The present disclosure is directed to a process for producing a flexible container with a dispensing fitment and a standup flexible container with a dispensing fitment in particular.
Insertion of rigid fitments into the neck opening of flexible containers requires maintaining alignment of the fitment in the neck opening and closely matching the fitment diameter to be only slightly smaller than the neck diameter. These steps are necessary to prevent wrinkles in the neck seal and achieve a consistent hermetic seal in a production environment.
Conventional installation procedures utilizing (i) a flare opening design of the container neck and/or (ii) a manual procedure for securely placing the rigid fitment in the flexible neck are inefficient, time consuming, and provide unreliable results for ensuring hermetic neck seals during flexible container production.
A need exists for a faster, more efficient fabrication process for inserting and sealing a rigid fitment into the neck of a flexible container. A need further exists for a faster fabrication process with little, or no, risk of defective neck-fitment seals.
The present disclosure is directed to a process. In an embodiment, the process includes (A) providing a flexible container having (i) a body, and (ii) a neck. The process includes (B) positioning a fitment into the neck. The fitment is composed of a polymeric material and includes a top portion and a tapered base. The tapered base extends from the top portion to a base end. The top portion has a top inner diameter (TiD) and the base end has a base end inner diameter (BEiD). The BEiD is less than the top inner diameter, (TiD). The process includes (C) heating the tapered base to a malleable state and (D) inserting a mandrel into the fitment. The mandrel includes an expandable collar. The process includes (E) expanding the expandable collar radially outward to contact an inner surface of the tapered base. The process includes (F) increasing, with the expanding, the inner diameter of the base end to a stretched base end inner diameter (sBEiD). The sBEiD is greater than the BEiD. The process includes (G) sealing, with a pair of opposing seal bars, the tapered base to the neck.
An advantage of the present disclosure is a process for hermetically sealing a fitment to the neck of a flexible container and reducing wrinkling at the fitment seal.
An advantage of the present disclosure is a flexible container with improved seal strength between the fitment and the neck of a flexible container.
An advantage of the present disclosure is the production of a flexible container with a fitment made with a reduced amount of polymeric material.
An advantage of the present disclosure is a process for the production of a flexible container with a thin-wall fitment.
The present disclosure provides a process for producing a flexible container. In an embodiment, the process includes (A) providing a flexible container having (i) a body, and (ii) a neck. The process includes (B) positioning a fitment into the neck, the fitment composed of a polymeric material. The fitment includes a top portion and a tapered base. The tapered base extends from the top portion to a base end. The top portion has a top inner diameter (TiD) and the base end has an base end inner diameter (BEiD) that is less than the top inner diameter, (TiD). The process includes (C) heating the tapered base to a malleable state. The process includes (D) inserting a mandrel into the fitment. The mandrel includes an expandable collar. The process includes (E) expanding the expandable collar radially outward to contact an inner surface of the tapered base, and (F) increasing, with the expanding, the inner diameter of the base end to a stretched base end inner diameter (sBEiD). The sBEiD is greater than the BEiD. The process includes (G) sealing, with a pair of opposing seal bars, the tapered base to the neck.
1. Flexible Container
The process includes providing a flexible container. The flexible container can be made from two, three, four, five, six, or more panels. Each panel is composed of a flexible multilayer film. In an embodiment, the flexible container 10 has a collapsed configuration (as shown in
In an embodiment, the flexible container 10 is made from four panels as shown in
As shown in
When the flexible container 10 is in the collapsed configuration, the flexible container is in a flattened state, or in an otherwise evacuated state. The gusset panels 18, 20 fold inwardly (dotted gusset fold lines 60, 62 of
The four panels 18, 20, 22 and 24 can each be composed of a separate web of film material. The composition and structure for each web of film material can be the same or different. Alternatively, one web of film material may also be used to make all four panels and the top and bottom segments. In a further embodiment, two or more webs can be used to make each panel.
In an embodiment, four webs of film material are provided, one web of film for each respective panel 18, 20, 22, and 24. The process includes sealing edges of each film to the adjacent web of film to form peripheral seals 41 and peripheral tapered seals 40a-40d (40) (
To form the top segment 28 and the bottom segment 26, the four webs of film converge together at the respective end and are sealed together. For instance, the top segment 28 can be defined by extensions of the panels sealed together at the tapered transition section III, and the neck section IV. The top end 44 includes four top panels 28a-28d (
The neck portion can be located at a corner of the body 47, or in one of the four panels. In an embodiment, the neck 30 is positioned at a midpoint of the top segment 28. The neck 30 may (or may not) be sized smaller than a width of the body section II, such that the neck 30 can have an area that is less than a total area of the top segment 28. The location of the neck 30 can be anywhere on the top segment 28 of the container 10.
In an embodiment, the neck is formed from two or more panels. In a further embodiment, the neck 30 is formed from four panels.
In an embodiment, the neck is sized to accommodate a wide-mouth fitment. A “wide-mouth fitment,” is a fitment having a diameter greater than 50 mm.
