg(OTf)2, Ca(OTf)2, Zn(OTf)2, Sc(OTf)3, Bi(OTf)3, Fe(acac)3, Al(OCOCF3)3, Al(hfacac)3, Zn(OCOCF3)2, Zn(BF4)2, Zn(acac)2, Zn(hfacac)2, and Zr(acac)4.
Non-limiting examples of suitable catalyst, include catalyst selected from the group comprising dimeric phosphazene bases, or amines or guanidines, organic acids, sparteine, thiourea-amino derivatives, N-heterocyclic carbenes, 4-(dialkylamino)pyridines, amidines, phosphorus based phosphines, phosphazenium derivatives and phosphazenes, strong and weak Bronsted acids, as described in M Fèvre, J Vignolle, Y Gnanou, and D Taton, Organocatalyzed Ring-Opening Polymerizations, 2012 Elsevier B.V.; and in Chem. Soc. Rev., 2013, 42, 2142.
In one embodiment, the catalyst can be selected from 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), 4-dimethylaminopyridine (DMAP), 1,5,7-triazobicyclo-[4,4,0]dec-5-ene (TBD), and tert-butylimino-1,3-dimethylperhydro-1,3,2-diazaphosphine (BEMP); Y[N(SiMe3)2]3; [Y]+L1; or [Y]+L2; preferably TBD, BEMP; Y[N(SiMe3)2]3; [Y]+L1; or [Y]+L2; preferably TBD, BEMP.
In one embodiment, the process is performed in the presence of a compound of formula (IV),
R8—OH (IV)
wherein R8 is selected from the group consisting of C1-20alkyl, C6-30aryl, and C6-30arylC1-20alkyl optionally substituted by one or more substituents selected from the group consisting of halogen, hydroxyl, and C1-6alkyl. Preferably, R8 is selected from C3-12alkyl, C6-10aryl, and C6-10arylC3-12alkyl, optionally substituted by one or more substituents, each independently selected from the group consisting of halogen, hydroxyl, and C1-6alkyl; preferably, R8 is selected from C3-12alkyl, C6-10aryl, and C6-10arylC3-12alkyl, optionally substituted by one or more substituents, each independently selected from the group consisting of halogen, hydroxyl and C1-4alkyl. The alcohol can be a polyol such as diol, triol or higher functionality polyhydric alcohol. The alcohol may be derived from biomass such as for instance glycerol or 1,3-propanediol or any other sugar-based alcohol such as for example erythritol. The alcohol can be used alone or in combination with another alcohol.
In one embodiment, the compound of formula (IV) is selected from the group comprising 1-octanol, isopropanol, 1,3-propanediol, trimethylolpropane, 2-butanol, 3-buten-2-ol, 1,3-butanediol, 1,4-butanediol, 1,6-hexanediol, 1,7-heptanediol, benzyl alcohol, 4-bromophenol, 1,4-benzenedimethanol, and (4-trifluoromethyl)benzyl alcohol; preferably, said compound of formula (IV) is selected from 1-octanol, isopropanol, and 1,4-butanediol.
In one embodiment, the molar ratio of compound of formula (IV) versus the catalyst is of at least 0. For example, the molar ratio of the co-initiator of the polymerization (compound of formula (IV)) to the catalyst can be of from about 0 to about 1000, for example from about 1 to about 1000, for example of from about 1 to about 100, for example of from about 1 to about 5.
In some embodiments, the present process allows to tailor the molecular weight of the polycarbonate by adapting the molar ratio of compound of formula (IV) versus the catalyst.
In an embodiment, the process is performed in the presence or absence (in bulk) of solvent. In one embodiment, the process is performed in the presence of a solvent. In a preferred embodiment, the solvent is selected from an aliphatic or aromatic hydrocarbon, an ether, a halogenated solvent, and a C1-6alkyl carbonate. In another embodiment, the present process is performed in bulk.
The process can be performed with or without solvent, or can be performed in a minimum amount of solvent. In an embodiment, said minimum amount of solvent can be the solvent necessary to dissolve the catalyst. The solvent can be an aromatic or aliphatic hydrocarbon, an ether, or an halogenated solvent such as chlorinated solvent.
In an embodiment, the solvent is selected from an alkane such as hexane or heptane; an aromatic hydrocarbon such as toluene; an ether such as tetrahydrofuran (THF); and a chlorinated solvent such dichloromethane; a C1-6alkyl carbonate such as dimethyl carbonate; preferably the solvent is an aromatic hydrocarbon, such as toluene.
In one embodiment, the process is performed at a temperature of at least 20° C. In some embodiments, the process is performed at a temperature of at most 150° C. For example, the process can be performed, preferably at a temperature of at least 20° C. and at most 150° C., for example, the process can be performed, preferably at a temperature of at least 40° C. and at most 120° C., for example at least 50° C. and at most 100° C., for example at a temperature of at least 50° C. and at most 90° C., for example at a temperature of between 50° C. and 85° C., for example at a temperature of between 55° C. and 85° C.
In an embodiment, the ratio of the compounds of formula (I) to the catalyst to the compound of formula (IV) can be from 25:1:0 to 5000:1:0, from 25:1:1 to 5000:1:50. In an embodiment, the ratio of the cyclic ester to the compounds of formula (I) to the catalyst to the compound of formula (IV) can be for example 100:100:1:1.
In some embodiments, the process can be carried out with unpurified compound of formula (I) optionally with an unpurified cyclic ester monomer. The process can also be carried out with the resulting (co-)polymer being crystallized one or more times in solvent and dried under vacuum before use. The solvent used during crystallization can be the same or different from the solvent used during the polymerization process.
