Process for preparing styrene derivatives

Information

  • Patent Application
  • 20130324745
  • Publication Number
    20130324745
  • Date Filed
    May 31, 2013
    11 years ago
  • Date Published
    December 05, 2013
    10 years ago
Abstract
A process is provided which allows the synthesis of a large number of styrene derivatives with formation of C—C bonds, with use being possible of economically advantageous substrates, readily available carbon nucleophiles, and both inexpensive and environmentally unproblematic catalyst systems, permitting reaction under mild conditions and a high compatibility with functional groups on the reactants involved.
Description

The invention provides a process for preparing styrene derivatives by transition metal-catalysed cross-coupling of chlorostyrenes with organomagnesium compounds in the presence of iron compounds.


Transition metal-catalysed cross-couplings are important synthesis tools in modern organic chemistry, though the majority of the known cross-coupling reactions use palladium complexes or nickel complexes as transition metal catalysts. Cross-coupling with chlorostyrenes, which are particularly advantageous both economically and environmentally, with substitution of the chlorine atom, is described only in a few sporadic cases—for example, as arylation of activated benzyl derivatives, by Niwa et al., Org. Left. 2008, 10, 4639; as Sonogashira coupling with terminal alkynes, by Torborg et al., Chem. Eur. J. 2009, 15, 1329, and as Suzuki coupling with arylboronic acids, by Lietzau et al., WO 2006/125511, with all the reactions having proceeded with palladium catalysis. Moreover, the known reactions in this class either proved highly substrate-specific in relation to the coupling partner (for example, confined to CH-acidic benzyl derivatives or to terminal alkynes) or required complicated and costly boric acid derivatives as coupling partners. To obtain acceptable reactivity of the catalyst system, furthermore, it was necessary to use organic ligands in the form of phosphines or N-heterocyclic carbenes, which, however, are relatively expensive and are generally not recoverable. Cross-coupling with simple alkyl derivatives, in addition, was not possible using these catalysts.


Attempts have therefore been made to develop cross-coupling techniques which permit not only the use of the economically advantageous chlorostyrenes but also the use of readily available carbon nucleophiles, such as Grignard compounds, for example, the intention being not least to employ inexpensive, readily available and non-toxic catalysts and ligands.


Iron compounds are available at substantially more favourable prices than is palladium, and they are far less toxic than nickel compounds and offer distinct advantages from an environmental standpoint over copper-based catalyst systems. The purification of wastewaters, in particular, is facilitated significantly.


Back at the beginning of the 1970s it was found that iron salts are able to catalyse the cross-coupling of vinyl halides with alkyl-Grignard compounds (Kochi et al., J. Am. Chem. Soc. 1971, 1487), but this reaction found only very limited application in the subsequent 30 years, on account of the narrow scope for its application, until Knochel, Fürstner, Cahiez and Nakamura succeeded in applying iron-catalysed cross-couplings with aid from nitrogen-containing additives such as


N-methylpyrrolidone or N,N,N′,N′-tetramethylethylenediamine (TMEDA), for example, over a greater breadth of substrates (e.g. Fürstner et al., Angew. Chem. Int. Ed. 2002, 41, 609; Nakamura et al., J. Am. Chem. Soc. 2004, 3686; Knochel et al., Synlett 2001, 1901; Cahiez et al., Angew. Chem. Int. Ed. 2007, 4364). These reactions are distinguished by especially mild reaction conditions (−20° C. to +35° C.), high functional-group compatibility (e.g. methyl esters, amines) and short reaction times (usually less than two hours). Another reason why these reactions are of particular interest for industrial application is that as a general rule they do not need expensive and sensitive phosphine ligands or carbene ligands, as is often the case with nickel-based and palladium-based catalyst systems, especially if inexpensive aryl chlorides serve as coupling partners, rather than the aryl bromides or aryl iodides.


These iron-catalysed cross-couplings, however, were considered to be confined to electron-deficient chlorostyrenes where the aryl ring had electron-withdrawing carboxyl, cyano, trifluoro-methyl or sulphoxyl substituents, or to electron-deficient, chlorinated, heteroaromatic compounds. Fürstner et al. taught, accordingly, the use of the more reactive, although more difficult to synthesize, aryl triflates in the case of electron-donating substituents on the aromatic moiety, such as methyl, methoxy, aryl, or aryloxy. The cross-coupling of chlorostyrenes, which are relatively electron-rich on account of the alkenyl group, with organomagnesium compounds was neither performed nor attempted.


