This application is a national phase filing under 35 USC § 371 from PCT Application serial number PCT/DE2014/000063 filed on Feb. 18, 2014, and claims priority therefrom. This application further claims priority from German Patent Application DE 10 2013 003 303.9 filed on Feb. 28, 2013. PCT Application Number PCT/DE2014/000063 and German Patent Application Number DE 10 2013 003 303.9 are each incorporated herein in their entireties by reference.
The invention relates to a method for producing a molded part using a water-soluble casting mold as well as a material system for the production thereof.
Plastic parts that are produced using known injection-molding methods are characterized by high strengths as well as good surface qualities and low production costs. The same applies to components made of cast concrete, gypsum or other hardening materials. However, the production of corresponding casting molds is relatively expensive, since they require a high degree of precision.
Methods for building objects in layers, for example 3D printing methods, such as rapid prototyping, make it possible to produce objects with a good level of precision quickly and cost-effectively. It would therefore be desirable to use methods of this type to produce casting molds for hardening materials. However, the porosity of the casting mold produced using a layering method has a negative effect on the surface quality as well as on the setting and mold filling behavior of hardening materials.
The problem of breaking a casting out of the mold has also not been satisfactorily solved up to now.
DE 691 25 064 T2 describes a method for casting a product in a mold using complex shapes such as undercuts or cavity configurations. In this method, water-soluble casting mold cores made of a particulate material as well as a water-soluble carbohydrate, which may be dissolved with water after casting, are produced. However, the castable materials do not penetrate the mold, since the latter is not porous on the boundary surface.
DE 195 25 307 A1 discloses a casting core which is produced from a dry substance which is solidified with the aid of a binder. The casting core is dissolved and washed out with the aid of water after a casting is produced. The casting core is produced from dry sand or perlite as well as from disodium phosphate as the water-soluble binder.
DE 10 2005 019 699 B3 describes a method for producing a three-dimensional object from metal salt particles as a casting mold or casting core. For this purpose, the three-dimensional object is used in a layering method made of particles which comprise monovalent or polyvalent, water-soluble and/or alcohol-soluble metal salts.
None of the cited prior-art documents discloses or suggests the present invention.
A crucial disadvantage in using casting molds produced using a powder bed-based layering method is the porosity thereof, which results from the use of a powder material. This porosity in an obstacle to the production of exact and dimensionally accurate castings from hydraulically setting materials.
Another disadvantage of known methods is the ability [sic; disability] to easily and completely separate the molds needed for the casting process from the molded part to be produced. Moreover, absorbent components according to the prior art are not suitable for processing hydraulically bound casting materials.
The object of the invention is to provide a method belonging to the technical field mentioned at the outset, which makes it possible to produce a molded part with the aid of a casting mold produced using a layering method, a precise and dimensionally accurate casting as well as a simple breakout of the molded part from the mold being facilitated, or at least for the purpose of reducing or entirely avoiding the disadvantages of the prior art.
The achievement of the object is defined by the features in Claim 1. According to the invention, a water-soluble casting mold is produced in a first step, using a layering method. In particular, the casting mold is preferably produced using a powder bed-based layering method. The surface of the casting mold is sealed with a water-insoluble material in a second step. A casting of the molded part is subsequently produced by filling the casting mold with a free-flowing, hardening material. After the casting solidifies, the casting mold is dissolved with the aid of an aqueous solution, which may be, in particular, heated.
Due to the sealing with the water-insoluble material, pores which are present in the casting mold may be closed and a possible surface roughness of the casting mold may be smoothed out. As a result, a smooth surface, which facilitates a dimensionally accurate and precise casting, may be produced even in casting molds produced in a powder bed-based layering method. Since the casting mold is made from a water-soluble material, it may be easily and quickly removed from the solidified molded part with the aid of an aqueous solution, it being possible to simultaneously wash off the water-insoluble material used for sealing from the molded part. It was also surprisingly determined that, due to the sealing process, no significant penetration of the surface of the casting mold by the free-flowing, hardening material occurs.
The invention thus advantageously provides complex casting molds, which may be easily, quickly and cost-effectively produced with the aid of 3D printing. Furthermore, not only is it possible to produce complex casting molds with the aid of the casting molds produced according to the invention, but it is also possible to implement undercuts in the casting, due to the way in which the casting mold may be removed after casting.
It was surprising that the washing-off step is easy to carry out in this manner and that the casting mold may be completely removed. Due to the method according to the invention, the component may thus be quickly and completely removed in a cost-effective work step, using small amounts of material, energy and time.
It was furthermore surprising that it was easy to produce the seal and that very good casting results could be achieved. Instead, one would have expected to see a significant penetration of the seal and the casting mold by the casting material and the casting inaccuracies to be anticipated thereby. However, this was not the case in the method steps used in the method according to the invention and with the sealing process selected, and very good casting qualities could be achieved. Therefore, surprisingly good surfaces may be achieved within a wide process window.
Using the method according to the invention and the special combination of materials, it is now possible to avoid the porosity resulting during 3D printing as well as negative and undesirable inaccuracies for a casting. Unexpectedly, very high surface qualities may be achieved with the aid of the method according to the invention, which facilitate a high accuracy in the casting step.
A “water-soluble material” within the meaning of this application is understood to be a material which dissolves completely in the presence of excess water or aqueous solution. Excess is understood to mean that the volume of the water or the aqueous solution is at least equal to or greater than the volume of the material to be dissolved. In particular, the solubility of the water-soluble material is greater than 1 g per liter.