Although
The four panels of film that form the flexible container 10 extend from the body section II (forming body 47), to the tapered transition section III (forming tapered transition portion 48), to form a neck 30 (in the neck section IV). The four panels of film also extend from the body section II to the bottom section I (forming bottom portion 49). When the flexible container 10 is in the collapsed configuration (
As shown in
Each panel includes a respective bottom face.
The front panel bottom face 26a includes a first line A defined by the inner edge 29a of the first peripheral tapered seal 40a and a second line B defined by the inner edge 29b of the second peripheral tapered seal 40b. The first line A intersects the second line B at an apex point 35a in the bottom seal area 33. The front panel bottom face 26a has a bottom distalmost inner seal point 37a (“BDISP 37a”). The BDISP 37a is located on the inner edge.
The apex point 35a is separated from the BDISP 37a by a distance S from 0 millimeter (mm) to less than 8.0 mm.
In an embodiment, the rear panel bottom face 26c includes an apex point 35c similar to the apex point 35a on the front panel bottom face 26a. The rear panel bottom face 26c includes a first line C defined by the inner edge of the 29c first peripheral tapered seal 40c and a second line D defined by the inner edge 29d of the second peripheral tapered seal 40d. The first line C intersects the second line D at an apex point 35c in the bottom seal area 33. The rear panel bottom face 26c has a bottom distalmost inner seal point 37c (“BDISP 37c”). The BDISP 37c is located on the inner edge. The apex point 35c is separated from the BDISP 37c by a distance T from 0 millimeter (mm) to less than 8.0 mm.
It is understood the following description to the front panel bottom face 26a applies equally to the rear panel bottom face 26c, with reference numerals to the rear panel bottom face 26c shown in adjacent closed parentheses.
In an embodiment, the BDISP 37a (37c) is located where the inner edges 29a (29c) and 29b (29d) intersect. The distance S (distance T) between the BDISP 37a (37c) and the apex point 35a (35c) is 0 mm.
In an embodiment, the inner seal edge diverges from the inner edges 29a, 29b (29c, 29d), to form an inner seal arc 39a (front panel) and inner seal arc 39c (rear panel) as shown in
In an embodiment, apex point 35a (35c) is separated from the BDISP 37a (37c) by the distance S (distance T) which is from greater than 0 mm to less than 6.0 mm.
In an embodiment, the distance S (distance T) from the apex point 35a (35c) to the BDISP 37a (37c) is from greater than 0 mm, or 0.5 mm, or 1.0 mm, or 2.0 mm to 4.0 mm or 5.0 mm or less than 5.5 mm.
In an embodiment, apex point 35a (35c) is separated from the BDISP 37a (37c) by the distance S (distance T), which is from 3.0 mm, or 3.5 mm, or 3.9 mm to 4.0 mm, or 4.5 mm, or 5.0 mm, or 5.2 mm, or 5.3 mm, or 5.5 mm.
In an embodiment, the distal inner seal arc 39a (39c) has a radius of curvature from 0 mm, or greater than 0 mm, or 1.0 mm to 19.0 mm, or 20.0 mm.
In an embodiment, each peripheral tapered seal 40a-40d (outside edge) and an extended line from respective peripheral seal 41 (outside edge) form an angle Z, as shown in
The bottom segment 26 includes a pair of gussets 54 and 56 formed there at, which are essentially extensions of the bottom faces 26a-26d. The gussets 54 and 56 can facilitate the ability of the flexible container 10 to stand upright. These gussets 54 and 56 are formed from excess material from each bottom face 26a-26d that are joined together to form the gussets 54 and 56. The triangular portions of the gussets 54 and 56 comprise two adjacent bottom segment panels sealed together and extending into its respective gusset. For example, adjacent bottom faces 26a and 26d extend beyond the plane of their bottom surface along an intersecting edge and are sealed together to form one side of a first gusset 54. Similarly, adjacent bottom faces 26c and 26d extend beyond the plane of their bottom surface along an intersecting edge and are sealed together to form the other side of the first gusset 54. Likewise, a second gusset 56 is similarly formed from adjacent bottom faces 26a-26b and 26b-26c. The gussets 54 and 56 can contact a portion of the bottom segment 26, where the gussets 54 and 56 can contact bottom faces 26b and 26d covering them, while bottom segment panels 26a and 26c remain exposed at the bottom end 46.
As shown in
The top handle 12 and the bottom handle 14 can comprise up to four plys of film sealed together for a four panel container 10. When more than four panels are used to make the container, the handles 12, 14 can include the same number of panels used to produce the container. Any portion of the handles 12, 14 where all four plys are not completely sealed together by the heat-sealing method, can be adhered together in any appropriate manner, such as by a tack seal to form a fully-sealed multilayer handle. Alternatively, the top handle 12 can be made from as few as a single ply of film from one panel only or can be made from only two plies of film from two panels. The handles 12, 14 can have any suitable shape and generally will take the shape of the film end. For example, typically the web of film has a rectangular shape when unwound, such that its ends have a straight edge. Therefore, the handles 12, 14 would also have a rectangular shape.