In an embodiment, the process can be performed by contacting said compound of formula (I) optionally with the cyclic ester monomer with the catalyst and optionally a co-initiator, in a reactor equipped with an agitator, for instance a high viscosity agitator.
In an embodiment, the process can be performed by contacting compound of formula (I), the catalyst, optionally the cyclic ester, and optionally the co-initiator, optionally in the presence of a solvent. In some embodiments, the process can be performed by contacting the catalyst, and the co-initiator, and subsequently adding compound of formula (I), optionally the cyclic ester, optionally in the presence of a solvent.
In an embodiment, the process can be performed by contacting compound of formula (I), optionally the cyclic ester, the catalyst, and optionally the co-initiator, under inert atmosphere, for example in the presence of argon or nitrogen.
The present invention also encompasses a process for the synthesis of a compound of formula (I) as defined in any one of the embodiments herein, a stereoisomer or a racemate thereof, comprising the step of contacting a compound of formula (V), a stereoisomer, or a racemate thereof; with at least one reagent selected from the group comprising an alkyl- or cycloalkyl-chloroformate of formula (VI); an urea; a phosgene or derivative/substitute of phosgene, e.g. triphosgene; a cyclic carbonate; and a carbon dioxide;
wherein
R18 is C1-6alkyl or C3-6cycloalkyl; and
each R21, R22, and the dotted bonds “a” and “b” are, independently, as defined in any one of the embodiments herein.
In some embodiments, R18 is C1-6alkyl; and
R21 and R22 are each independently selected from C1-6alkyl, C3-6cycloalkyl, and C6-10aryl; preferably C1-6alkyl, or C3-6cycloalkyl; more preferably C1-6alkyl; yet more preferably C1-4alkyl;
or R21 and R22 taken together with the carbon atoms to which they are attached form a ring selected from C3-9cycloalkylene, C5-9cycloalkenylene, and C6-12arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably R21 and R22 taken together with the carbon atoms to which they are attached form a ring selected from C5-6cycloalkylene, and C6-10arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably R21 and R22 taken together with the carbon atoms to which they are attached form a ring selected from C5-6cycloalkylene, and phenylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably R21 and R22 taken together with the carbon atoms to which they are attached form a C5-6cycloalkylene, preferably a cyclohexylene; optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; for example one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, C1-6alkoxy, or C1-6alkylthio.
In some preferred embodiments, R18 is C1-4alkyl; and R21 and R22 are each independently selected from C1-6alkyl, C3-6cycloalkyl, and C6-10aryl; preferably C1-6alkyl, or C3-6cycloalkyl; more preferably C1-6alkyl; yet more preferably C1-4alkyl.
Preferably, the present invention provides a process for the synthesis of a compound of formula (I) a stereoisomer or racemate thereof, comprising the step of contacting a compound of formula (V), a stereoisomer, or racemate thereof; with at least one reagent selected from the group consisting of an alkyl- or cycloalkyl-chloroformate of formula (VI); an urea; a phosgene or derivative thereof; a cyclic carbonate; and carbon dioxide;
wherein
each dotted bond “a” and “b” independently represents a solid bond, a wedged bond, or a hashed wedged bond;
R21 and R22 taken together with the carbon atoms 4 and 5 of the cyclic carbonate form a ring selected from C3-9cycloalkylene, C5-9cycloalkenylene, and C6-12arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino, R18 is C1-6alkyl, or C3-6cycloalkyl, preferably C1-6alkyl.
In some preferred embodiments, R18 is C1-4alkyl; and R21 and R22 taken together with the carbon atoms to which they are attached form a ring selected from C3-9cycloalkylene, and C6-12arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably R21 and R22 taken together with the carbon atoms to which they are attached form a ring selected from C5-6cycloalkylene, and C6-10arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably R21 and R22 taken together with the carbon atoms to which they are attached form a ring selected from C5-6cycloalkylene, and phenylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably R21 and R22 taken together with the carbon atoms to which they are attached form C4-6cycloalkylene, preferably a cyclohexylene; optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; for example one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, C1-6alkoxy, or C1-6alkylthio.
In an embodiment, said compound of formula (VI) is a C1-6alkyl chloroformate, such as ethyl chloroformate.
In an embodiment, the reaction can be performed in the presence of a suitable base such as a trialkylamine, e.g. triethylamine.
In an embodiment, the reaction can be performed in the presence of a suitable solvent such as tetrahydrofuran, diethylether or other ethers.
The reaction can be performed at a temperature ranging from 0° C. to 60° C., for example at room temperature.
The present invention also encompasses a polycarbonate or copolymer thereof comprising a recurring unit of formula (VII1) and/or (VII2),
wherein
In some embodiments, R21 and R22 are each independently selected from C1-6alkyl, C3-6cycloalkyl, and C6-10aryl; preferably C1-6alkyl, or C3-6cycloalkyl; more preferably C1-6alkyl; yet more preferably C1-4alkyl; for example R21 and R22 are each independently methyl, ethyl or propyl; preferably R21 is methyl and R22 is methyl.
Preferably, the present invention also encompasses a polycarbonate or copolymer thereof comprising a recurring unit of formula (VII1) and/or (VII2), wherein
R21 and R22 taken together with the carbon atoms to which they are attached form a ring selected from C3-9cycloalkylene, C5-9cycloalkenylene, and C6-12arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino.
In some embodiments, R21 and R22 taken together with the carbon atoms to which they are attached form a ring selected from C3-9cycloalkylene, C5-9cycloalkenylene, and C6-12arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably R21 and R22 taken together with the carbon atoms to which they are attached form a ring selected from C3-9cycloalkylene, and C6-12arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably R21 and R22 taken together with the carbon atoms to which they are attached form a ring selected from C3-6cycloalkylene, and C6-10arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably R21 and R22 taken together with the carbon atoms to which they are attached form C3-6cycloalkylene, preferably a C4-6cycloalkylene, preferably a C5-6cycloalkylene, preferably a cyclohexylene; optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; for example one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, C1-6alkoxy, or C1-6alkylthio.