The object of the present invention was to provide a process for preparing styrene derivatives by cross coupling, allowing the use of inexpensive and eco-friendly iron catalysts, in order to link chlorostyrenes with organomagnesium compounds, which are readily available and can be prepared with great substrate breadth.


The present object has been achieved through the surprising finding that in spite of the electron-donating effect of the alkenyl group, chlorostyrenes can be cross-coupled with magnesium organyls in the presence of iron compounds in tandem with the possibility, typically, of using the known mild conditions of iron catalysis. As a result, a new efficient, inexpensive and eco-friendly access is provided to a class of substance which was hitherto accessible only at substantially greater cost and complexity.


The invention accordingly provides a process for preparing organic compounds of the general formula (I)




embedded image


in which

    • i is 0, 1, 2 or 3, preferably 0 or 1,
    • j is 0, 1, 2, 3 or 4, preferably 0 or 1,
    • R2 independently at each occurrence is selected from unsubstituted or fluoro-, NR42-, C1-C6-alkyl- or C1-C6-alkoxy-substituted C1-C6-alkyl, C6-C10-aryl or C7-C11-aralkyl, it being possible for each R4 independently to be C1-C6-alkyl, C7-C10-aryl or C7-C11-aralkyl,
    • R3 independently at each occurrence is selected from fluoro, chloro, NR42, unsubstituted or NR42- or C1-C6-alkoxy-substituted C1-C6-alkyl, and also unsubstituted or fluoro-, NR42- or C1-C6-alkoxy-substituted C1-C6-alkoxy or C7-C11-aralkyl, where each R4 independently has the definitions indicated above, and where two or more of the substituents R2 and/or R3 together form an aromatic, heteroaromatic, aliphatic or heteroaliphatic ring system, subject to the condition that the vinyl function which carries the radical R2 is not part of such a ring system if that system is aromatic or heteroaromatic, and
    • is an unsubstituted or fluoro-, C1-C6-alkoxy-, or NR42-substituted C1-C15-alkyl, C3-C7-cycloalkyl, C2-C15-alkenyl, C3-C7-cycloalkenyl, C2-C15-alkynyl, C1-C6-alkoxy, C7-C15-aralkyl or C6-C10-aryl radical, or is a correspondingly substituted or unsubstituted aliphatic or aromatic C3-C12 heterocycle, with each R4 independently having the definitions indicated above,
    • by reacting chlorostyrenes of the general formula (II)




embedded image


in which

    • R2, R3, i and j have the definitions described for formula (I),


      with organomagnesium compounds of the formal composition (III)





[M+]n[RmMgXkYj]  (III),


in which

    • R1 has the definition described for formula (I),
    • M is lithium, sodium or potassium,
    • X is fluoro, chloro, bromo or iodo, preferably chloro or Br chloro, bromo, very preferably bromo,
    • Y is fluoro, chloro, bromo or iodo, preferably chloro or Br chloro, bromo, very preferably bromo,
    • n is 0, 1, 2, 3 or 4, preferably 0 or 1, very preferably 0,
    • m is 1, 2, 3, 4, 5 or 6, preferably 1 or 2, very preferably 1,
    • k is 0, 1, 2, 3 or 4, preferably 0, 1 or 2, very preferably 0 or 1,
    • l is 0, 1, 2, 3 or 4, preferably 0, 1 or 2, very preferably 0 or 1,


      and at the same time the relation






n+2=m+k+1


is valid,


characterized in that the reaction is carried out in the presence of iron compounds, preferably iron(II) or iron(III) compounds.


In one preferred embodiment i is 0 or 1. In another preferred embodiment j is 0.1 or 2, and in a particularly preferred embodiment i is 0 or 1 and j is 0.1 or 2.


In one preferred embodiment R2 is selected independently from C1-C6-alkyl, C6-C10-aryl, and C7-C11-aralkyl, with methyl, ethyl or propyl, phenyl and naphthyl representing particularly preferred embodiments.