The casting has at least one negative impression of the outer shape of the molded part to be produced. The casting mold produced using the layering method preferably also includes a core which forms an inner shape or a cavity within the molded part to be produced. In particular, the casting mold according to the invention has complex geometric shapes, such as undercuts.
All layering methods known from the prior art may be used as the layering method, for example fused deposition modeling. In this method, the water-soluble material is applied in layers by means of an extruder nozzle which is movable in space. However, a powder bed-based layering method is particularly preferably used, in which a particulate material is applied in thin layers onto a platform, and a computer-controlled print head selectively prints areas with a binder on the basis of a digital data record for the purpose of bonding these areas. The excess particulate material which was not bonded at the end of the method may subsequently be removed from the bonded material and, e.g., reused.
In principle all materials known from the prior art for 3D printing may be used as particulate material, e.g., sand, gypsum, thermoplastics as well as metal, mineral, silicate or ceramic powders. The term “particulate material” used within the scope of this application includes both granular materials and fiber materials, such as cellulose fibers, wood fibers, grass fibers, etc. A water-soluble binder is used as the binder, such as at least a polysaccharide, a protein, a salt, a silicate, a tannin, polyvinyl acetate, polyvinyl alcohol, polyvinylpyrrolidone or a mixture thereof.
The casting mold is preferably cleaned before sealing the surface with the aid of the water-insoluble material. Moreover, the surface of the casting mold may also be mechanically processed, e.g., by grinding, prior to sealing.
“Water-insoluble material” within the meaning of the present application is understood to be a material which has no or only a very slight solubility in water, e.g., less than 1 g per liter. To avoid possible deformations of molded parts produced from a hardening material having a low glass transition temperature when dissolving the casting mold with hot water, very low-melt waxes or fats may be used, in particular.
“Hardening material” in the sense of the present application is understood to be a material which transitions from a free-flowing state to a hardened state by means of a chemical reaction. It is preferably a material in which a polymerization reaction takes place, in particular by means of polycondensation, polyaddition or ionic polymerization. In particular, the hardening material preferably comprises a hydraulically setting material, i.e., a material that has hydroscopic characteristics and stores water as water of crystallization in a crystalline structure, the material hardening due to the formation of a crystalline structure.
The material preferably includes cement-bound materials, zinc phosphate cement, gypsum, calcium sulphate (anhydrite) as well as polyurethanes, epoxy resins, polystyrenes, polyacrylates, polyamides, polyester and/or polyimides as well as biodegradable plastics. It is understood that the hardenable material with which the casting mold is filled comprises the base materials of the hardened material or the monomers of the corresponding polymers. Therefore, for example, [sic; it comprises] an isocyanate as well as a polyol for forming polyurethane. To generate a casting of the molded part, the material is free-flowing, i.e., it has a viscosity which is low enough to allow the casting mold to be filled with the material.
In principle, all systems are suitable which do not require the removal of a solvent in order to solidify. This includes all two-component plastic systems. In one particularly preferred specific embodiment, a fiberglass reinforcement is introduced into a casting mold, and the casting mold is subsequently filled with two-component casting polyurethane. For materials which demonstrate a strong exothermic reaction during hardening, the casting mold may be additionally cooled from the outside in order to avoid melting the water-insoluble material used to seal the surface of the casting mold.
“Aqueous solution” within the meaning of the present invention is understood to be solutions which contain water in a volume proportion of more than 50%, preferably more than 75%. Pure water is particularly preferably used as the aqueous solution, in particular distilled water.
The aqueous solution is particularly preferably heated for dissolving the casting mold, i.e., it has a higher temperature than the typical room temperature of 20° C., e.g., 80° C. In particular, a temperature is selected, which is above the melting temperature of the water-insoluble material used. As a result, the water-insoluble material may be quickly and reliably removed from the casting of the molded part at the same time that the casting mold is dissolved.
The selection of the material used for the production of the water-soluble casting mold as well as the selection of the water-insoluble material preferably take place in such a way that these materials may be easily separated from the aqueous solution after the casting mold has been dissolved and reused individually. For example, the water-insoluble material may be crystallized out after the aqueous solution has cooled, and the water-soluble material of the casting mold may be filtered out of the aqueous solution.
The casting mold is preferably produced in a 3D printing process. It is particularly preferably produced in a power bed-based 3D printing process.
The surface of the casting mold is preferably sealed with the water-insoluble material by immersion in a bath, by spraying it on and/or by brushing it on. The water-insoluble material is preferably liquefied prior to sealing by heating it above the melting temperature. Alternatively, the water-insoluble material may also be dissolved with the aid of a volatile, organic solvent and be applied to the surface of the casting mold as an organic solution, a layer of the water-insoluble material remaining on the surface of the casting mold after the solvent has completely evaporated.
Underpressure or overpressure is preferably applied to the casting mold while it is being filled with the material, and/or it is subjected to a shaking motion or a temperature increase. This makes it possible to ensure that the negative impression of the molded part present in the casting mold is completely filled with the free-flowing, hardening material.
If a cement-bound material is used, it is possible, in particular, to include reinforcements in the casting. These reinforcements may be designed as wire meshes, fiberglass fabric or comparable structures. However, the cement material must be set to a low viscosity for filling the casting mold. Flow improvement additives as well as spherical aggregates or special sands, known from the prior art, are suitable for this purpose. By additionally introducing hollow glass balls, molded parts may be produced from extremely light-weight cement materials, using the method according to the invention.
A reinforcement may, but does not have to, take place. Likewise, other fillers may be added to the material, in particular short fibers or nanoparticles, for the purpose of reinforcing the molded part.
