The process will be explained by the accompanying drawings, of which
In the illustrated embodiments, silicon is received over the entire interior jacket surface of the cylinder ring (
Heating of the configuration shown in
In the process, in the bed of the particles 6, the silicon melts into the reservoir 3 that is formed from the cavity in contact with the base 2 and penetrates into the porous carbon body 1 through the inside jacket surface of the cylinder ring. The carbon in the body 1 reacts with the penetrated silicon with the formation of silicon carbide. The coating of the base 2 with a layer 4 that consists of boron nitride in this case brings about that after the cooling of the body that is glazed through reaction to form silicon carbide, it can be dissolved easily from the base 2.
In the same way, the configuration that is shown in
The effect is illustrated through the following examples:
A prepreg (impregnated fabric) was produced from a fabric of carbon multifilaments (3 K rovings, i.e., 3000 individual carbon filaments with a surface area-related mass of about 240 g/m2) by impregnation by an aqeous resol. Excess phenol resin was removed by pressing. The fabric was cut into laminar structures of about 500 mm in diameter, and the latter were stiffened with intermediate layers of siliconized paper at about 140° C. in a press under a pressure of about 5 MPa for three hours.
The pressed and stiffened stacks of impregnated fabrics were then carbonized in a furnace under nitrogen as a cover gas at a temperature of up to 900° C. In the process it was heated at a rate of about 4 K/h from 300° C. up to 600° C. to achieve uniform carbonization. After cooling, also under cover gas, the carbonized fabric plates were impregnated again with a phenol resin (Novolak, Bakelite IT 491®), dried and in turn carbonized under cover gas for about 8 hours at 950° C. After cooling to room temperature, it was impregnated again, this time with tar pitch with a softening temperature of about 60° C. according to DIN [German Industrial Standard] 52025. The impregnated fabric plates were carbonized again at about 950° C. for about eight hours. Then, the plates were heated under cover gas to 2200° C., left at this temperature for twenty minutes, and ground in a fly cutter mill with a 5 mm sieve insert after cooling.
The ground material (2,750 g) was then mixed with a mixture that consists of 1,500 g of a phenol resin (resol, Norsophen 1203®, Bakelite Company) and 450 g of a ground (maximum particle size 20 μm) of coal-tar pitch with a softening temperature of 230° C. according to DIN 52025 at room temperature (23° C.) in a Z-arm kneader. The homogenized mixture was completely hardened in a mold in a heatable press at 1.5 MPa (15 bar) and a temperature of 150° C. for two hours. The hardened molded body was removed and carbonized as above at 900° C.
A prepreg (impregnated fabric) was produced from a fabric of carbon multifilaments (3 K rovings, i.e., 3000 individual carbon filaments with a surface-area-related mass of about 240 g/m2) produced by impregnation with an aqueous resol. Excess phenol resin was removed by pressing. The fabric was cut into laminar structures of about 500 mm in diameter, and the latter were hardened with intermediate layers of siliconized paper at about 140° C. in a press under a pressure of about 5 MPa for three hours. The hardened material was ground in a fly cutter mill with a 5 mm sieve insert.
The ground material (2,750 g) was then mixed with a mixture of 1,500 g of a phenol resin (resol, Norsophen 1203®, Bakelite Company) and 450 g of a ground (maximum particle size of 20 μm) coal-tar pitch with a softening temperature of 230° C. according to DIN 52025 at room temperature (23° C.) in a Z-arm kneader. The homogenized mixture was completely hardened in a mold in a heatable press at 1.5 MPa (15 bar) and a temperature of 150° C. for two hours. The hardened molded body was removed and carbonized as above at 900° C.
In each case, 3 molded bodies in the form of cylindrical disks at a height of 36 mm, an inside diameter of 155 mm and an outside diameter of 380 mm, which had been produced according to Examples 1 and 2,
The differently treated molded bodies were cooled; they were completely siliconized according to the selected time, i.e., the remaining percentage by mass of matrix-carbon in the sample was less than 7%.
In these molded bodies, the proportion of carbon fibers that were not attacked in the infiltration with silicon was then determined. In this case, the following was produced as a mean value via the molded bodies examined:
Number | Date | Country | Kind |
---|---|---|---|
10 2006 023 561.4 | May 2006 | DE | national |