In one preferred embodiment R3 independently at each occurrence is selected from chloro, NR42, where each R4 independently can be C1-C6-alkyl, C7-C10-aryl or C7-C11-aralkyl, preferably C1-C6-alkyl, more preferably methyl, ethyl or propyl, C1-C6-alkoxy, C6-C10-aryl, more preferably phenyl or naphthyl and C7-C11-aralkyl.


In the embodiment in which two or more of the substituents R2 and/or R3 together form a heteroaromatic or heteroaliphatic ring system preferred heteroatoms of the heteroaliphatic or (hetero)araliphatic ring system are nitrogen, oxygen or sulphur, and especially oxygen, and in the case of the heteroaraliphatic ring system the heteroatoms are present preferably in the aliphatic part of the ring system.


For the purposes of the present invention, the aliphatic or aromatic heterocyclic C3-C12 radical in the case of the radical R1 comprises monocyclic and polycyclic compounds in which there is at least one ring as heterocycle and further rings optionally present are constructed from hydrocarbons and/or heteroatoms, with the heteroatoms of the aliphatic or aromatic heterocyclic C3-C12 radical being preferably selected from oxygen, nitrogen and/or sulphur.


In one preferred embodiment R′ is an unsubstituted or fluoro-, C1-C4-alkoxy- or NR42-substituted C1-C11-alkyl, C3-C7-cycloalkyl, C2-C11-alkenyl, C3-C7-cycloalkenyl, C2-C11-alkynyl, C7-C12-aralkyl or C6-C10-aryl radical, or a correspondingly substituted or unsubstituted aliphatic or aromatic C3-C8 heterocycle, with each R4 independently being C1-C6-alkyl. The aliphatic or aromatic heterocyclic C3-C8 radical in this case comprises monocyclic and polycyclic compounds in which there is at least one ring as heterocycle and further rings optionally present are constructed from hydrocarbons and/or heteroatoms, with the heteroatoms of the aliphatic or aromatic heterocyclic C3-C8 radical consisting of oxygen and/or nitrogen, preferably of oxygen.


Chlorostyrenes of the general formula (II) are available commercially or preparable by means of known methods such as Wittig olefinization or Heck reaction, for example. In accordance with the invention they are preferably used individually, although the use of a mixture of two or more chlorostyrenes is also possible. The alkenyl group of the chlorostyrene here is positioned ortho, meta or para, preferably ortho or para and more preferably ortho to the chlorine substituent.


Examples of chlorostyrenes of the formula (II) are 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 4-chlorostilbene, 1-chloro-4-isopropenylbenzene, 1-chloro-3-isopropenylbenzene, 4-N,N-dimethylamino-2-chlorostyrene, 3-methoxy-2-chlorostyrene, 2-chloro-4,5-methylenedioxystyrene, 2-chloro-4,5-dimethoxystyrene, 4-(4-chlorophenyl-3-methylprop-1-en)-1-ylstyrene, 2,4-dichlorostyrene and 3-N,N-dimethylamino-2-chlorostyrene.


The preparation of the organomagnesium compound (III) is familiar to the skilled person, for example by Grignard reaction of an organic halogen compound R—X (where X is fluoro, chloro, bromo or iodo) with elemental magnesium, under suitable conditions, including by halogen-metal exchange or deprotonation, optionally with addition of auxiliaries such as lithium chloride, for example, or by transmetallation of other organometallic compounds—organolithium compounds, for example—with suitable magnesium compounds, examples being magnesium salts or Grignard compounds. For the process of the invention, preference is given to using organomagnesium chlorides R1MgCl or organomagnesium bromides R1MgBr, very preferably organomagnesium bromides R1MgBr, where R1 has the definition described for formula (I).