Additionally, the bottom handle 14 can contain a handle opening 16 or cutout section therein sized to fit a user's hand, as can be seen in
Furthermore, a portion of the bottom handle 14 attached to the bottom segment 26 can contain a dead machine fold 42 or a score line that provides for the bottom handle 14 to consistently fold in the same direction, as illustrated in
Additionally, as the flexible container 10 is evacuated and less product remains, the bottom handle 14 can continue to provide support to help the flexible container 10 to remain standing upright unsupported and without tipping over. Because the bottom handle 14 is sealed generally along its entire length extending between the pair of gusset panels 18 and 20, it can help to keep the gussets 54 and 56 (
As seen in
A portion of the top handle 12 can extend above the neck 30 and above the top segment 28 when the top handle 12 is extended in a position perpendicular to the top segment 28 and, in particular, the entire upper handle portion 12a can be above the neck wall 50 and the top segment 28. The two pairs of legs 13 and 15 along with the upper handle portion 12a together make up the top handle 12 surrounding a handle opening that allows a user to place their hand therethrough and grasp the upper handle portion 12a of the handle 12.
As with the bottom handle 14, the top handle 12 also can have a dead machine fold 34a, 34b that permits folding in a first direction toward the front side panel 22 and restricts folding in a second direction toward the rear side panel 24, as shown in
When the container 10 is in a rest position, such as when it is standing upright on its bottom segment 26, as shown in
2. Flexible Multilayer Film
The flexible multilayer film may be (i) a coextruded multilayer structure or (ii) a laminate, or (iii) a combination of (i) and (ii). In an embodiment, the flexible multilayer film has at least three layers: a seal layer, an outer layer, and a tie layer between. The tie layer adjoins the seal layer to the outer layer. The flexible multilayer film may include one or more optional inner layers disposed between the seal layer and the outer layer.
Each panel 18, 20, 22, 24 is composed of a flexible multilayer film. In an embodiment, each panel 18, 20, 22, 24 is made from a flexible film having at least one, or at least two, or at least three layers. The flexible film is resilient, flexible, deformable, and pliable. The structure and composition of the flexible film for each panel 18, 20, 22, 24 may be the same or different. For example, each of the panels 18, 20, 22, 24 can be made from a separate web, each web having a unique structure and/or unique composition, finish, or print. Alternatively, each of the panels 18, 20, 22, 24 can be the same structure and the same composition.
The flexible multilayer film is composed of a polymeric material. Nonlimiting examples of suitable polymeric material include olefin-based polymer; propylene-based polymer; ethylene-based polymer; polyamide (such as nylon), ethylene-acrylic acid or ethylene-methacrylic acid and their ionomers with zinc, sodium, lithium, potassium, or magnesium salts; ethylene vinyl acetate (EVA) copolymers; and blends thereof. The flexible multilayer film can be either printable or compatible to receive a pressure sensitive label or other type of label for displaying of indicia on the flexible container 10.
In an embodiment, a flexible multilayer film is provided and includes at least three layers: (i) an outermost layer, (ii) one or more core layers, and (iii) an innermost seal layer. The outermost layer (i) and the innermost seal layer (iii) are surface layers with the one or more core layers (ii) sandwiched between the surface layers. The outermost layer may include (a-i) a HDPE, (b-ii) a propylene-based polymer, or combinations of (a-i) and (b-ii), alone, or with other olefin-based polymers such as low density polyethylene (LDPE). Nonlimiting examples of suitable propylene-based polymers include propylene homopolymer, random propylene/α-olefin copolymer (majority amount propylene with less than 10 weight percent ethylene comonomer), and propylene impact copolymer (heterophasic propylene/ethylene copolymer rubber phase dispersed in a matrix phase).
With the one or more core layers (ii), the number of total layers in the present multilayer film can be from three layers (one core layer), or four layers (two core layers), or five layers (three core layers, or six layers (four core layers), or seven layers (five core layers) to eight layers (six core layers), or nine layers (seven core layers), or ten layers (eight core layers), or eleven layers (nine core layers), or more.
The multilayer film has a thickness from 75 microns, or 100 microns, or 125 microns, or 150 microns to 200 microns, or 250 microns or 300 microns or 350 microns, or 400 microns.
The multilayer can be (i) coextuded, (ii) laminated, or (iii) a combination of (i) and (ii). In an embodiment, the multilayer film is a coextruded multilayer film.
In an embodiment, the outermost layer includes a HDPE. In a further embodiment, the high density polyethylene (HDPE) is a multi-component ethylene-based copolymer (EPE).
In an embodiment, each core layer includes one or more linear or substantially linear ethylene-based polymers or block copolymers having a density from 0.908 g/cc, or 0.912 g/cc, or 0.92 g/cc, or 0.921 g/cc, to 0.925 g/cc, or less than 0.93 g/cc. In an embodiment, each of the one or more core layers includes one or more ethylene/C3-C8 α-olefin copolymers selected from linear low density polyethylene (LLDPE), ultra low density polyethylene (ULDPE), very low density polyethylene (VLDPE), EPE, olefin block copolymer (OBC), plastomers/elastomers, and metallocene LLDPE (m-LLDPE).