In some embodiment, said polycarbonate or copolymer thereof comprises recurring units each independently represented by the following formula (VIIA) or (VIIB) or (VIIC);
wherein R21 and R22 have the same meaning as that defined in any one of the embodiments herein. In some embodiments, R21 and R22 are each independently, selected from C1-6alkyl, C3-6cycloalkyl, and C6-10aryl; preferably C1-6alkyl, or C3-6cycloalkyl; more preferably C1-6alkyl; yet more preferably C1-4alkyl; for example methyl, ethyl or propyl; for example R21 and R22 are each methyl;
or R21 and R22 taken together with the carbon atoms 4 and 5 of the cyclic carbonate form a ring selected from C3-9cycloalkylene, C5-9cycloalkenylene, and C6-12arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably R21 and R22 taken together with the carbon atoms 4 and 5 of the cyclic carbonate form a ring selected from C3-9cycloalkylene, and C6-12arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably R21 and R22 taken together with the carbon atoms 4 and 5 of the cyclic carbonate form a ring selected from C3-6cycloalkylene, and C6-10arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably R21 and R22 taken together with the carbon atoms 4 and 5 of the cyclic carbonate form C3-6cycloalkylene, optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; for example one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, C1-6alkoxy, or C1-6alkylthio.
In a preferred embodiment, R21 and R22 taken together with the carbon atoms 4 and 5 of the cyclic carbonate form a cyclohexylene optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino.
In a preferred embodiment, R21 and R22 are each independently selected from C1-4alkyl, for example methyl, ethyl or propyl; for example R21 and R22 are each methyl.
In some embodiment, said polycarbonate or copolymer thereof comprises recurring units each independently represented by the following formula (VIIA1) or (VIIB1) or (VIIC1);
wherein R20 is selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; preferably halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio; more preferably halo, hydroxyl, C1-6alkyl, C1-6alkoxy, C1-6alkylthio; and
n is an integer selected from 0, 1, 2, 3, or 4; preferably 0, 1, 2, or 3, preferably 0, 1, or 2, more preferably 0 or 1, yet more preferably 0.
In some embodiment, said polycarbonate or copolymer thereof comprises recurring units each independently represented by the following formula (VIIA2) or (VIIB2) or (VIIC2);
The present invention also encompasses a polycarbonate or copolymer thereof comprising recurring unit of formula (VII3) and/or (VII4),
wherein
each R21 and R22 are, independently, selected from C1-6alkyl, C3-6cycloalkyl, and C6-10aryl; or R21 and R22 taken together with the carbon atoms 4 and 5 to which they are attached form a ring selected from C3-9cycloalkylene, C5-9cycloalkenylene, and C6-12arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; and
wherein said polycarbonate or copolymer thereof is characterized by a 13C NMR spectrum comprising only one signal present in the areas ranging from δ 150 to 155 ppm. In an embodiment, said polycarbonate or copolymer thereof also comprises less than 2% of monomer having at least one chiral center of inverse configuration compared to the enantiopure monomers. This percentage can be measured after hydrolysis of the polymer, by chiral chromatography of the vicinal diol resulting from the hydrolysis.
Preferably, the present invention also encompasses a polycarbonate or copolymer thereof comprising recurring units of formula (VII3) or of formula (VII4),
wherein
R21 and R22 taken together with the carbon atoms 4 and 5 to which they are attached form a ring selected from C3-9cycloalkylene, C5-9cycloalkenylene, and C6-12arylene, said ring being optionally substituted with one or more substituents each independently selected from halo, hydroxyl, C1-6alkyl, haloC1-6alkyl, C1-6alkoxy, haloC1-6alkoxy, C6-12aryl, C1-6alkylthio, carboxyl, C1-6alkoxycarbonyl, C1-6alkylcarbonyloxy, amino; or mono- or di-C1-6alkylamino; and
wherein said polycarbonate or copolymer thereof is characterized by a 13C{1H} NMR spectrum comprising only one signal present in the areas ranging from δ 150 to 155 ppm, preferably characterized by a high resolution (100 MHz or higher)13C{1H} NMR spectrum comprising only one sharp resonance present in the carbonyl areas ranging from δ 150 to 155 ppm. In an embodiment, said polycarbonate or copolymer thereof also comprises less than 2% of monomer having at least one chiral center of inverse configuration compared to the enantiopure monomers. This percentage can be measured after hydrolysis of the polymer, by chiral chromatography of the vicinal diol resulting from the hydrolysis.
Hydrolysis of the polycarbonate can be performed as described by Nozaki et al. (Nozaki, K.; Nakano, K.; Hiyama, T. J. Am. Chem. Soc. 1999, 121, 11008-11009). An example of protocol is described herein wherein, a round-bottomed flask was charged with PCHC (50 mg), tetrahydrofuran (5 mL), methanol (1 mL) and NaOH in H2O (2 M, 10 mL). The resulting mixture was stirred at room temperature for 24 h. Then, it was neutralized with aqueous HCl (1 M), and concentrated to 4 ml by evaporation. The solution was then extracted with ethyl acetate (4×5 mL). The combined organic layers were dried over MgSO4 and concentrated by evaporation. Further purification of the crude product by silica-gel column chromatography (ethyl acetate as an eluent) gave (1R,2R)-cyclohexane-1,2-diol.