Examples of suitable organomagnesium compounds are organomagnesium bromides such as, for example, nonylmagnesium bromide, undecylmagnesium bromide, 2-ethylhexyl-1-magnesium bromide, cyclopropylmagnesium bromide, 2-cyclohexylethyl-1-magnesium bromide, 2-propylenedioxyethyl-1-magnesium bromide, 9-decen-1-ylmagnesium bromide, 6-tetrahydropyran-2-oxyhexyl-1-magnesium bromide, 4-(N,N-dimethylamino)phenylmagnesium bromide, 4′-fluorobiphenyl-4-magnesium bromide, 4-fluorophenylmagnesium bromide, 4-methoxyphenylmagnesium bromide, 4-fluoro-3-methylphenylmagnesium bromide and thiophen-2-ylmagnesium bromide; and also bis(4-methoxyphenyl)magnesium, bis(4-methoxyphenyl)-magnesium-lithium chloride complex, 4-methoxyphenylmagnesium chloride-lithium chloride complex and lithium trihexylmagnesate.


The preferred molar ratio of employed chlorostyrene of the formula (II) to organomagnesium compound (III) is from 10:1 to 1:10, more preferably from 3:1 to 1:3 and very preferably from 3:2 to 2:3.


The process of the invention is carried out customarily in a dry aprotic organic solvent or in a mixture of one or more of these solvents. In one preferred embodiment the solvent comprises or consists of one or more ethers, preferably selected from tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-methyl-THF), 1,4-dioxane, methyl tert-butyl ether (MTBE), diethyl ether, 1,2-dimethoxyethane (DME, glyme), diisopropyl ether (DIPE), dipropyl ether, dibutyl ether, cyclopentyl methyl ether, diethylene glycol dimethyl ether(diglyme), triethylene glycol dimethyl ether(triglyme), tetraethylene glycol dimethyl ether(tetraglyme) and diethylene glycol dibutyl ether, with THF being particularly preferred.


In one preferred embodiment the reaction is carried out in a solvent which comprises one or more nitrogen-containing additives selected from trialkylamines, preferably triethylamine, ethyldiisopropyl amine or N,N,N′,N′-tetramethylethylenediamine (TMEDA), N-containing aliphatic heterocycles, preferably 1,4-diazabicyclo[2.2.2]octane (DABCO) or sparteine, alkylamides, cyclic alkylamides (lactams), preferably N-methyl-2-pyrrolidone (NMP), cycloalkylamines, preferably 1,2-diaminocyclohexane (DACH), cycloalkyldiamines, alkylimines, cycloalkylimines, aniline derivatives, preferably N,N-dimethylaniline, ureas, urethanes or nitrogen-containing heteroaromatics, preferably pyridine or phenanthroline. With particular preference N-methyl-2-pyrrolidine (NMP) is added. The additive may also take on the role of a cosolvent.


In the process of the invention the fraction of the nitrogen-containing additive relative to the amount of solvent used is 0.1 to 50 vol %, more preferably 1 to 20 vol %, very preferably 5-15 vol %.


The iron compound in the case of the present invention may be used in any desired oxidation state, with preference being given for practical reasons to compounds with iron in the +2 or +3 oxidation state—for example, iron(II) chloride, iron(III) chloride, iron(H) acetylacetonate, iron(III) acetyl-acetonate, iron(II) acetate, iron(III) acetate, iron(III) bromide, iron(III) bromide, iron(II) fluoride, iron(III) fluoride, iron(II) iodide, iron(III) iodide, iron(II) sulphate, iron(II) trifluoroacetate, iron(II) trifluoromethanesulphonate, iron(III) trifluoromethanesulphonate, iron(III) chloride-TMEDA complex or a mixture of these compounds.


The iron compound may be used in substoichiometric, stoichiometric or superstoichiometric amount, use being made preferably of a substoichiometric amount, more preferably an amount of 0.01 to 20 mol %, and very preferably an amount of 0.01 to 10 mol %, based on the compound of the general formula (II).


The process of the invention is carried out customarily at a reaction temperature in the range from −40° C. to +100° C., preferably in the range from 0 to +80° C., more preferably in the range from +20° C. to +80° C. A further embodiment according to the invention is the reaction regime under irradiation by microwaves, which is associated with the advantage of more rapid conversion.


One preferred embodiment sees first a portion of the organomagnesium compound being added to the mixture of iron compound, solvent and nitrogen-containing additive or cosolvent, and the remaining fraction of organomagnesium compound being slowly added dropwise.