In an embodiment, the seal layer includes one or more ethylene-based polymer having a density from 0.86 g/cc, or 0.87 g/cc, or 0.875 g/cc, or 0.88 g/cc, or 0.89 g/cc to 0.90 g/cc, or 0.902 g/cc, or 0.91 g/cc, or 0.92 g/cc. In an embodiment, the seal layer includes one or more ethylene/C3-C8 α-olefin copolymer selected from EPE, plastomers/elastomers, or m-LLDPE.
Each layer in the multilayer film may include one or more optional additives. Nonlimiting examples of suitable additives include stabilizers, slip additives, antiblocking additives, process aids, clarifiers, nucleators, pigments or colorants, fillers and reinforcing agents. It is particularly useful to choose additives and polymeric materials that have suitable organoleptic and or optical properties.
In an embodiment, each panel 18, 20, 22, 24 is a flexible multilayer film having the same structure and the same composition.
In an embodiment, the flexible multilayer film is a coextruded film, the seal layer is composed of an ethylene-based polymer, such as a linear or a substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin monomer such as 1-butene, 1-hexene or 1-octene, having a Tm from 55° C. to 115° C. and a density from 0.865 to 0.925 g/cm3, or from 0.875 to 0.910 g/cm3, or from 0.888 to 0.900 g/cm3 and the outer layer is composed of a polyamide having a Tm from 170° C. to 270° C.
In an embodiment, the flexible multilayer film is a coextruded and/or laminated film having at least five layers, the coextruded film having a seal layer composed of an ethylene-based polymer, such as a linear or substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin comonomer such as 1-butene, 1-hexene or 1-octene, the ethylene-based polymer having a Tm from 55° C. to 115° C. and a density from 0.865 to 0.925 g/cm3, or from 0.875 to 0.910 g/cm3, or from 0.888 to 0.900 g/cm3 and an outermost layer composed of a material selected from LLDPE, OPET (biaxially oriented polyethylene terephthalate), OPP (oriented polypropylene), BOPP (biaxially oriented polypropylene), polyamide, and combinations thereof.
In an embodiment, the flexible multilayer film is a coextruded and/or laminated film having at least seven layers. The seal layer is composed of an ethylene-based polymer, such as a linear or substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin comonomer such as 1-butene, 1-hexene or 1-octene, the ethylene-based polymer having a Tm from 55° C. to 115° C. and density from 0.865 to 0.925 g/cm3, or from 0.875 to 0.910 g/cm3, or from 0.888 to 0.900 g/cm3. The outer layer is composed of a material selected from LLDPE, OPET, OPP, BOPP, polyamide, and combinations thereof.
In an embodiment, the flexible multilayer film is a coextruded (or laminated) five layer film, or a coextruded (or laminated) seven layer film having at least two layers containing an ethylene-based polymer. The ethylene-based polymer may be the same or different in each layer.
In an embodiment, the flexible multilayer film is a coextruded and/or laminated five layer, or a coextruded (or laminated) seven layer film having at least one layer containing a material selected from LLDPE, OPET, OPP, BOPP, and polyamide.
In an embodiment, the flexible multilayer film is a coextruded and/or laminated five layer, or a coextruded (or laminated) seven layer film having at least one layer containing OPET or OPP.
In an embodiment, the flexible multilayer film is a coextruded (or laminated) five layer, or a coextruded (or laminated) seven layer film having at least one layer containing polyamide.
In an embodiment, the flexible multilayer film is a seven-layer coextruded (or laminated) film with a seal layer composed of an ethylene-based polymer, or a linear or substantially linear polymer, or a single-site catalyzed linear or substantially linear polymer of ethylene and an alpha-olefin monomer such as 1-butene, 1-hexene or 1-octene, having a Tm from 90° C. to 106° C. The outer layer is a polyamide having a Tm from 170° C. to 270° C. The film has an inner layer (first inner layer) composed of a second ethylene-based polymer, different than the ethylene-based polymer in the seal layer. The film has an inner layer (second inner layer) composed of a polyamide the same or different to the polyamide in the outer layer. The seven layer film has a thickness from 100 micrometers to 250 micrometers.
In
In an embodiment, the apex point 35a is located above the overseal 64. The apex point 35a is separated from, and does not contact the overseal 64. The BDISP 37a is located above the overseal 64. The BDISP 37a is separated from and does not contact the overseal 64.
In an embodiment, the apex point 35a is located between the BDISP 37a and the overseal 64, wherein the overseal 64 does not contact the apex point 35a and the overseal 64 does not contact the BDISP 37a.
The distance between the apex point 35a to the top edge of the overseal 64 is defined as distance W, shown in
When more than four webs are used to produce the container, the portion 68 of the overseal 64 may be a 4-ply, or a 6-ply, or an 8-ply portion.
In an embodiment, the flexible container 10 has a volume from 0.050 liters (L), or 0.1 L, or 0.15 L, or 0.2 L, or 0.25 L, or 0.5 L, or 0.75 L, or 1.0 L, or 1.5 L, or 2.5 L, or 3 L, or 3.5 L, or 4.0 L, or 4.5 L, or 5.0 L to 6.0 L, or 7.0 L, or 8.0 L, or 9.0 L, or 10.0 L, or 20 L, or 30 L.
