This application is a U.S. National Phase Application under 35 USC 371 of International Application PCT/GB02/03573 filed Aug. 2, 2002.
This invention relates to the production of vinyl phosphonic acid and in particular to the production of vinyl phosphonic acid by hydrolysis of a corresponding ester.
Vinyl phosphonic acid is a useful ingredient in the production of flame-retardant agents. Polymers of vinyl phosphonic acid can be used in paints, plastics materials and corrosion inhibitors, amongst others.
It is known to produce vinyl phosphonic acid by hydrolysis of a corresponding ester in the presence of an acidic or a basic catalyst. However, the product of such a hydrolysis has been found to be substantially impure and contaminated with alcohols and other organics.
We have discovered that hydrolysis of an ester (especially a halogenated ester) of vinyl phosphonic acid in the presence of a carbonyl compound (e.g. an aldehyde or a ketone) leads to the production of substantially pure vinyl phosphonic acid in good yield.
Although the present invention will be described herein with particular reference to the production of vinyl phosphonic acid by the hydrolysis of a bis (beta haloalkyl) ester of the acid, it is not to be construed as being limited thereto.
Accordingly, the present invention provides a method for the production of vinyl phosphonic acid, in which a vinyl phosphonic acid ester is hydrolysed in the presence of a carbonyl compound.
The present invention also provides vinyl phosphonic acid made by the method described in the immediately preceding paragraph.
In one embodiment of the present invention, the carbonyl compound may be a monofunctional aldehyde of general formula:
wherein R represents hydrogen or an alkyl group having from 1 to 10 carbon atoms and n is a whole number of 1 or greater.
The aldehyde may be, for example, formaldehyde, paraformaldehyde, metaformaldehyde or acetaldehyde.
In a second embodiment of the present invention, the carbonyl compound may be a difunctional aldehyde of general formula:
wherein n is zero or a whole number of from 1 to 4.
An example of such a difunctional aldehyde is glyoxal.
In a third embodiment of the present invention, the carbonyl compound may be a ketone of general formula:
wherein R1 and R2 (which may be the same or different) each represent an alkyl group having from 1 to 5 carbon atoms.
The ketone may, for example, be acetone.
Alternatively, the carbonyl compound may be a cycloalkyl ketone, for example, cyclohexanone.
Suitably, the ester which is to be hydrolysed is a bis(beta-haloalkyl) ester of vinyl phosphonic acid, preferably the bis(beta-chloroethyl) ester (hereinafter “BisBeta”).
According to the present invention, the carbonyl compound is present in an amount of from 1 to 250 mole %, suitably from 50 to 200 mole % (with respect to the ester).
The hydrolysis is preferably carried out at a temperature of about 140°–150° C. and for a time of 30 to 40 hours.
The hydrolysis may be carried out at atmospheric pressure. Alternatively, the hydrolysis may be carried out at a pressure of up to 10 atmospheres (preferably from 1 to 4 atmospheres).
Suitably, the hydrolysis may be carried out under an inert (e.g. nitrogen) atmosphere.
The hydrolysis may conveniently be carried out in the presence of an initial acid catalyst (e.g. sulphuric acid or a heel of vinyl phosphonic acid) in an amount of from 1 to 10 mole % (with respect to the ester).
The present invention will be illustrated by way of the following examples:
In the examples, “Bisbeta” signifies the bis(beta-chloroethyl) ester of vinyl phosphonic acid and “VPA” signifies vinyl phosphonic acid itself.
A 5 liter flask fitted with stirrer, nitrogen inlet, condenser, thermometer, and addition tube (from peristaltic pump) was charged with BisBeta (5000 g, 21.45 mol) and VPA (231 g, 2.14 mol) and heated to 150° C. A 5% w/w solution of formaldehyde in water was then slowly fed in via the addition tube at a rate of approx 5 cm3/min for 30–40 h. Distilled water was then fed in at the same rate for a further 6 h to remove residual formaldehyde and other volatiles. The final reaction mixture was then cooled to 100° C. and dried under reduced pressure to give VPA (92% by 31P nmr).
A 1 liter flask fitted with stirrer, nitrogen inlet, condenser, thermometer, and addition tube (from peristaltic pump) was charged with BisBeta (500 g, 2.14 mol) and VPA (34.8 g, 0.32 mol) and heated to 150° C. Water was then slowly fed in via the addition tube at a rate of approx. 5 cm3/min for 30 to 40 h.
The final reaction mixture was then cooled to 100° C. and dried under reduced pressure to give VPA (78% by 31P nmr). The main impurities found in the VPA comprised ethylene glycol (shown to be present by 13C nmr).
A 1 liter flask fitted with stirrer, nitrogen inlet, condenser, thermometer, and addition tube (from peristaltic pump) was charged with BisBeta (500 g, 2.14 mol) and VPA (34.8 g, 0.32 mol) and heated to 150° C. Water was then slowly fed in via the addition tube at a rate of approx. 5 cm3/min for 30–40 h. Paraformaldehyde (10 g, 0.33 mol) was then added as a solid and water was added at the same rate as above for a further 4 h. The reaction mixture was shown to be 87% VPA by 31P nmr.
It will be seen that VPA of improved purity was obtained when Example 3 was carried out on the final mixture of Example 2.
A 2 liter flask fitted with stirrer, nitrogen inlet, condenser, thermometer and addition tube (from peristaltic pump) was charged with BisBeta (2000 g, 8.58 mol) and VPA (92.7 g, 0.86 mol) and heated to 150° C. A 15% wt/wt solution of formaldehyde in water was slowly fed via the addition tube at a rate of 0.4 cm3/min for 33 h. Distilled water was then fed in at 1.2 cm3/min for 7 h to remove residual formaldehyde. The final reaction mixture was then cooled to 100° C. and dried under reduced pressure to give VPA (90% by 31P nmr).
BisBeta (1600 kg, 6.86 kmol) and VPA (40 kg, 0.37 kmol) were charged to a 300 gallon reactor, set to condense and distil into a separate receiver. The system was pressurised to 1 bar (g) with nitrogen and maintained at that pressure. The mixture was heated to 140° C. and stirred. Steam (added through a sparge pipe at a rate of 50–70 kg/hr) and formaldehyde (1328 kg, 30% wt/wt; 13.28 kmol) were added, both over a period of 36 hours. The mixture was cooled and water/organics distilled off under reduced pressure to a final distillation temperature of 100° C. On cooling a product of >90% mol purity was obtained.
Number | Date | Country | Kind |
---|---|---|---|
0119885 | Aug 2001 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB02/03573 | 8/2/2002 | WO | 00 | 3/5/2004 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/016319 | 2/27/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4518745 | Engelhardt et al. | May 1985 | A |
Number | Date | Country |
---|---|---|
0 065 739 | Dec 1982 | EP |
WO 92 02524 | Feb 1992 | WO |
Number | Date | Country | |
---|---|---|---|
20040249194 A1 | Dec 2004 | US |