In another embodiment the organomagnesium compound is added all at once. The latter may be advantageous especially in the case of fluorine-substituted organic radicals of the organo-magnesium compound.


Through the process of the invention it has therefore become possible for the first time to couple a multiplicity of differently substituted chlorostyrenes with organomagnesium compounds.







EXAMPLES
Example 1
Coupling of 2-chlorostyrene with 4-dimethylaminophenylmagnesium bromide



embedded image


Under inert gas 17.7 mg (5 mol %, 0.05 mmol) of iron(II) acetylacetonate were taken up in 4.4 ml of a mixture of tetrahydrofuran and NMP (v/v 10:1). At 30° C. 138.6 mg (1.0 mmol) of 2-chlorostyrene were added. Then 3 ml of a 0.5 M solution of 4-dimethylaminophenylmagnesium bromide in THF (about 1.5 mmol) were added. After two-hour stirring the reaction mixture was rendered aqueous with 5 ml of saturated sodium carbonate solution and extracted with three times 5 ml of ethyl acetate. The combined organic phases were dried over magnesium sulphate and concentrated on a rotary evaporator and the crude product obtained was analysed by gas chromatography. The yield was 146 mg (0.65 mmol, 65% of theory) of 2′-vinyl-4-dimethylaminobiphenyl.


Examples 2 to 15

Further couplings of chlorostyrenes with aryl-Grignard compounds were conducted, the procedure being analogous to that of example 1, but using the reactants listed in table 1. The individual yields are not optimized.













TABLE 1









Yield


Example



(% of


No.
Chlorostyrene
Grignard compound
Product
theory)



















2
1-Chloro-4-
4-Fluorophenyl-
4-Fluoro-4′-isopropenyl
93



isopropenylbenzene
magnesium bromide
biphenyl


3
2-Chlorostyrene
4-Methoxyphenyl-
4-Methoxy-2′-vinyl-
71




magnesium bromide
biphenyl


4
2-Chlorostyrene
4-Fluorophenyl-
4-Fluoro-2′-vinylbiphenyl
83




magnesium bromide


5
4-Dimethylamino-
4-Fluorophenyl-
3-Dimethylamino-4′-
72



2-chloro-styrene
magnesium bromide
fluoro-2-vinylbiphenyl


6
2-Chlorostyrene
4-Fluoro-3-methylphenyl-
4-Fluoro-3-methyl-4′-
83




magnesium bromide
vinylbiphenyl


7
2-Chloro-3-
4-Methoxyphenyl-
2,4′-Dimethoxy-6-
91



methoxystyrene
magnesium bromide
vinylbiphenyl


8
2-Chloro-3-
4-Fluorophenyl-
2-Methoxy-4′-fluoro-2-
70



methoxystyrene
magnesium bromide
vinylbiphenyl


9
2-Chloro-3-
4-Dimethylaminophenyl-
2′-Methoxy-4-dimethyl-
73



methoxystyrene
magnesium bromide
amino-6′-vinylbiphenyl


10
2-Chlorostyrene
4-Trifluoromethoxy-
4-Trifluoromethoxy-2′-
83




phenylmagnesium
vinylbiphenyl




bromide


11
2-Chlorostyrene
1,3-Benzo-dioxol-5-yl-
5-(2-Vinylphenyl)-
82




magnesium bromide
benzo[d][1,3]dioxole


12
2-Chloro-4,5-
1,3-Benzo-dioxol-5-yl-
5-(4,5-Dimethoxy-2-vinyl-
69



dimethoxystyrene
magnesium bromide
phenyl)benzo[d][1,3]-





dioxole


13
1-Chloro-3-
4-Fluorophenyl-
4-Fluoro-3′-isopropenyl
85



isopropenylbenzene
magnesium bromide
biphenyl


14
2,4-
Phenylmagnesium
5-Chloro-2-vinylbiphenyl
69



Dichlorostyrene
bromide


15
2-Chlorostyrene
Phenylmagnesium
2-Vinylbiphenyl
89




bromide









Comparative Examples 1 to 3

The coupling of electron-rich aryl chlorides with aryl-Grignard compounds was attempted, the procedure being analogous to that of inventive example 1 but with the reactants listed in table 2. It was found that in the absence of the alkenyl group there is no coupling.