The flexible container 10 can be used to store any number of flowable substances therein. In particular, a flowable food product can be stored within the flexible container 10. In one aspect, flowable food products such as salad dressings; sauces; dairy products; mayonnaise; mustard; ketchup; other condiments; syrup; beverages such as water, juice, milk, carbonated beverages, beer, or wine; animal feed; pet feed; and the like can be stored inside of the flexible container 10.
The flexible container 10 is suitable for storage of other flowable substances including, but not limited to, oil, paint, grease, chemicals, suspensions of solids in liquid, and solid particulate matter (powders, grains, granular solids).
The flexible container 10 is suitable for storage of flowable substances with higher viscosity and requiring application of a squeezing force to the container in order to discharge. Nonlimiting examples of such squeezable and flowable substances include grease, butter, margarine, soap, shampoo, animal feed, sauces, and baby food.
3. Fitment
The present process includes positioning, or otherwise inserting, a fitment 70 into the neck 30 of the flexible container 10. The fitment 70 includes a tapered base 72 and a top portion 74, as shown in
The top portion 74 may include threads 75 or other suitable structure for attachment to a closure. Nonlimiting examples of suitable fitments and closures, include, screw cap, flip-top cap, snap cap, liquid or beverage dispensing fitments (stop-cock or thumb plunger), Colder fitment connector, tamper evident pour spout, vertical twist cap, horizontal twist cap, aseptic cap, vitop press, press tap, push on tap, lever cap, conro fitment connector, and other types of removable (and optionally reclosable) closures. The closure and/or fitment 70 may or may not include an expandable collar. In an embodiment, the closure is watertight. In a further embodiment, the closure provides a hermetic seal to the container 10.
The tapered base 72 has a cross sectional shape. The cross sectional shape of the tapered base 72 is selected from ellipse, circle, and regular polygon.
In an embodiment, the cross-sectional shape of the base 72 is an ellipse. An “ellipse,” as used herein, is a plane curve such that the sums of the distances of each point in its periphery from two fixed points, the foci, are equal. The ellipse has a center which is the midpoint of the line segment linking the two foci. The ellipse has a major axis (the longest diameter through the center). The minor axis is the shortest line through the center. The ellipse center is the intersection of the major axis and the minor axis. As used herein, the diameter (d) for the ellipse is the major axis.
In an embodiment, the cross-sectional shape is slightly elliptical, where the ratio of major axis to minor axis is between 1.01 to 1.25.
In an embodiment, the cross-sectional shape for the tapered base 72 is a circle (or is substantially a circle). A “circle,” as used herein, is a closed plane curve consisting of all points at a given distance from a point within it called the center. The radius (r) for the circle is the distance from the center of the circle to any point on the circle. The diameter (d) for the circle is 2r.
The cross-sectional shape of the top portion 74 may be the same or different than the cross-sectional shape of the tapered base 72.
The cross-sectional shape of the tapered base 72 may be circular, slightly elliptical, or regular polygonal. In an embodiment, the cross-sectional shape of the base 72 is circular, or substantially circular, as shown in
The tapered base 72 with a circular or regular polygon cross-sectional shape is distinct from fitments with a canoe-shaped fitment base or fitments with a base having opposing radial fins. In an embodiment, the fitment 70 excludes fitments that include a canoe-shaped base, fitments with a base that has radial fins, fitments with a wing-shaped base, and fitments with an eye-shaped base.
The outer surface of the tapered base 72 may or may not include surface texture. In an embodiment, the outer surface of the tapered base 72 has surface texture. Nonlimiting examples of surface texture include embossment, and a plurality of radial ridges to promote sealing to the inner surface of the neck wall 50.
In an embodiment, the outer surface of tapered base 72 is smooth and does not include surface texture, as shown in
In an embodiment, the diameter of the tapered base 72 may be the same as, less than, or greater than the diameter of the top portion.
The fitment 70 is made from a polymeric material. Nonlimiting examples of suitable polymeric material for the fitment 70 include propylene-based polymer, ethylene-based polymer, HDPE, MDPE, LLDPE or LDPE; ethylene/C4-C8 α-olefin multi-block copolymer, propylene homopolymer, propylene/ethylene copolymer, propylene/α-olefin copolymer, propylene impact copolymer, blends of any of the foregoing polymers, and/or any combination of the foregoing polymers.
As shown in
The tapered base 72 has a taper angle, alpha or “a.”
In an embodiment, the taper angle α is from 5°, or 7°, or 10°, or 15°, or 17° to 20°, or 23°, or 25°, or 27°, or 30°. In a further embodiment, the taper angle is from 8°, or 10° to 12°. In a yet a further embodiment, the taper angle is 10°.
The sidewall of the tapered base has a thickness from 0.5 mm, or 0.75 mm to 1.00 mm, or 1.25 mm.