In Scheme 1 below, there is provided a classification of poly(cyclohexylene carbonate) according to the relative stereochemistry of the carbon at which the main chain enters the cyclohexylene unit (a), the carbon at which the main chain enters and leaves the cyclohexylene unit (b) and adjacent carbons (c).
The term “diad” refers to two adjacent structural units in a polymer molecule. If the diad consists of two identically oriented units, the diad is called a meso diad [m] reflecting similar features as a meso compound. If the diad consists of units oriented in opposition, the diad is called a racemo diad [r] as in a racemic compound.
The term “isotactic triad [mm]” refers to two adjacent meso diads. The term “syndiotactic triad [rr]” refers to two adjacent racemo diads. The term “heterotactic triad [rm]” is composed of a meso diad adjacent to a racemo diad.
The tem “tetrad” refers to three adjacent diads.
The [m] and [r] assignments used herein represent the relative stereochemistry of the carbons of the cycloalkylene units (like cyclohexylene units of the Scheme 1 below) at which the main chain enters (a), not the relative stereochemistry of the two carbons on either side of the carbonate unit (c). Therefore a racemic diad ([r]) represents two entire monomer units that have been incorporated in the opposite stereochemical orientation.
Scheme 2 describes the different limit microstructures reachable from enantiopure (R,R), rac (R,R/S,S) and meso (R,S) cyclohexylene carbonate and the corresponding nomenclature considering the absolute configuration at the C4 carbon atom in the cyclohexylene ring.
The present invention thereof encompasses polycarbonate as defined in the third aspect of the invention herein comprising isotactic-meso microstructure, or syndiotactic-meso microstructure, or atactic-meso microstructure.
The process of the present invention allows control of tacticity: using a trans enantiopure (R,R)—CHC allows to obtain a perfect isotactic polymer; on the other hand, using a cis (R,S)—CHC allows to obtain new architectures (as shown above in Scheme 2).
The present invention also encompasses polycarbonates and copolymers thereof obtainable by any one of the processes of the invention. The present invention also encompasses polycarbonates and copolymers thereof comprising at least one recurring unit of formula (VII1), (VII2), (VII3), or (VII4); obtainable by any one of the processes of the invention. The present invention also encompasses polycarbonates and copolymers thereof comprising at least one recurring unit of formula (VII1), (VII2), (VII3), or (VII4) according to the third or fourth aspect of the invention; obtainable by any one of the processes of the invention. In an embodiment, the invention encompasses random (co-) polymers obtainable by the process according to any one of the embodiments presented herein.
In some embodiments, the inventors found that the (co-)polymers prepared with the process of the invention can have high molar mass and narrow molar mass distribution.
The “mass” or “molar mass distribution” or “dispersity” is defined by the ratio Mw/Mn of the weight average molecular weight Mw to the number average molecular weight Mn as determined by Size Exclusion Chromatography.
In an embodiment, the present process allows the preparation of (co-)polymers, with a number average molecular weight Mn which can range between about 250 and about 100,000 g/mol. For example the Mn of the (co-)polymers obtained can range between about 2,500 and about 35,000 g/mol. Specific Mn values of the (co-)polymers obtained are provided in the tables below.
The Mn can be measured by any adequate technique known to the skilled persons for molar mass determination, for instance by chromatography such as size exclusion chromatography (SEC, also referred to as gel permeation chromatography, GPC)) in tetrahydrofuran (THF) at 20° C. calibrated with polystyrene standards.
In an embodiment, the mass molar distribution of the (co-)polymers obtained can range between about 1.10 and about 2.00, preferably below 2.00. Specific Mw/Mn ratios of the (co-)polymers obtained are provided in the tables below.
The process of the present invention allows improved incorporation of compound of formula (I) monomer into the polycarbonate backbone of the resulting polymer or copolymers thereof. The incorporation is calculated as the molar percentage (mol-%) of compound(s) of formula (I) monomer converted to (co-)polymer as follows: [molar amount of compound(s) of formula (I) in the precipitated (co-)polymer obtained after the process divided by the sum of the molar amounts of compound(s) of formula (I) and optionally cyclic ester(s) in the precipitated (co-)polymer obtained after the process]×100. The molar amounts of compound(s) of formula (I) and optionally cyclic ester(s) in the precipitated (co-) polymer obtained after the process can be measured by NMR spectroscopy. Improved conversions of compound(s) of formula (I) to (co-)polymers are reported in the tables below at particular operating conditions, employing specific catalytic systems, and specific cyclic esters.
The present invention also encompasses an article comprising a polycarbonate or copolymer thereof according to the invention, or a polycarbonate or copolymer thereof prepared according to any of the process of the invention.
The present invention can be further illustrated by the following examples, although it will be understood that these examples are included merely for purposes of illustration and are not intended to limit the scope of the invention unless otherwise specifically indicated.
Different ring opening polymerizations (ROP) of (±)-trans-CHC were performed with various catalysts, and reacting conditions. The conditions and results are listed in Table 1. One combination of specific catalyst and reacting conditions is depicted in Scheme 3 above. The polymerization was performed using the following catalytic systems:
DBU, (BDI)Zn(NTMS2), and [(NNO)ZnEt]. DBU was commercially available from Aldrich. DBU was dried over calcium hydride over 24 h before being distillated under vacuum and stored under inert atmosphere.
(BDI)Zn(NTMS2) was synthesized as described in Chamberlain B. M., Cheng M., Moore D. R., Ovitt T. M., Lobkovsky E. B., Coates G. W.; J. Am; Chem. Soc., 2001, 123, 3229-3230.