In particular, elastic molded parts may be preferably produced using the method according to the invention. Two-component silicones are particularly suitable for this purpose, due to their comparatively low viscosity.
The casting mold is preferably dissolved by immersing the casting mold in a bath containing the aqueous solution. The dissolution is preferably accelerated by means of movements of the casting mold within the bath or by a temperature increase and/or by applying ultrasound.
The casting mold may be actively moved in the bath, e.g., by shifting it back and forth by hand. Alternatively, the bath may be placed on a rocker, or the aqueous solution may be set into motion with the aid of a mixing device. The temperature increase preferably takes place by means of an external heat source onto which the bath is placed or with the aid of an immersion heating system. The application of ultrasound preferably takes place in a commercially available ultrasonic bath.
The dissolution of the casting mold particularly preferably takes place in an autoclave. Due to the overpressure produced in the autoclave and the high heat of the steam, a casting mold according to the invention and the water-insoluble material used for sealing may be quickly removed without residue from the casting of the molded part.
In particular, a casting polyamide is used as the water-insoluble material. “Casting polyamide” is understood to be a thermoplastic material, which is obtained from caprolactam by ionic polymerization.
Another object of the present invention is to provide a material system for producing water-soluble casting molds, which are used, in particular, in the method according to the invention. The material system includes at least one water-soluble material for building the casting mold in a layering method as well as at least one water-insoluble material for sealing the surface of the casting mold. The water-soluble material comprises at least one particulate material as well as at least one water-soluble binder.
This material system may be used to produce a casting mold in the layering method, which may be easily dissolved in an aqueous solution after generating a casting of the molded part to be produced, both the breakout from the mold and the formation of complex shapes, such as undercuts, or a core being simplified thereby.
The at least one binder preferably comprises an inorganic compound. In particular, the at least one binder preferably comprises sodium and/or potassium silicates. These silicates, which are also known under the name “water glass,” are highly water-soluble and are not at all toxic. The at least one binder may also preferably comprise sheet silicates.
The at least one binder preferably comprises at least one polysaccharide, in particular sucrose or starch, at least one protein, at least one silicate, at least one salt and/or at least one water-soluble polymer, in particular polyvinyl alcohol, polyvinyl acetate or polyvinylpyrrolidone or a mixture thereof.
Polysaccharides may be used as an environmentally compatible and nontoxic binder, in particular by means of recrystallization, e.g., by cooling a previously heated supersaturated solution.
The water-insoluble material preferably comprises wax, at least one fatty acid, at least one water-insoluble polymer, stearyl alcohol and/or cetyl alcohol or a mixture thereof.
Suitable waxes are, for example, animal waxes such as beeswax or plant waxes such as carnauba wax. However, a synthetic wax such as paraffin is preferably used, due to the price.
Another aspect of the present invention relates to a casting mold which is produced from the material system according to the invention. A casting mold of this type may be easily and quickly produced by a layering method, it being possible to produce a precise and dimensionally accurate casting of a molded part by sealing the surface of the casting mold with the water-insoluble material. The casting mold may be subsequently easily and quickly removed by applying an aqueous solution.
Another aspect of the present invention relates to a molded part which is produced by a method according to the invention.
Other advantageous specific embodiments and feature combinations of the invention are derived from the following detailed description and the totality of the patent claims.
In the drawings used to explain the exemplary embodiment:
In principle, identical parts are provided with identical reference numerals in the figures.
Based on a sectional view,
Two ways to seal the surface of a casting mold 1 using a water-insoluble material are shown in
The sealing step is necessary to prevent the casting mold from interacting with the hardening material and to ensure a high surface quality. For example, no water may penetrate the casting mold while it is being filled with concrete, since the loss of water would cause the flowability of the concrete to be lost, and only an unsatisfactory filling of the mold would be achieved thereby. In addition, the seal may help achieve better surface qualities. A chemical reaction between the hardening material and the binder or particulate material of the casting mold may also be prevented.
The filling of the casting mold may be carried out as a pure gravity casting process. No special precautions need to be taken for this purpose. The hardenable material should have a low viscosity, and the design of the casting mold should allow displaced air to escape through the rising level of the material.