In an embodiment, the tapered base 72 has one, some, or all of the following properties:
(i) taper angle α from 5°, or 7°, or 10°, or 15°, or 17° to 20°, or 23°, or 25°, or 27°, or 30°; and/or
(ii) a tapered base sidewall with a thickness from 0.5 mm, or 0.75 mm to 1.00 mm, or 1.25 mm.
4. Heating
The process includes heating the tapered base 72 to a malleable state. The term “malleable state,” as used herein, is the softening point of the polymeric material for the tapered base. The tapered base can be heated before being positioned into the neck or after being positioned in the neck.
In an embodiment, the tapered base is heated (or pre-heated) to a malleable state before the mandrel is inserted into the fitment. The fitment 70 is placed in an oven or is placed in a hot zone before the mandrel is placed in the fitment. The oven (or hot zone) heats the tapered base to a malleable state. When inserted into the fitment, the tapered base is in a malleable state.
5. Mandrel
The process includes inserting a mandrel 80 into the fitment 70. The mandrel 80 can be inserted into the fitment 70 before the fitment 70 is positioned into the neck 30, or after the fitment 70 is positioned into the neck 30.
In an embodiment, the fitment 70 is positioned in the neck 30 of the flexible container 10 before the mandrel 80 is inserted into the fitment as shown in
In an embodiment, a heat seal apparatus 77 includes a first pair of opposing seal bars 78a, 78b, a second pair of opposing seal bars 79a, 79b and a mandrel 80, as shown in
The mandrel 80 includes a mandrel base 82, a nosecone 84, and an expandable collar 86, as shown in
A “collar,” as used herein, is a structure that is cylindrical, or substantially cylindrical, in shape. The expandable collar 86 is composed of an elastomeric material. An “elastomeric material,” as used herein, is a material that can be stretched with the application of stress to at least twice its length and, after release of the stress, returns to its approximate original dimensions and shape. The elastomeric material may, or may not, be a vulcanized material. Nonlimiting examples of suitable elastomeric material include ethylene propylene diene monomer terpolymer (EPDM), ethylene propylene (EPM), hydrogenated nitrile butadiene rubber (HNBR), polyacrylic rubber, silicone rubber, fluorosilicone rubber, fluoroelastomers, perfluoro rubber, and any combination of the foregoing.
As configured in the mandrel 80, the expandable collar 86 has an outer surface adapted to contact and support the inner surface of the tapered base 72. The stretch-ability of the elastomeric material from which the expandable collar 86 is made provides the collar 86 with the feature of expandability. The term “collar” and the term “expandable collar” may be used interchangeably.
In an embodiment, the expandable collar 86 is composed of, or is otherwise made from, a silicon rubber.
The mandrel 80 may engage the fitment 70 by way of friction fit. Alternatively, a gap K is present between the outer surface of the fitment 70 and the mandrel 80, as shown in
After the mandrel 80 is inserted into the fitment 70, the pull bar 88 is retracted (shown by Arrow L in
The process includes expanding the expandable collar 86 radially outward to contact an inner surface of the tapered base 72 (and optionally contact the top portion 74). All, or substantially all, of the inner surface of the tapered base 72 is contacted by, or otherwise supported by, the expandable collar 86. Further retraction of the pull bar 88 (Arrow L in
In an embodiment,
In an embodiment, the process includes retracting the pull bar 88 and radially expanding the collar 86 to produce a radially expanded collar with a radially expanded diameter from 1%, or 5%, or 10%, or 15%, or 20%, or 25%, or 30%, or 40%, or 50% to 60%, or 70%, or 75%, or 80%, or 90%, or 100% to 125%, or 150%, or 175%, or 200% greater than the diameter of the expandable collar 86 in the relaxed position. In other words, the length of the diameter for the expanded collar 86 (diameter M or diameter N) is from 1% to 200% greater than the length of diameter V, the diameter of the collar 86 in the relaxed state.
6. Seal Bars
Once the expandable collar 86 is radially expanded, the process includes sealing, with a pair of opposing seal bars, the fitment 70 to the neck 30.
In an embodiment, the process includes first sealing, with a first pair of opposing seal bars in a first orientation, the fitment 70 to the neck 30. The first orientation for the opposing seal bars can be a vertical orientation or a horizontal orientation.
In an embodiment, the process includes second sealing, with a second pair of opposing seal bars in a second orientation, the fitment 70 to the neck 30. The second orientation for the opposing seal bars can be a vertical orientation or a horizontal orientation. The second pair of opposing seal bars are offset 90° from the orientation of the first pair of opposing seal bars.
During the first seal step and the second seal step, the extent of radial expansion for the expandable collar 86 may vary. Nonlimiting examples of conditions that may influence the extent of radial expansion for the expandable collar 86 include (i) heat seal pressure, (ii) heat seal duration, (iii) fitment 70 composition, (iv) tapered base 72 diameter, (v) tapered base 72 wall thickness, and (vi) any combination of (i) through (v). Hence, the degree of compression (squeeze) upon the expandable collar 86 can be varied, or otherwise tailored, so the radial expansion of the expandable collar 86 provides a counter force to match the seal bar pressure. In other words, the extent of radial expansion for the expandable collar 86 (and resultant support force) can be adjusted based on sealing pressure and/or the properties of the fitment 70. Regardless of the extent of expansion, the radially expanded collar 86 advantageously provides a continuous and uniform support surface in contact with the inner surface of the tapered base 72 (and optionally the top portion 74) during heat seal process.