[(NNO)ZnEt] was prepared as described in (Williams C. K., Breyfogle L. E., Choi S. K., Nam W., Young V. G., Hillmeyer M. A., Tolman W. B.; J. Am. Chem. Soc., 2003, 125, 11350-11359).
In some cases, these metallic species were combined to an exogenous protic source, typically an alcohol (benzyl alcohol, BnOH). Benzyl alcohol (from Acros) was distilled over Mg turnings under argon atmosphere and kept over activated 3-4 Å molecular sieves. CDCl3 was dried over 3-4 Å molecular sieves.
The polymerization was performed as follows: In a glovebox, at room temperature, the catalyst was added to a flask prior to the addition of toluene (volume calculated to have a final concentration in monomer of 2 mol·L−1) and the optional addition of BnOH. The monomer (±)-trans-CHC (prepared as described in Example 3) was then added to the mixture. The mixture was stirred at the listed temperature (Table 1) over an appropriated time period.
Table 1, entries 2-9 were performed in the presence of benzyl alcohol (BnOH) with [(NNO)ZnEt] and PCHCs with a number-average molecular weight (Mn) lower than 22,000 g/mol were synthesized. The molecular weights determined by NMR (MnNMR) were in good agreement with the theoretical values (Mntheo). MnNMR were calculated from the relative intensity of the methylene protons from the benzylic alcohol group (Bn-CH2—O—PCHC) compared to the one of the methine protons from the CHC units in the polymer (R—O—(CO)—O—CHCH—(C4H8)-O—(CO)—O—R).
The values of molar masses measured by SEC, calibrated from polystyrene standards and unadjusted from their difference in their hydrodynamic volume, remained consistent with MnNMR and Mntheo for PCHCs with masses below 22,000 g/mol. Further experiments were performed at 80° C. (Table 1, entries 7-8) and at 60° C. (Table 1, entry 9). Varying the amount of BnOH equivalent (for example, Table 1, entries 12-13) allows a good tailoring of the molar masses. In addition, since the reaction proceeds by immortal ring-opening, the amounts of catalyst used can be minimized. The molecular weights determined by NMR (MnNMR) and SEC were in perfect agreement with the theoretical values (Mntheo).
The reactions were performed also with different zinc catalysts, for example: [(BDI)Zn{N(TMS)2}]. Molecular weights, dispersities, conversions and stereoselectivities obtained from each of the two catalyst systems were found to be similar.
1H NMR analysis (
The 13C{1H} NMR spectrum confirmed the chemical structure of PCHC (see
The present process also allows to prepare polycarbonates with an isotacticity close to 100%.
Differential scanning calorimetry (DSC) analyses were performed on a Setaram DSC 131 apparatus calibrated with indium at a rate of 10° C.·min−1, under continuous flow of helium (25 mL·min−1), using aluminum capsules (typically 10 mg of polymer). The thermograms were recorded according to the following cycles: 30° C. to +230° C. at 10° C.·min−1; +230° C. to 30° C. at 10° C.·min−1. The obtained PCHC had a glass transition temperature (Tg) of 121° C. (
Different ROP of (R,R)—CHC (prepared as described in Example 3) were performed with the zinc complex ([(NNO)ZnEt]) (prepared as described in Example 1). Conditions are depicted in Scheme 4 above. Table 2, entries 1-3 were performed in the presence of benzyl alcohol (BnOH) with [(NNO)ZnEt] and PCHCs with a number-average molecular weight (Mn) lower than 21,000 g·mol−1 were synthesized. The molecular weights determined by NMR (MnNMR) were in good agreement with the theoretical values (Mntheo). The values of molar masses measured by SEC in chloroform (the (R,R)PCHCs synthesized were insoluble in THF), calibrated from polystyrene standards and unadjusted for their difference in their hydrodynamic volume, remained coherent with MnNMR and Mntheo for PCHCs with masses below 21,000 g·mol−1.
1H NMR analysis of a (R,R)—PCHC (Table 2, Entry 1) showed the same signals as an iso-enriched PCHC (
The 13C{1H} NMR spectrum (Table 2, Entry 1) confirmed the chemical structure of PCHC (see
Differential scanning calorimetry (DSC) analyses were performed on a Setaram DSC 131 apparatus calibrated with indium at a rate of 10° C.·min−1, under continuous flow of helium (25 mL·min−1), using aluminum capsules (typically 10 mg of polymer). The thermograms were recorded according to the following cycles: 30° C. to +280° C. at 10° C.·min−1; +280° C. to 30° C. at 10° C.·min−1. The obtained isotactic (R,R)—PCHC (Table 2, entry 2) had a glass transition temperature (Tg) of 130° C., a crystallization temperature (Tc) of 162° C. and a melting temperature (Tm) of 250° C. (
(Meso or racemo) 1.2-cyclohexanediol and ethyl chloroformate were bought from Aldrich and used as received without any purification.
The synthesis of meso or trans-racemic-CHC comprised the transesterification reaction between a cyclohexanediol (meso or trans racemic, respectively) (0.5 M, 1 eq) and ethyl chloroformate (2.25 eq), in the presence of triethylamine (2.25 eq), as set out in Scheme 6. The reaction was carried out in 6 h in tetrahydrofuran at room temperature, obtaining isolated CHC with a yield of 90%. Polymer formation was not observed during the reaction.
(±)-Trans-CHC was prepared as described in Example 3. L-Lactide (L-LA; technical grade, Total Petrochemicals) was purified by recrystallization from a hot (80° C.) solution of concentrated 2-propanol, followed by two subsequent recrystallizations in hot toluene (105° C.). After purification, L-LA was stored at room temperature under inert atmosphere. The polymerization was performed as illustrated in Scheme 5. The conditions and results of the copolymerization by ROP of (±)-trans-CHC with L-lactide are shown in Table 3.