Another specific embodiment for dissolving casting mold 1 is shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2013 003 303 | Feb 2013 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/DE2014/000063 | 2/18/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/131388 | 9/4/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3913503 | Becker | Oct 1975 | A |
4247508 | Housholder | Jan 1981 | A |
4575330 | Hull | Mar 1986 | A |
4591402 | Evans et al. | May 1986 | A |
4600733 | Ohashi et al. | Jul 1986 | A |
4665492 | Masters | May 1987 | A |
4669634 | Leroux | Jun 1987 | A |
4711669 | Paul et al. | Dec 1987 | A |
4752352 | Feygin | Jun 1988 | A |
4752498 | Fudim | Jun 1988 | A |
4863538 | Deckard | Sep 1989 | A |
4938816 | Beaman et al. | Jul 1990 | A |
4944817 | Bourell et al. | Jul 1990 | A |
5017753 | Deckard | May 1991 | A |
5031120 | Pomerantz et al. | Jul 1991 | A |
5047182 | Sundback et al. | Sep 1991 | A |
5053090 | Beaman et al. | Oct 1991 | A |
5059266 | Yamane et al. | Oct 1991 | A |
5076869 | Bourell et al. | Dec 1991 | A |
5089186 | Moore | Feb 1992 | A |
5120476 | Scholz | Jun 1992 | A |
5126529 | Weiss et al. | Jun 1992 | A |
5127037 | Bynum | Jun 1992 | A |
5132143 | Deckard | Jul 1992 | A |
5134569 | Masters | Jul 1992 | A |
5136515 | Helinski | Aug 1992 | A |
5140937 | Yamane et al. | Aug 1992 | A |
5147587 | Marcus et al. | Sep 1992 | A |
5149548 | Yamane et al. | Sep 1992 | A |
5155324 | Deckard et al. | Oct 1992 | A |
5156697 | Bourell et al. | Oct 1992 | A |
5182170 | Marcus et al. | Jan 1993 | A |
5204055 | Sachs et al. | Apr 1993 | A |
5216616 | Masters | Jun 1993 | A |
5229209 | Gharapetian et al. | Jul 1993 | A |
5248456 | Evans, Jr. et al. | Aug 1993 | A |
5252264 | Forderhase et al. | Oct 1993 | A |
5263130 | Pomerantz et al. | Nov 1993 | A |
5269982 | Brotz | Dec 1993 | A |
5284695 | Barlow et al. | Feb 1994 | A |
5296062 | Bourell et al. | Mar 1994 | A |
5316580 | Deckard | May 1994 | A |
5324617 | Majima et al. | Jun 1994 | A |
5340656 | Sachs et al. | Aug 1994 | A |
5342919 | Dickens, Jr. et al. | Aug 1994 | A |
5352405 | Beaman et al. | Oct 1994 | A |
5354414 | Feygin | Oct 1994 | A |
5382308 | Bourell et al. | Jan 1995 | A |
5387380 | Cima et al. | Feb 1995 | A |
5398193 | deAngelis | Mar 1995 | A |
5418112 | Mirle et al. | May 1995 | A |
5427722 | Fouts et al. | Jun 1995 | A |
5431967 | Manthiram et al. | Jul 1995 | A |
5433261 | Hinton | Jul 1995 | A |
5482659 | Sauerhoefer | Jan 1996 | A |
5490962 | Cima et al. | Feb 1996 | A |
5503785 | Crump et al. | Apr 1996 | A |
5506607 | Sanders, Jr. et al. | Apr 1996 | A |
5518060 | Cleary et al. | May 1996 | A |
5518680 | Cima et al. | May 1996 | A |
5555176 | Menhennett et al. | Sep 1996 | A |
5573721 | Gillette | Nov 1996 | A |
5589222 | Thometzek et al. | Dec 1996 | A |
5597589 | Deckard | Jan 1997 | A |
5616294 | Deckard | Apr 1997 | A |
5616631 | Kiuchi et al. | Apr 1997 | A |
5637175 | Feygin et al. | Jun 1997 | A |
5639070 | Deckard | Jun 1997 | A |
5639402 | Barlow et al. | Jun 1997 | A |
5647931 | Retallick et al. | Jul 1997 | A |
5658412 | Retallick et al. | Aug 1997 | A |
5665401 | Serbin et al. | Sep 1997 | A |
5717599 | Menhennett et al. | Feb 1998 | A |
5730925 | Mattes et al. | Mar 1998 | A |
5740051 | Sanders, Jr. et al. | Apr 1998 | A |
5747105 | Haubert | May 1998 | A |
5749041 | Lakshminarayan et al. | May 1998 | A |
5753274 | Wilkening et al. | May 1998 | A |
5807437 | Sachs et al. | Sep 1998 | A |
5824250 | Whalen | Oct 1998 | A |
5837960 | Lewis et al. | Nov 1998 | A |
5851465 | Bredt | Dec 1998 | A |
5884688 | Hinton et al. | Mar 1999 | A |
5902441 | Bredt et al. | May 1999 | A |
5902537 | Almquist et al. | May 1999 | A |
5904889 | Serbin et al. | May 1999 | A |
5934343 | Gaylo et al. | Aug 1999 | A |
5940674 | Sachs et al. | Aug 1999 | A |
5943235 | Earl et al. | Aug 1999 | A |
5989476 | Lockard et al. | Nov 1999 | A |
5997795 | Danforth | Dec 1999 | A |
6007318 | Russell | Dec 1999 | A |
6036777 | Sachs | Mar 2000 | A |
6042774 | Wilkening et al. | Mar 2000 | A |