The seal conditions for the first sealing step and the second sealing step may be the same or different. For each sealing step, the heat seal bar pressure between the fitment 70 and the seal bars is from 0.25 bar, or 0.4 bar, or 0.5 bar, or 0.75 bar, or 1.0 bar to 3 bar, or 4 bar, or 6 bar, or 8 bar. The expandable collar 86 is adjustable to provide sufficient support to the fitment 70, allowing the seal pressure to be imparted without distortion of the fitment 70. The seal widths can be from 2 mm, or 4 mm, or 6 mm, or 8 mm, or 10 mm, or 12 mm to 14 mm, or 16 mm, or 18 mm, or 21 mm, or 23 mm, or 25 mm. The seal bars can be made to match the desired seal width.
In an embodiment, the width of the radially expanded collar 86 is equal to or greater than the width of the opposing seal bars.
In an embodiment, the heat seal conditions of the first seal step are the same as the heat seal conditions for the second seal step. The pressure for the second pair of opposing seal bars and the widths of seals are the same as the pressure for the first pair of opposing seal bars.
The two step seal process ensures formation of a weld, or the formation of a heat seal, around the entire outer circumference of the tapered base 72. In an embodiment, the process includes forming a hermetic seal between the neck 30 and the tapered base 72.
In an embodiment, the process includes maintaining the sBEiD during the sealing. The first sealing step and/or the second sealing step are performed while the expandable collar 86 is compressed and expanded radially outward to impinge upon, and increase diameter of tapered base to the length of the stretched base end inner diameter, sBEiD. In this sense, the first sealing step and/or the second sealing step is/are performed while the expanded collar 86 supports, and stretches, the tapered base 72 while it is stretched to the sBEiD. The radially expanded collar 86 supports the tapered base 72 while the tapered base is in its stretched state, the expanded collar preventing deformation of the fitment 70 during the sealing procedure. In a further embodiment, the process includes aligning the opposing seal bars with the radially expanded collar 86. The opposing seal bars contact the neck 30 and fitment tapered base 72 outer surface at the area under which the radially expanded collar 86 contacts and supports the tapered base 72 inner surface. In this way, the contact point between the opposing seal bars and the tapered base 72 outer surface is directly aligned. The fitment 70 undergoes no, or substantially no, deformation during the sealing procedure.
Upon completion of the sealing procedure, the pull bar 88 is extended (shown by Arrow Q in
The flexible container 10 with fitment 70 welded at neck 30 is shown in
The tapered base 72 advantageously eases insertion and positioning of the fitment 70 into the neck 30 such that the outermost fitment surface is parallel to, or substantially parallel to, the film of the open neck. In this way, the tapered wall of the fitment base contributes to positioning the fitment “squarely” in the neck prior to sealing. A “squarely” placed fitment reduces the chance of a poor or leaky neck-base seal. A properly positioned, or “squarely” positioned, base, parallel to the film of the neck, contributes to an even and hermetic neck-base seal. The present process advantageously (i) expands the types of materials that can be used to make the fitment 70, (ii) enables the utilization of thin-wall fitments in flexible containers 10, and (iii) a combination of (i) and (ii). Bound by no particular theory, the ability of the mandrel 80 (i) to prevent deformation of the fitment/base and (ii) simultaneously stretch the thin wall tapered base during sealing, advantageously opens the door to new possibilities in flexible packaging. Polymeric materials prone to cracking or deformation when subjected to conventional fitment seal procedures can now be used in flexible packaging vis-à-vis the present process. The present process also enables the use of thin-wall fitments in flexible packaging. Thin-wall fitments advantageously reduce production costs, reduce material cost, and reduce the weight of the final flexible container.
The present process may comprise two or more embodiments disclosed herein.
The numerical ranges disclosed herein include all values from, and including, the lower value and the upper value. For ranges containing explicit values (e.g., 1, or 2, or 3 to 5, or 6, or 7) any subrange between any two explicit values is included (e.g., 1 to 2; 2 to 6; 5 to 7; 3 to 7; 5 to 6; etc.).
Unless stated to the contrary, implicit from the context, or customary in the art, all parts and percents are based on weight, and all test methods are current as of the filing date of this disclosure.
Clarity is measured in accordance with ASTM-D1746.
The term “composition,” as used herein, refers to a mixture of materials which comprise the composition, as well as reaction products and decomposition products formed from the materials of the composition.
The terms “comprising,” “including,” “having,” and their derivatives, are not intended to exclude the presence of any additional component, step or procedure, whether or not the same is specifically disclosed. In order to avoid any doubt, all compositions claimed through use of the term “comprising” may include any additional additive, adjuvant, or compound, whether polymeric or otherwise, unless stated to the contrary. In contrast, the term, “consisting essentially of” excludes from the scope of any succeeding recitation any other component, step or procedure, excepting those that are not essential to operability. The term “consisting of” excludes any component, step or procedure not specifically delineated or listed.