TABLE 2









Yield


Comparative



(% of


example No.

Grignard compound
Product
theory)







1
Chlorobenzene
Phenylmagnesium chloride
Biphenyl
1


2
2-Chloroanisole
Phenylmagnesium chloride
2-Methoxybiphenyl
0


3
2-Chlorotoluene
Phenylmagnesium chloride
2-Phenyltoluene
0









Examples 16 to 26

Couplings of chlorostyrenes with alkyl-Grignard compounds were conducted, the procedure being analogous to that of example 1, but using the reactants listed in table 3. The individual yields are not optimized.













TABLE 3









Yield


Example



(% of


No.
Chlorostyrene
Grignard compound
Product
theory)







16
2-Chlorostyrene
1-Decylmagnesium bromide
2-Decylstyrene
94


17
2-Chlorostyrene
1-Undecylmagnesium
2-Undecylstyrene
85




bromide


18
4-Isopropenyl-
1-Decylmagnesium bromide
1-Isopropenyl-4-
71



chlorobenzene

decylstyrene


19
4-Isopropenyl-
1-Undecylmagnesium
1-Isopropenyl-4-
70



chlorobenzene
bromide
undecylstyrene


20
2-Chlorostyrene
2-Ethylhexyl-1-magnesium
2-(2-Ethylhexyl)-
80




bromide
styrene


21
2-Chlorostyrene
2,2-(Propylenedioxy)ethyl-
2-(2,2-Propylene-
97




1-magnesium bromide
dioxy)ethylstyrene


22
2-Chlorostyrene
Cyclopropylmagnesium
2-Cyclopropylstyrene
43




bromide


23
4-Chlorostilbene
Nonylmagnesium bromide
4-Nonylstilbene
60


24
4-(Propen-1-yl)-1-
Nonylmagnesium bromide
4-Nonyl-1-(propen-1-
63



chlorobenzene

yl)-benzene


25
2-Chlorostyrene
2-Cyclohexylethyl-
2-(2-Cyclohexyl)-
75




magnesium bromide
ethylstyrene


26
2-Chlorostyrene
Dec-9-en-1-ylmagnesium
2-(Dec-9-en-1-yl)-
71




bromide
styrene


27
2-Chlorostyrene
[6-(Tetrahydro-2H-pyran-2-
2-[6-(Tetrahydro-2H-
77




yl)oxy]hexylmagnesium
pyran-2-yl)oxy]hexyl-




bromide
styrene


28
2-Chloro-3-
Dec-9-en-1-ylmagnesium
2-(Dec-9-en-1-yl)-3-
70



methoxystyrene
bromide
methoxystyrene


29
2-Chloro-3-
2,2-(Propylenedioxy)-ethyl-
3-Methoxy-2-(2,2-
70



methoxystyrene
1-magnesium bromide
propylenedioxy)ethyl-





styrene


30
2-Chloro-4,5-
Decylmagnesium bromide
2-Decyl-4,5-
73



(methylenedioxy)-

(methylenedioxy)-



styrene

styrene


31
2-Chloro-4,5-
2,2-(Propylenedioxy)-ethyl-
2-(2,2-Propylene-
82



(methylenedioxy)-
1-magnesium bromide
dioxy)ethyl-4,5-



styrene

(methylenedioxy)-





styrene


32
4,5-Dimethoxy-2-
2,2-(Propylenedioxy)-ethyl-
2-(2,2-Propylene-
73



chlorostyrene
1-magnesium bromide
dioxy)ethyl-4,5-di-





methoxystyrene


33
1-Chloro-4-[3-(4-
Decylmagnesium bromide
4-[3-(4-Chloro-
61



chlorophenyl)-1-

phenyl)-1-buten-1-



buten-1-yl]-

yl]-1-decylbenzene



benzene









Example 34

The coupling of 2-chlorostyrene with decylmagnesium bromide was carried out as described in example 16, but at a reaction temperature of 55° C. This allowed the isolated yield of 2-decylstyrene to be raised to 97%.