6048188 | Hull et al. | Apr 2000 | A |
6048954 | Barlow et al. | Apr 2000 | A |
6133353 | Bui et al. | Oct 2000 | A |
6146567 | Sachs et al. | Nov 2000 | A |
6147138 | Hochsmann et al. | Nov 2000 | A |
6155331 | Langer et al. | Dec 2000 | A |
6164850 | Speakman | Dec 2000 | A |
6165406 | Jang et al. | Dec 2000 | A |
6169605 | Penn et al. | Jan 2001 | B1 |
6175422 | Penn et al. | Jan 2001 | B1 |
6193922 | Ederer | Feb 2001 | B1 |
6210625 | Matsushita | Apr 2001 | B1 |
6216508 | Matsubara et al. | Apr 2001 | B1 |
6217816 | Tang | Apr 2001 | B1 |
6259962 | Gothait | Jul 2001 | B1 |
6270335 | Leyden et al. | Aug 2001 | B2 |
6305769 | Thayer et al. | Oct 2001 | B1 |
6316060 | Elvidge et al. | Nov 2001 | B1 |
6318418 | Grossmann et al. | Nov 2001 | B1 |
6335052 | Suzuki et al. | Jan 2002 | B1 |
6335097 | Otsuka et al. | Jan 2002 | B1 |
6350495 | Schriener et al. | Feb 2002 | B1 |
6355196 | Kotnis et al. | Mar 2002 | B1 |
6375874 | Russell et al. | Apr 2002 | B1 |
6395811 | Nguyen et al. | May 2002 | B1 |
6401001 | Jang et al. | Jun 2002 | B1 |
6403002 | Van Der Geest | Jun 2002 | B1 |
6405095 | Jang et al. | Jun 2002 | B1 |
6416850 | Bredt et al. | Jul 2002 | B1 |
6423255 | Hoechsmann et al. | Jul 2002 | B1 |
6460979 | Heinzl et al. | Oct 2002 | B1 |
6476122 | Leyden | Nov 2002 | B1 |
6485831 | Fukushima et al. | Nov 2002 | B1 |
6500378 | Smith | Dec 2002 | B1 |
6554600 | Hofmann et al. | Apr 2003 | B1 |
6596224 | Sachs et al. | Jul 2003 | B1 |
6610429 | Bredt et al. | Aug 2003 | B2 |
6616030 | Miller | Sep 2003 | B2 |
6658314 | Gothait | Dec 2003 | B1 |
6672343 | Perret et al. | Jan 2004 | B1 |
6713125 | Sherwood et al. | Mar 2004 | B1 |
6722872 | Swanson et al. | Apr 2004 | B1 |
6733528 | Abe et al. | May 2004 | B2 |
6742456 | Kasperchik et al. | Jun 2004 | B1 |
6764636 | Allanic et al. | Jul 2004 | B1 |
6827988 | Krause et al. | Dec 2004 | B2 |
6830643 | Hayes | Dec 2004 | B1 |
6838035 | Ederer et al. | Jan 2005 | B1 |
6855205 | McQuate et al. | Feb 2005 | B2 |
6896839 | Kubo et al. | May 2005 | B2 |
6972115 | Ballard | Dec 2005 | B1 |
6989115 | Russell et al. | Jan 2006 | B2 |
7004222 | Ederer et al. | Feb 2006 | B2 |
7037382 | Davidson et al. | May 2006 | B2 |
7048530 | Gaillard et al. | May 2006 | B2 |
7049363 | Shen | May 2006 | B2 |
7087109 | Bredt et al. | Aug 2006 | B2 |
7120512 | Kramer et al. | Oct 2006 | B2 |
7137431 | Ederer et al. | Nov 2006 | B2 |
7153463 | Leuterer et al. | Dec 2006 | B2 |
7204684 | Ederer et al. | Apr 2007 | B2 |
7220380 | Farr et al. | May 2007 | B2 |
7291002 | Russell et al. | Nov 2007 | B2 |
7296990 | Devos et al. | Nov 2007 | B2 |
7332537 | Bredt et al. | Feb 2008 | B2 |
7348075 | Farr et al. | Mar 2008 | B2 |
7378052 | Harryson | May 2008 | B2 |
7381360 | Oriakhi et al. | Jun 2008 | B2 |
7387359 | Hernandez et al. | Jun 2008 | B2 |
7402330 | Pfeiffer et al. | Jul 2008 | B2 |
7431987 | Pfeiffer et al. | Oct 2008 | B2 |
7435072 | Collins et al. | Oct 2008 | B2 |
7435368 | Davidson et al. | Oct 2008 | B2 |
7455804 | Patel et al. | Nov 2008 | B2 |
7455805 | Oriakhi et al. | Nov 2008 | B2 |
7497977 | Nielsen et al. | Mar 2009 | B2 |
7531117 | Ederer et al. | May 2009 | B2 |
7550518 | Bredt et al. | Jun 2009 | B2 |
7578958 | Patel et al. | Aug 2009 | B2 |
7597835 | Marsac | Oct 2009 | B2 |
7641461 | Khoshnevis | Jan 2010 | B2 |
7665636 | Ederer et al. | Feb 2010 | B2 |
7722802 | Pfeiffer et al. | May 2010 | B2 |
7807077 | Ederer et al. | May 2010 | B2 |
7736578 | Ederer et al. | Jun 2010 | B2 |
7748971 | Hochsmann et al. | Jul 2010 | B2 |
7767130 | Elsner et al. | Aug 2010 | B2 |
7795349 | Bredt et al. | Sep 2010 | B2 |
7799253 | Höchsmann et al. | Sep 2010 | B2 |
7879393 | Ederer et al. | Feb 2011 | B2 |
7887264 | Naunheimer et al. | Feb 2011 | B2 |
7927539 | Ederer | Apr 2011 | B2 |
8020604 | Hochsmann et al. | Sep 2011 | B2 |
8096262 | Ederer et al. | Jan 2012 | B2 |
8186415 | Marutani et al. | May 2012 | B2 |
8349233 | Ederer et al. | Jan 2013 | B2 |
8506870 | Hochsmann et al. | Aug 2013 | B2 |
8524142 | Unkelmann et al. | Sep 2013 | B2 |