Density is measured in accordance with ASTM D 792.
An “ethylene-based polymer,” as used herein is a polymer that contains more than 50 mole percent polymerized ethylene monomer (based on the total amount of polymerizable monomers) and, optionally, may contain at least one comonomer.
Haze is measured in accordance with ASTM D1003 (method B) and noting the thickness of the part.
The term “heat seal initiation temperature,” is minimum sealing temperature required to form a seal of significant strength, in this case, 2 lb/in (8.8N/25.4 mm). The seal is performed in a Topwave HT tester with 0.5 seconds dwell time at 2.7 bar (40 psi) seal bar pressure. The sealed specimen is tested in an Instron Tensioner at 10 in/min (4.2 mm/sec or 250 mm/min).
Melt flow rate (MFR) is measured in accordance with ASTM D 1238, Condition 280° C./2.16 kg (g/10 minutes).
Melt index (MI) is measured in accordance with ASTM D 1238, Condition 190° C./2.16 kg (g/10 minutes).
Tm or “melting point” as used herein (also referred to as a melting peak in reference to the shape of the plotted DSC curve) is typically measured by the DSC (Differential Scanning calorimetry) technique for measuring the melting points or peaks of polyolefins, as described in U.S. Pat. No. 5,783,638. It should be noted that many blends comprising two or more polyolefins will have more than one melting point or peak, many individual polyolefins will comprise only one melting point or peak.
An “olefin-based polymer,” as used herein is a polymer that contains more than 50 mole percent polymerized olefin monomer (based on total amount of polymerizable monomers), and optionally, may contain at least one comonomer. Nonlimiting examples of olefin-based polymer include ethylene-based polymer and propylene-based polymer.
A “polymer” is a compound prepared by polymerizing monomers, whether of the same or a different type, that in polymerized form provide the multiple and/or repeating “units” or “mer units” that make up a polymer. The generic term polymer thus embraces the term homopolymer, usually employed to refer to polymers prepared from only one type of monomer, and the term copolymer, usually employed to refer to polymers prepared from at least two types of monomers. It also embraces all forms of copolymer, e.g., random, block, etc. The terms “ethylene/α-olefin polymer” and “propylene/α-olefin polymer” are indicative of copolymer as described above prepared from polymerizing ethylene or propylene respectively and one or more additional, polymerizable α-olefin monomer. It is noted that although a polymer is often referred to as being “made of” one or more specified monomers, “based on” a specified monomer or monomer type, “containing” a specified monomer content, or the like, in this context the term “monomer” is understood to be referring to the polymerized remnant of the specified monomer and not to the unpolymerized species. In general, polymers herein are referred to has being based on “units” that are the polymerized form of a corresponding monomer.
A “propylene-based polymer” is a polymer that contains more than 50 mole percent polymerized propylene monomer (based on the total amount of polymerizable monomers) and, optionally, may contain at least one comonomer.
Some embodiments of the present disclosure will now be described in detail in the following Examples.
1. Production of Flexible Container (No Fitment)
Four panel flexible containers having a neck and a body as shown in
Four panels made from the flexible multilayer film in Table 1 are heat sealed together under the heat seal conditions provided in Table 2 (below) to produce flexible containers. The flexible containers are fabricated by KRW Machinery Inc (Weaverville, N.C.). All heat seals in the flexible containers are made with one strike.
A 38 mm fitment composed of HDPE with a top portion and a tapered base is provided. The wall thickness for the tapered base is 0.5 mm. The tapered base has a taper angle of 10°, in other words, angle α is 10°. A 38 mm diameter mandrel is used to install the fitment on a 3.875 L flexible container. The mandrel includes an expandable collar. The expandable collar is made of Shore A 30+/−5 durometer FDA approved silicone rubber. Applicant discovered that silicone rubber is advantageous because of its heat stability, softness and durability.
Properties for the expandable collar are provided in Table 3 below.
For the 3.875 L flexible container, opposing seal bars each with a length of 41 mm are used. The seal width for each opposing seal bar is 10.2 mm. The seal bar area for each 41 mm seal bar is 0.0004907 m2.
The tapered base of the fitment is heat sealed to the neck of the flexible container using a mandrel with an expandable collar as shown in
Applicant discovered that utilization of the mandrel with expandable collar during the fitment heat seal procedure advantageously enables the use of fitment tapered base having thin-wall structure. Thin-wall or thin-walling is the reduction of the wall thickness for the fitment base.
The mandrel with expandable collar enables greater seal pressure to be applied to the fitment.
Applicant unexpectedly found that the mandrel with expandable collar enables the production of a four-panel flexible container with a hermetically sealed fitment wherein the tapered base wall thickness is from 0.50 mm to 1.25 mm.
It is specifically intended that the present disclosure not be limited to the embodiments and illustrations contained herein, but include modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come with the scope of the following claims.