Example 35

The coupling of 2-chlorostyrene and 4-fluorophenylmagnesium bromide was carried out as described in example 4, but the reaction mixture was subjected to microwaves from a commercial microwave apparatus. The reaction temperature rose to 80° C. in this case. After a reaction time of 15 minutes the yield was 85%.

Claims
  • 1. Process for preparing organic compounds of the general formula (I)
  • 2. Process according to claim 1, wherein R2 independently at each occurrence is selected from C1-C6-alkyl, more preferably methyl, ethyl or propyl, C6-C10-aryl, more preferably phenyl or naphthyl, and C7-C11-aralkyl.
  • 3. Process according to either of the preceding claims, wherein R3 independently at each occurrence is selected from chloro, NR42, where each R4 independently has the definition according to claim 1, C1-C6-alkyl, more preferably methyl, ethyl or propyl, C1-C6-alkoxy, C6-C10-aryl, more preferably phenyl or naphthyl and C7-C11-aralkyl.
  • 4. Process according to any of the preceding claims, wherein R1 is an unsubstituted or fluoro-, C1-C4-alkoxy- or NR42-substituted C1-C11-alkyl, C3-C7-cycloalkyl, C2-C11-alkenyl, C3-C7-cycloalkenyl, C2-C11-alkynyl, C7-C12-aralkyl or C6-C10-aryl radical, or a correspondingly substituted or unsubstituted aliphatic or aromatic C3-C8 heterocycle, with each R4 independently being C1-C6-alkyl.
  • 5. Process according to any of the preceding claims, wherein use is made as iron compound of iron(II) chloride, iron(III) chloride, iron(II) acetylacetonate, iron(III) acetylacetonate, iron(II) acetate, iron(III) acetate, iron(II) bromide, iron(III) bromide, iron(II) fluoride, iron(III) fluoride, iron(II) iodide, iron(III) iodide, iron(III) sulphate, iron(II) trifluoroacetate, iron(II) trifluoromethanesulphonate, iron(III) trifluoromethanesulphonate, iron(III) chloride-TMEDA complex or a mixture of these compounds is used.
  • 6. Process according to any of the preceding claims, wherein the iron compound is used in a substoichiometric amount, preferably in an amount of 0.01 to 50 mol %, more preferably of 0.01 to 10 mol %, based on the compound of the general formula (II).
  • 7. Process according to any of the preceding claims, wherein as organomagnesium compound of the formal composition (III) of organomagnesium chlorides R1MgCl or organomagnesium bromides R1MgBr, where R1 has the definition indicated in claim 1 is used.
  • 8. Process according to any of the preceding claims, wherein the reaction is carried out in a solvent which comprises one or more nitrogen-containing additives selected from trialkylamines, preferably triethylamine, ethyldiisopropylamine or N,N,N′,N′-tetramethylethylenediamine, N-containing aliphatic heterocycles, preferably 1,4-diazabicyclo[2.2.2]octane or sparteine, alkylamides, cyclic alkylamides (lactams), preferably N-methyl-2-pyrrolidone, cycloalkylamines, preferably 1,2-diaminocyclohexane, cycloalkyldiamines, alkylimines, cycloalkylimines, aniline derivatives, preferably N,N-dimethylaniline, ureas, urethanes or nitrogen-containing heteroaromatics, preferably pyridine or phenanthroline.
  • 9. Process according to any of the preceding claims, wherein the nitrogen-containing additive is used in an amount of 0.1 to 50 vol %, preferably of 1 to 20 vol % and very preferably of 5-15 vol %, based on the solvent used in the reaction.
  • 10. Process according to any of the preceding claims, wherein the process is carried out in an aprotic organic solvent, preferably in tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, methyl tert-butyl ether, diethyl ether, 1,2-dimethoxyethane, diisopropyl ether, dipropyl ether, dibutyl ether, cyclopentyl methyl ether, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethyl carbonate, 1,1,2,2-tetraethoxyethane, 1,1,2,2-tetramethoxyethane or a mixture thereof.
  • 11. Process according to any of the preceding claims, wherein the reaction is carried out under irradiation with microwaves.
Priority Claims (1)
Number Date Country Kind
12170697.2 Jun 2012 EP regional