8574485 | Kramer | Nov 2013 | B2 |
8715832 | Ederer et al. | May 2014 | B2 |
8741194 | Ederer et al. | Jun 2014 | B1 |
8911226 | Gunther et al. | Dec 2014 | B2 |
8951033 | Höchsmann et al. | Feb 2015 | B2 |
8956140 | Hartmann | Feb 2015 | B2 |
8956144 | Grasegger et al. | Feb 2015 | B2 |
8992205 | Ederer et al. | Mar 2015 | B2 |
9174391 | Hartmann et al. | Nov 2015 | B2 |
9174392 | Hartmann | Nov 2015 | B2 |
9242413 | Hartmann et al. | Jan 2016 | B2 |
9321934 | Mögele et al. | Apr 2016 | B2 |
9327450 | Hein et al. | May 2016 | B2 |
9333709 | Hartmann | May 2016 | B2 |
9358701 | Gnuchtel et al. | Jun 2016 | B2 |
20010045678 | Kubo et al. | Nov 2001 | A1 |
20010050031 | Bredt et al. | Dec 2001 | A1 |
20020015783 | Harvey | Feb 2002 | A1 |
20020016387 | Shen | Feb 2002 | A1 |
20020026982 | Bredt et al. | Mar 2002 | A1 |
20020079601 | Russell | Jun 2002 | A1 |
20020090410 | Tochimoto et al. | Jul 2002 | A1 |
20020111707 | Li et al. | Aug 2002 | A1 |
20020155254 | McQuate et al. | Oct 2002 | A1 |
20020167100 | Moszner et al. | Nov 2002 | A1 |
20030004599 | Herbak | Jan 2003 | A1 |
20030065400 | Beam et al. | Apr 2003 | A1 |
20030069638 | Barlow et al. | Apr 2003 | A1 |
20030083771 | Schmidt | May 2003 | A1 |
20030113729 | DaQuino et al. | Jun 2003 | A1 |
20030114936 | Sherwood et al. | Jun 2003 | A1 |
20040003738 | Imiolek et al. | Jan 2004 | A1 |
20040012112 | Davidson et al. | Jan 2004 | A1 |
20040025905 | Ederer et al. | Feb 2004 | A1 |
20040026418 | Ederer et al. | Feb 2004 | A1 |
20040035542 | Ederer et al. | Feb 2004 | A1 |
20040036200 | Patel et al. | Feb 2004 | A1 |
20040038009 | Leyden et al. | Feb 2004 | A1 |
20040045941 | Herzog et al. | Mar 2004 | A1 |
20040056378 | Bredt et al. | Mar 2004 | A1 |
20040084814 | Boyd et al. | May 2004 | A1 |
20040094058 | Kasperchik et al. | May 2004 | A1 |
20040104515 | Swanson et al. | Jun 2004 | A1 |
20040112523 | Crom | Jun 2004 | A1 |
20040138336 | Bredt et al. | Jul 2004 | A1 |
20040145088 | Patel et al. | Jul 2004 | A1 |
20040170765 | Ederer et al. | Sep 2004 | A1 |
20040187714 | Napadensky et al. | Sep 2004 | A1 |
20040207123 | Patel et al. | Oct 2004 | A1 |
20040239009 | Collins et al. | Dec 2004 | A1 |
20050003189 | Bredt et al. | Jan 2005 | A1 |
20050017386 | Harrysson | Jan 2005 | A1 |
20050017394 | Hochsmann et al. | Jan 2005 | A1 |
20050046067 | Oriakhi | Mar 2005 | A1 |
20050074511 | Oriakhi et al. | Apr 2005 | A1 |
20050093194 | Oriakhi et al. | May 2005 | A1 |
20050167872 | Ederer et al. | Aug 2005 | A1 |
20050174407 | Johnson et al. | Aug 2005 | A1 |
20050179167 | Hachikian | Aug 2005 | A1 |
20050212163 | Bausinger et al. | Sep 2005 | A1 |
20050218549 | Farr et al. | Oct 2005 | A1 |
20050219942 | Wallgren | Oct 2005 | A1 |
20050280185 | Russell et al. | Dec 2005 | A1 |
20050283136 | Skarda | Dec 2005 | A1 |
20060013659 | Pfeiffer et al. | Jan 2006 | A1 |
20060105102 | Hochsmann et al. | May 2006 | A1 |
20060108090 | Ederer et al. | May 2006 | A1 |
20060159896 | Pfeifer et al. | Jul 2006 | A1 |
20060176346 | Ederer et al. | Aug 2006 | A1 |
20060208388 | Bredt et al. | Sep 2006 | A1 |
20060237159 | Hochsmann | Oct 2006 | A1 |
20060251535 | Pfeifer et al. | Nov 2006 | A1 |
20060254467 | Farr et al. | Nov 2006 | A1 |
20060257579 | Farr et al. | Nov 2006 | A1 |
20070045891 | Martinoni | Mar 2007 | A1 |
20070054143 | Otoshi | Mar 2007 | A1 |
20070057412 | Weiskopf et al. | Mar 2007 | A1 |
20070065397 | Ito et al. | Mar 2007 | A1 |
20070126157 | Bredt | Jun 2007 | A1 |
20070215020 | Miller | Sep 2007 | A1 |
20070238056 | Baumann et al. | Oct 2007 | A1 |
20080001331 | Ederer | Jan 2008 | A1 |
20080018018 | Nielsen et al. | Jan 2008 | A1 |
20080047628 | Davidson et al. | Feb 2008 | A1 |
20080138515 | Williams | Jun 2008 | A1 |
20080187711 | Alam et al. | Aug 2008 | A1 |
20080233302 | Elsner | Sep 2008 | A1 |
20080237933 | Hochsmann et al. | Oct 2008 | A1 |
20080241404 | Allaman et al. | Oct 2008 | A1 |
20080260945 | Ederer et al. | Oct 2008 | A1 |
20080299321 | Ishihara | Dec 2008 | A1 |
20090011066 | Davidson et al. | Jan 2009 | A1 |
