Preparation of Polypropylene Glycol Allyl Butyl Ether without Breaker Addition
In a stirred reactor with temperature and pressure monitoring, 96.4 g of a polypropylene glycol allyl ether having a mean molar mass of 1400 g/mol are admixed with 6.43 g of sodium hydroxide at 80° C. with stirring under nitrogen. Subsequently, 19.28 g of butyl chloride are added dropwise within one hour. The reactor is heated to 120° C. for postreaction and stirred at this temperature for another three hours. Subsequently, excess butyl chloride is distilled off and cooled to 90° C. With stirring, exactly the amount of water required to bring the amount of sodium chloride into solution is added.
Preparation of Polypropylene Glycol Allyl Butyl Ether with Breaker Addition
The procedure is as in Example 1, with the difference that 50 ppm of a block addition product of 40% by weight of ethylene oxide and 60% by weight of propylene oxide to propylene glycol have additionally been added to the aqueous polypropylene glycol allyl butyl ether.
Preparation of Polyalkylene Glycol Allyl Butyl Ether without Breaker Addition
In a stirred reactor with temperature and pressure monitoring, 96.5 g of a polyalkylene glycol allyl ether having a mean molar mass of 1600 g/mol and a mixing ratio of ethylene glycol to propylene glycol of 3 to 1 are admixed with 3.7 g of sodium hydroxide at 80° C. with stirring under nitrogen. Subsequently, 11.6 g of butyl chloride are slowly added dropwise. The reactor is heated to 120° C. for postreaction and stirred at this temperature for three hours. Subsequently, excess butyl chloride is distilled off and the mixture is cooled to 90° C. With stirring, exactly the amount of water required to bring the amount of sodium chloride into solution is added.
Preparation of Polyalkylene Glycol Allyl Butyl Ether with Breaker Addition
The procedure is as in Example 3, with the difference that 50 ppm of a block addition product of 40% by weight of ethylene oxide and 60% by weight of propylene oxide to propylene glycol, which has been crosslinked with bisphenol A diglycidyl ether up to a molecular weight Mw of 10 000 g/mol (measured by GPC), have additionally been added to the aqueous polyalkylene glycol allyl butyl ether.
Preparation of Polyalkylene Glycol Allyl Methyl Ether without Breaker Addition
In a stirred reactor with temperature and pressure monitoring, 99.6 g of a polyalkylene glycol allyl ether having a mean molar mass of 2000 g/mol and a mixing ratio of ethylene glycol to propylene glycol of 1 to 1 are admixed with 0.75 g of sodium hydroxide at 80° C. with stirring under nitrogen. Subsequently, 0.95 g of methyl chloride is slowly added dropwise. The reactor is heated to 120° C. for postreaction and stirred at this temperature for a further three hours. Thereafter, excess butyl chloride is distilled off and the mixture is cooled to 90° C. With stirring, the amount of water required to bring the amount of sodium chloride into solution is added.
Preparation of Polyalkylene Glycol Allyl Methyl Ether with Breaker Addition
The procedure is as in Example 5, with the difference that 50 ppm of a block addition product of 40% by weight of ethylene oxide and 60% by weight of propylene oxide to propylene glycol, which has been crosslinked with bisphenol A diglycidyl ether up to a molecular weight Mw of 10 000 g/mol (measured by GPC), and has subsequently been propoxylated with 30 mol of propylene oxide, have additionally been added to the aqueous polyalkylene glycol allyl methyl ether.
Results of the Phase Separation Experiments:
To determine the effectiveness of the emulsion breaker, the water separation from the crude product emulsion was determined as a function of time. To this end, in each case 100 ml of the crude product emulsion were introduced into breakage bottles (conical, screw-closeable, graduated glass vessels). Thereafter, the breakage bottles were placed into a temperature-controlled bath and the water separation was monitored at 80° C.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 038 849.6 | Aug 2006 | DE | national |