The 1H NMR spectrum (
Thermal analysis of this copolymer by DSC (
2,3-Butanediol and ethyl chloroformate were bought from Aldrich and used as received without any purification. The synthesis of 2,3-dimethylcarbonate comprised the transesterification reaction between the butane-2,3-diol (0.5 M, 1 eq) and ethyl chloroformate (2.25 eq), in the presence of triethylamine (2.25 eq), as set out in scheme 7. The reaction was carried out in 6 h in THF at room temperature. Polymer formation was not observed during the reaction.
Different ring-opening polymerizations (ROP) of racemic cyclohexene carbonate (rac-CHC) were performed with various catalysts, alcohols and reacting conditions. The conditions and results are listed in Table 4. One combination of specific catalyst and reacting conditions is depicted in Scheme 8. The polymerization was performed using the following catalytic systems: [(NNO)ZnEt], Y[N(SiMe3)2]3, [Y]+L1, [Y]+L2, and TBD.
Y[N(SiMe3)2]3: was commercially available from Strem Chemicals.
[Y]+L1, wherein L1 corresponds to the tetradentate ligand depicted in Scheme 9, was prepared as described in Bouyahyi M, Ajellal N, Kirillov E, Thomas C M, Carpentier J-F. Exploring Electronic versus Steric Effects in Stereoselective Ring-Opening Polymerization of Lactide and β-Butyrolactone with Amino-alkoxy-bis(phenolate)-Yttrium Complexes. Chem Eur J. 2011; 17:1872-1883.
[Y]+L2, wherein L2 corresponds to the tetradentate ligand depicted in Scheme 9, was prepared as described in Kramer J W, Treitler D S, Dunn E W, Castro P M, Roisnel T, Thomas C M, Coates G W. Polymerization of Enantiopure Monomers Using Syndiospecific Catalysts: A New Approach to Sequence Control in Polymer Synthesis. J Am Chem Soc. 2009; 131:16042-16044.
TBD: (1,5,7-triazobicyclo-[4,4,0]dec-5-ene) was commercially available from Aldrich. Isopropyl alcohol was commercially available from Aldrich.
Benzyl alcohol (BnOH) (from Acros) was further treated as described in Example 1.
Typical polymerization procedure: All polymerizations were performed similarly according to the following typical procedure (Table 4, entry 1): In a dry-box, benzyl alcohol (0.97 μL, 9.34 μmol), [(NNO)ZnEt](4.0 mg, 9.34 μmol) and dry toluene (0.10 mL) were placed in a Schlenk flask equipped with a magnetic stir-bar. The mixture was stirred 10 min at room temperature to form the benzyloxide catalyst. rac-CHC (0.133 g, 0.934 mmol, prepared as described in Example 3, and dry toluene (0.13 mL) were then added. The flask and its content were placed under argon and immersed in an oil-bath at 60° C. After stirring over 3 h, the reaction mixture was cooled down to room temperature and three drops of a 1.6 M acetic acid solution in toluene were added to quench the reaction. The solvent was evaporated and an aliquot was taken out to determine the % of CHC conversion by 1H NMR. The crude polymer was purified by precipitation in cold methanol. This process was repeated twice to ensure complete removal of the catalyst and unreacted CHC. A white powder was obtained following drying under vacuum (0.110 g, 82% isolated yield).
The isolated yield of polymer and the % of conversion of CHC are in agreement. This result clearly indicates that all the CHC converted was transformed to high molecular weight PCHC.
No decarboxylation (as evidenced by the absence of ether signals in 1H and 13C NMR spectra) or formation of non-precipitable oligomers was observed.
1′
aCalculated from the 1H NMR of the crude product.
bTheoretical molar mass value of PCHC calculated from the relation: Mn,theo = Mrac-CHC × [rac-CHC]0/[ROH]0 × conversionrac-CHC + MROH with Mrac-CHC = 142 g · mol−1, MiPrOH = 60 g · mol−1, MBnOH = 108 g · mol−1.
cNMR molar mass value of PCHC calculated from the integral value ratio of the signals of alkoxide methylene or methine end-group hydrogens to internal methine hydrogens.
dExperimental number average molar mass and dispersity values determined by SEC in THF at 30° C. using polystyrene standards.
NMR analyses revealed that all the catalytic systems investigated consistently gave the same extent of isotacticity (Pm=ca. 60-76%) as determined by integration of the mm/mr/rr triads in the methylene region of the 13C{1H} NMR spectra. This might reflect a chain-end control mechanism.
Different copolymerizations of racemic cyclohexene carbonate (rac-CHC) and L-Lactide (L-LA) (Scheme 10) were performed with various catalysts, monomer concentrations and reacting conditions. The conditions and results are listed in Table 5. The copolymerizations were performed using the following catalytic systems: [(NNO)ZnEt] or TBD.
Typical procedure for CHC/L-LA simultaneous copolymerization was as follows: All copolymerizations were performed similarly to the following typical procedure (Table 5, entry 4). In a dry-box, benzyl alcohol (0.97 μL, 9.34 μmol), [(NNO)ZnEt](4.0 mg, 9.34 μmol) and dry toluene (0.10 mL) were placed in a Schlenk flask equipped with a magnetic stir-bar. The mixture was stirred 10 min at room temperature to form the corresponding zinc alkoxide catalyst. rac-CHC (0.066 g, 0.467 mmol, prepared as described in Example 3), L-lactide (0.202 g, 1.401 mmol, prepared as described in Example 4) and dry toluene (0.37 mL) were then added under argon. The flask and its content were immersed in an oil-bath at 100° C. After stirring over 6 h, the reaction mixture was cooled down to room temperature. Three drops of a 1.6 M acetic acid solution in toluene were added to quench the reaction. The solvent was evaporated and after determination of the monomers' conversions by 1H NMR analysis of the crude product, the resulting mixture was dissolved in CH2Cl2 (10 mL) and precipitated in cold methanol (50 mL). This process was repeated twice to ensure complete removal of the catalyst and the unreacted monomers. A white copolymer was finally obtained following drying under vacuum.