20090068376 | Philippi et al. | Mar 2009 | A1 |
20090261497 | Ederer et al. | Oct 2009 | A1 |
20100007062 | Larsson et al. | Jan 2010 | A1 |
20100026743 | Van Thillo et al. | Feb 2010 | A1 |
20100152865 | Jonsson et al. | Jun 2010 | A1 |
20100207288 | Dini | Aug 2010 | A1 |
20100212584 | Ederer et al. | Aug 2010 | A1 |
20100243123 | Ederer et al. | Sep 2010 | A1 |
20100244301 | Ederer et al. | Sep 2010 | A1 |
20100247742 | Shi et al. | Sep 2010 | A1 |
20100272519 | Ederer et al. | Oct 2010 | A1 |
20100279007 | Briselden et al. | Nov 2010 | A1 |
20100291314 | Kashani-Shirazi | Nov 2010 | A1 |
20100323301 | Tang et al. | Dec 2010 | A1 |
20110049739 | Uckelmann et al. | Mar 2011 | A1 |
20110059247 | Kuzusako et al. | Mar 2011 | A1 |
20110177188 | Bredt et al. | Jul 2011 | A1 |
20110223437 | Ederer et al. | Sep 2011 | A1 |
20110308755 | Hochsmann | Dec 2011 | A1 |
20120046779 | Pax et al. | Feb 2012 | A1 |
20120094026 | Ederer et al. | Apr 2012 | A1 |
20120097258 | Hartmann | Apr 2012 | A1 |
20120113439 | Ederer | May 2012 | A1 |
20120126457 | Abe et al. | May 2012 | A1 |
20120189102 | Maurer, Jr. et al. | Jul 2012 | A1 |
20120291701 | Grasegger et al. | Nov 2012 | A1 |
20120329943 | Hicks et al. | Dec 2012 | A1 |
20130000549 | Hartmann et al. | Jan 2013 | A1 |
20130004610 | Hartmann et al. | Jan 2013 | A1 |
20130026680 | Ederer et al. | Jan 2013 | A1 |
20130029001 | Gunther et al. | Jan 2013 | A1 |
20130092082 | Ederer et al. | Apr 2013 | A1 |
20130157193 | Moritani et al. | Jun 2013 | A1 |
20130189434 | Randall et al. | Jul 2013 | A1 |
20130199444 | Hartmann | Aug 2013 | A1 |
20130234355 | Hartmann et al. | Sep 2013 | A1 |
20130302575 | Mogele et al. | Nov 2013 | A1 |
20130313757 | Kashani-Shirazi | Nov 2013 | A1 |
20140048980 | Crump et al. | Feb 2014 | A1 |
20140202381 | Ederer et al. | Jul 2014 | A1 |
20140202382 | Ederer | Jul 2014 | A1 |
20140212677 | Gnuchtel et al. | Jul 2014 | A1 |
20140227123 | Gunster | Aug 2014 | A1 |
20140236339 | Fagan | Aug 2014 | A1 |
20140271961 | Khoshnevis | Sep 2014 | A1 |
20140306379 | Hartmann et al. | Oct 2014 | A1 |
20140322501 | Ederer et al. | Oct 2014 | A1 |
20150042018 | Gunther et al. | Feb 2015 | A1 |
20150069659 | Hartmann | Mar 2015 | A1 |
20150110910 | Hartmann et al. | Apr 2015 | A1 |
20150165574 | Ederer et al. | Jun 2015 | A1 |
20150210822 | Ederer et al. | Jul 2015 | A1 |
20150224718 | Ederer et al. | Aug 2015 | A1 |
20150266238 | Ederer et al. | Sep 2015 | A1 |
20150273572 | Ederer et al. | Oct 2015 | A1 |
20150290881 | Ederer et al. | Oct 2015 | A1 |
20150375418 | Hartmann | Dec 2015 | A1 |
20150375419 | Gunther et al. | Dec 2015 | A1 |
20160001507 | Hartmann et al. | Jan 2016 | A1 |
20160052165 | Hartmann | Feb 2016 | A1 |
20160052166 | Hartmann | Feb 2016 | A1 |
20160318251 | Ederer et al. | Mar 2016 | A1 |
20160107386 | Hartmann et al. | Apr 2016 | A1 |
20160114533 | Grassegger et al. | Apr 2016 | A1 |
20160263828 | Ederer et al. | Sep 2016 | A1 |
20160303762 | Gunther | Oct 2016 | A1 |
20160311167 | Gunther et al. | Oct 2016 | A1 |
20160311210 | Gunther et al. | Oct 2016 | A1 |
20170028630 | Ederer et al. | Feb 2017 | A1 |
20170050378 | Ederer | Feb 2017 | A1 |
20170050387 | Ederer | Feb 2017 | A1 |
20170106595 | Gunther et al. | Apr 2017 | A1 |
20170136524 | Ederer et al. | May 2017 | A1 |
20170151727 | Ederer et al. | Jun 2017 | A1 |
20170157852 | Ederer et al. | Jun 2017 | A1 |
20170182711 | Gunther et al. | Jun 2017 | A1 |
20170197367 | Ederer et al. | Jul 2017 | A1 |
20170210037 | Ederer et al. | Jul 2017 | A1 |
20170217098 | Hartmann et al. | Aug 2017 | A1 |
20170297263 | Ederer et al. | Oct 2017 | A1 |
20170305139 | Hartmann | Oct 2017 | A1 |
20170326693 | Ederer et al. | Nov 2017 | A1 |
20170355137 | Ederer et al. | Dec 2017 | A1 |
20180079133 | Ederer et al. | Mar 2018 | A1 |
20180141271 | Gunther et al. | May 2018 | A1 |
20180141272 | Hartmann et al. | May 2018 | A1 |
20180169758 | Ederer et al. | Jun 2018 | A1 |
20180222082 | Gunther et al. | Aug 2018 | A1 |
20180222174 | Guneter et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
720255 | May 2000 | AU |
101146666 | Mar 2008 | CN |
3221357 | Dec 1983 | DE |
3930750 | Mar 1991 | DE |
4102260 | Jul 1992 | DE |
4305201 | Apr 1994 | DE |
4 325 573 | Feb 1995 | DE |
29506204 | Jun 1995 | DE |
4440397 | Sep 1995 | DE |
19525307 | Jan 1997 | DE |
19530295 | Jan 1997 | DE |
19528215 | Feb 1997 | DE |
29701279 | May 1997 | DE |
19545167 | Jun 1997 | DE |
69125064 | Jul 1997 | DE |
69031808 | Apr 1998 | DE |
19853834 | May 2000 | DE |
69634921 | Dec 2005 | DE |
201 22 639 | Nov 2006 | DE |
102005019699 | Jan 2007 | DE |
10 2006 040 305 | Mar 2007 | DE |
102006029298 | Dec 2007 | DE |
102007040755 | Mar 2009 | DE |
102007047326 | Apr 2009 | DE |
102011053205 | Mar 2013 | DE |
102015006363 | Dec 2016 | DE |
102015008860 | Jan 2017 | DE |
102015011503 | Mar 2017 | DE |
102015011790 | Mar 2017 | DE |
361847 | Apr 1990 | EP |
1415792 | May 2004 | EP |
1457590 | Sep 2004 | EP |
1381504 | Aug 2007 | EP |
1974838 | Oct 2008 | EP |
515824 | Apr 1981 | FR |
2297516 | Aug 1996 | GB |
S62275734 | Nov 1987 | JP |
2003136605 | May 2003 | JP |
2004082206 | Mar 2004 | JP |
2009202451 | Sep 2009 | JP |
2009202451 | Sep 2009 | JP |
9003893 | Apr 1990 | WO |
0140866 | Jun 2001 | WO |
2001078969 | Oct 2001 | WO |
2004014637 | Feb 2004 | WO |
2006100166 | Sep 2006 | WO |
2008049384 | May 2008 | WO |
2008061520 | May 2008 | WO |
2011063786 | Jun 2011 | WO |
2013075696 | May 2013 | WO |
2014090207 | Jun 2014 | WO |
2014166469 | Oct 2014 | WO |
2015078430 | Jun 2015 | WO |
2015081926 | Jun 2015 | WO |
2015085983 | Jun 2015 | WO |
2015090265 | Jun 2015 | WO |
2015090567 | Jun 2015 | WO |
2015096826 | Jul 2015 | WO |
2015149742 | Oct 2015 | WO |
2015180703 | Dec 2015 | WO |
2016019937 | Feb 2016 | WO |
2016019942 | Feb 2016 | WO |
2016058577 | Apr 2016 | WO |
2016095888 | Jun 2016 | WO |
2016101942 | Jun 2016 | WO |
2016146095 | Sep 2016 | WO |
Entry |
---|
US 4,937,420 A, 06/1990, Deckard (withdrawn) |
International Search Report, Application No. PCT/DE2014/000063, dated Jul. 23, 2014. |
International Preliminary Report on Patentability and Written Opinion of the International Search Authority, Application No. PCT/DE2014/000063, dated Sep. 1, 2015. |
Cima et al., “Computer-derived Microstructures by 3D Printing: Bio- and Structural Materials,” SFF Symposium, Austin, TX, 1994. |
Marcus, et al., Solid Freeform Fabrication Proceedings, Sep. 1995, p. 130-133. |
Gebhart, Rapid Prototyping, pp. 118-119, 1996. |
Feature Article—Rapid Tooling—Cast Resin and Sprayed Metal Tooling by Joel Segal, Apr. 2000. |
EOS Operating Manual for Laser Sintering Machine with Brief Summary Feb. 22, 2005. |
Sachs, E., P. Williams, D. Brancazio, M. Cima, and K. Kremmin, Three dimensional printing: Rapid Tooling and Prototypes Directly from a CAD Model. In Proceedings of Manufacturing International 1990 (Atlanta, GA, Mar. 25-28). ASME, New York, 1990, pp. 131-136. |
Sachs et al., “Three-Dimensional Printing: Rapid Tooling and Prototypes Directly from a CAD Model”, Massachusetts Institute of Technology, pp. 143-151, Jan. 1990. |
Williams, “Feasibility Study of Investment Casting Pattern Design by Means of Three Dimensional Printing”, Department of Mechanical Engineering, abstract only; Sep. 25, 2001. |
Armin Scharf, “Erster 3D-Endlosdrucker”, zwomp.de, http://www.zwomp.de/2012/11/06/voxeljet-endlosdrucker/ dated Nov. 6, 2012. |
Voxeljet's VXconcept—Continuous 3D printing for sand casting, You-Tube, Nov. 16, 2011, XP002713379, retrieved from the Internet URL: http://www.youtube.com/watch?v=hgIrNXZjIxU retrieved on Sep. 23, 2013. |
Screen shots of URL: http://www.youtube.com/watch?v=hgIrNXZjIxU taken in approximately 5 second intervals on Nov. 12, 2015. |
Jacobs et al., 2005 SME Technical Paper, title “Are QuickCast Patterns Suitable for Limited Production?” |
European Office Action, EP Application No. 14717982.4 dated Sep. 9, 2017. |
European Office Action, EP Application No. 14717982.4 dated Jul. 9, 2018. |
Number | Date | Country | |
---|---|---|---|
20150375419 A1 | Dec 2015 | US |