M
aCalculated from the 1H NMR of the crude product.
bTheoretical molar mass value of PCHC-co-PLLA calculated from the relation: Mn,theo = Mrac-CHC × [rac-CHC]0/[BnOH]0 × conversionrac-CHC + MLLA × [LLA]0/[BnOH]0 × conversion LLA + MBnOH with Mrac-CHC = 142 g · mol−1, MLLA = 144 g · mol−1, MBnOH = 108 g · mol−1.
cNMR molar mass value of the copolymer calculated from the integral value ratio of the signals of alkoxide methylene or methine end-group hydrogens to internal methine hydrogens.
dExperimental number average molar mass and dispersity values determined by SEC in THF at 30° C. using polystyrene standards.
Similarly as in Example 3, using [(NNO)ZnEt]catalyst, yields very high CHC incorporation (up to 93%) into PCHC/PLLA copolymer.
The process was performed by sequential copolymerization (addition of CHC prior to LLA), as depicted in Scheme 11. Different copolymerizations were performed with various catalysts, alcohols, monomer concentrations and reaction time during the copolymerization of the rac-CHC. The conditions and results are listed in Table 6. The copolymerizations were performed using the following catalytic systems: [(NNO)ZnEt], TBD, or Y[N(SiMe3)2]3.
Typical procedure for CHC/L-LA sequential copolymerization (addition of CHC prior to LLA). All copolymerizations were performed similarly to the following typical procedure (Table 6, Entry 2).
The only differences lie in the nature of the catalyst, of the alcohol, in the initial concentrations in monomers, and in the reaction time during the homopolymerization of the racemic cyclohexene carbonate (rac-CHC). In a dry-box, benzyl alcohol (0.97 μL, 9.34 μmol), [(NNO)ZnEt](4.0 mg, 9.34 μmol) and dry toluene (0.10 mL) were placed in a Schlenk flask equipped with a magnetic stir-bar. The mixture was stirred 10 min at room temperature to form the corresponding alkoxide catalyst. rac-CHC (0.133 g, 0.934 mmol, prepared as described in Example 3) and dry toluene (0.23 mL) were then added under argon. The flask and its contents were immersed in an oil-bath at 60° C. After stirring over 6 h, L-lactide (LLA, 0.135 g, 0.934 mmol, prepared as described in Example 4) and dry toluene (0.24 mL) were added under argon; the reaction mixture was stirred over 2 h at 100° C., and was cooled down to room temperature. Three drops of a 1.6 M acetic acid solution in toluene were added to quench the reaction. The solvent was evaporated and the crude polymer was dissolved in CH2Cl2 (10 mL) and precipitated in cold methanol (50 mL). This process was repeated twice to ensure complete removal of the catalyst and the unreacted monomers. A white polymer was finally obtained following drying under vacuum.
M
aCalculated from the 1H NMR of the crude product. bTheoretical molar mass value of PCHC calculated from the relation: Mn,theo = Mrac-CHC × [rac-CHC]0/ROH]0 × conversionrac-CHC + MROH with Mrac-CHC = 142 g · mol−1, MBnOH = 108 g · mol−1, MiPrOH = 60 g · mol−1.
cTheoretical Mn value of PCHC-b-PLLA calculated from the relation: Mn,theo {Mrac-CHC × [rac-CHC]0/[ROH]0 × conversionrac-CHC} + {MLLA × [LLA]0/[ROH]0 × conversionLLA} + MROH.
dNMR molar mass value of PCHC/PLLA copolymer calculated from the integral value ratio of the signals of alkoxide methylene or methine end-group hydrogens to internal methine hydrogens.
eExperimental number average molar mass and dispersity values determined by SEC in THF at 30° C. using polystyrene standards.
e,fThe homopolymerization reaction time of rac-CHC is 24 h and 16 h, respectively.
The 1H NMR spectrum (
Table 7 shows the integral ratio between PCHC and PLLA carbons groups.
The same experiment (conditions of Table 6, entry 2) was repeated without any aliquot being taken out for analysis during the copolymerization (Table 6, Entry 2′). The 1H NMR of the crude product (
An experiment under the same operating conditions, yet with the reverse order of comonomers' addition (L-LA followed by rac-CHC) using [(NNO)ZnEt] catalyst was also performed. The 1H and 13C{1H} NMR (
The process was performed by sequential copolymerization, wherein the (R,R)-cyclohexene carbonate ((R,R)—CHC) was added prior to addition of L-lactic acid (LLA). Different copolymerizations were performed using [(NNO)ZnEt] and benzyl alcohol (BnOH), as depicted in Scheme 12. The conditions and results are listed in Table 8. Typical procedure was as described in Example 8.
M
aCalculated from the 1H NMR of the crude product.
bTheoretical molar mass value of PCHC calculated from the relation: Mn,theo = M(R,R)-CHC × [(R,R)-CHC]0/[ROH]0 × conversion(R,R)-CHC + MROH with M(R,R)-CHC = 142 g · mol−1, MBnOH = 108 g · mol−1.
cTheoretical Mn value of PCHC-b-PLLA calculated from the relation: Mn,theo = M(R,R)-CHC × [(R,R)-CHC]0/[ROH]0 × conversion (R,R)-CHC + MLLA × [LLA]0/[ROH]0 × conversionLLA + MBnOH.
dNMR molar mass value of PCHC/copolymer calculated from the integral value ratio of the signals of alkoxide methylene or methine end-group hydrogens to internal methine hydrogens.
eExperimental number average molar mass and dispersity values determined by SEC in THF at 30° C. using polystyrene standards.
The PCHC-b-PLLA copolymer (Table 8, entry 8) was characterized by its 1H NMR (
The copolymerization of racemic cyclohexene carbonate (rac-CHC) and trimethylene carbonate (TMC) was performed as depicted in Scheme 13. All polymerizations were performed similarly according to the following typical procedure (Table 9, entry 2). The only differences were in the nature of the catalyst and the initial concentrations of the monomers. The conditions and results are listed in Table 9. The copolymerizations were performed using the following catalytic systems: [(NNO)ZnEt] or TBD. The TMC (1,3-dioxane-2-one from Labso Chimie Fine, Blanquefort, France) was purified by first dissolving it in THF, stirring over CaH2 for 2 days before being filtrated and dried in vacuo, and finally recrystallized from cold THF.
Typical procedure of CHC/TMC simultaneous copolymerization was as follows. In a dry-box, benzyl alcohol (0.97 μL, 9.34 μmol), [(NNO)ZnEt] (4.0 mg, 9.34 μmol) and dry toluene (0.10 mL) were placed in a Schlenk flask equipped with a magnetic stir-bar. The mixture was stirred 10 min at room temperature to form the corresponding alkoxide catalyst. rac-CHC (0.133 g, 0.934 mmol, prepared as in Example 3), TMC (0.095 g, 0.934 mmol, and dry toluene (0.37 mL) were then added. The flask and its contents were placed under argon and immersed in an oil-bath at 60 C. After stirring over 6 h, the reaction mixture was cooled down to room temperature and three drops of 1.6 M acetic acid solution in toluene were added to quench the reaction. The solvent was evaporated and the crude polymer was dissolved in CH2Cl2 (10 mL) and precipitated in cold methanol (50 mL). This process was repeated twice to ensure complete removal of the catalyst and the unreacted monomers. A white polymer was finally obtained following drying under vacuum.
M
aCalculated from the 1H NMR of the crude product.
bTheoretical Mn value of PCHC-co-PTMC calculated from the relation: Mn,theo = Mrac-CHC × [rac-CHC]0/[ROH]0 × conversionrac-CHC + MTMC × [TMC]0/[BnOH]0 × conversionTMC + MBnOH.
cNMR molar mass value of PCHC calculated from the integral value ratio of the signals of alkoxide methylene end-group hydrogens to internal methine hydrogens.
dExperimental number average molar mass and dispersity values determined by SEC in THF at 30° C. using polystyrene standards.
The 1H NMR of the polymer produced in Entry 2 of Table 9 (
A similar procedure as that described in Example 8 for the CHC/L-LA sequential copolymerization (PCHC-b-PLLA), was used for the preparation of PCHC-PTMC copolymers by sequential copolymerization of racemic cyclohexene carbonate (rac-CHC) and trimethylene carbonate (TMC). The process was performed by sequential copolymerization (addition of TMC prior to rac-CHC) at 100° C. in toluene. TMC was fully converted before addition of CHC. The copolymerizations were performed using the following catalytic system: [(NNO)ZnEt]. The conditions and results are listed in Table 10.
M
aCalculated from the 1H NMR of the crude product.
bTheoretical Mn value of PTMC calculated from the relation: Mn,theo = MTMC × [TMC]0/[BnOH]0 × conversionTMC + MBnOH with MTMC = 102 g · mol−1, MBnOH = 108 g · mol−1.
cTheoretical Mn value of PTMC-co-PCHC calculated from the relation: Mn,theo = Mrac-CHC × [rac- CHC]0/[BnOH]0 × conversionrac-CHC + MTMC × [TMC]0/[BnOH]0 × conversionTMC + MBnOH.
dNMR molar mass value of PTMC-co-PCHC copolymer calculated from the integral value ratio of the signals of benzylalkoxide methylene end-group hydrogens to internal methine hydrogens.
eExperimental number average molar mass and dispersity values determined by SEC in THF at 30° C. using polystyrene standards.
The 13C NMR spectrum of the copolymer entry 2 of Table 10, (
A similar procedure as that described in Example 8 for the CHC/L-LA sequential copolymerization (PCHC-b-PLLA), was used for the preparation of PCHC-PTMC diblock copolymers by sequential copolymerization of racemic cyclohexene carbonate (rac-CHC) and trimethylene carbonate (TMC). The process was performed by sequential copolymerization (addition of rac-CHC prior to TMC) at 60° C. in toluene as depicted in scheme 15, using various catalysts and different initial concentrations of TMC and rac-CHC. The conditions and results are listed in Table 11. The copolymerizations were performed using the following catalytic systems: [(NNO)ZnEt] and TBD.
M
aCalculated from the 1H NMR of the crude product.
bTheoretical Mn value of PCHC-b-PTMC calculated from the relation: Mn,theo = Mrac-CHC [rac-CHC]0/[BnOH]0 × conversionrac-CHC + MTMC [TMC]0/[BnOH]0 × conversionTMC + MBnOH.
cNMR molar mass value of the copolymer calculated from the integral value ratio of the signals of benzylalkoxide methylene end-group hydrogens to internal methine hydrogens.
dExperimental number average molar mass and dispersity values determined by SEC in THF at 30° C. using polystyrene standards.
d,eThe homopolymerization reaction time of rac-CHC is 6 h and 24 h, respectively.
Number | Date | Country | Kind |
---|---|---|---|
13290095.2 | Apr 2013 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2014/058716 | 4/29/2014 | WO | 00 |