The present invention relates to methods of producing a chlorine gas, an aqueous alkali metal hypochlorite solution and liquid chlorine. More specifically, the present invention relates to a method of producing a chlorine gas and liquid chlorine having a lower bromine content than that obtained in the conventional chlor-alkali processes (particularly membrane and mercury based processes).
Conventionally, an electrolysis of an alkali metal chloride solution, typically sodium chloride and potassium chloride solution, denoted also as brine, has been performed for the purpose of producing chlorine, sodium or potassium hydroxide, and hydrogen. Since the raw material in such processes usually contains alkali metal bromides as impurities, chlorine generated therefrom is contaminated with bromine. The bromine impurity in chlorine is less and less tolerated, especially in water treatment applications. This is because, in certain water treatment processes, bromine is at least partially converted to alkali metal bromate which is a known health hazard. Another application which requires chlorine with low bromine content is the production of various chlorinated organic compounds.
There are various approaches to dealing with the bromine contamination of the chlorine product. The first approach is to remove alkali metal bromide from the alkali metal chloride brine. Such an approach is described in numerous prior art documents, for example, U.S. Pat. Nos. 460,370, 2,622,966, 3,371,998, 5,069,884, and 6,428,677, British Patents Nos. 382,512, 526,542, 893,692, and 991,610 and Modern Chlor-Alkali Technology, Volume 7, pp. 157-159, published in 1997.
Another approach is based on the purification of chlorine product, typically by distillation (see, for example, WO 2004/018355) or another process (see European Patent No. 979,671 or US Patent Application No. 2008/0224094).
Yet another approach, described in the U.S. Pat. No. 3,660,261 and WO 2005/068686, involves an oxidation of various bromine species present in brine to alkali metal bromate, which is claimed to result in the production of chlorine with low bromine content.
All the above-described processes are very costly and, in some cases, for example distillation, also energy intensive. There is, therefore, a need to develop a relatively simple and inexpensive process which results in the production of chlorine with low bromine content.
The present invention is directed towards the provision of a method of producing chlorine with low bromine content. The present invention relates to a method for producing a chlorine gas, which method includes the steps of:
The process of the invention comprising the steps described above differs from the all known, conventional prior art processes in that chlorine produced in the electrolyzers is handled separately from the chlorine generated in the treatment of the depleted brine, for example, in the primary dechlorination step (typically performed under vacuum). The flow diagram of a conventional membrane process is shown, for example, in the Handbook of Chlor-Alkali Technology, chapter 6, p. 448 (FIG. 6.5), published in 2005 (now reproduced as
It is believed that, by not combining both sources of chlorine (wherein chlorine removed in steps (a) and (b) is the main source of chlorine in the overall process), the main fraction (or at least a large fraction) of bromine will be contained in the chlorine removed from the depleted brine in step (c). Thus one can obtain a majority of chlorine with a low bromine content and a small fraction of chlorine containing a relatively high concentration of bromine. The latter, contaminated chlorine can be directed to any suitable purification step, for example, distillation, or may be utilized in the production of compounds which do not require high-purity chlorine as a substrate, for example, in the generation of hydrochloric acid or an impure alkali metal hypochlorite.
The chlorine contaminated with bromine, originating from the dechlorination step, preferably is subjected to a purification step in which the gas stream is washed with water or an aqueous waste stream generated in the chlor-alkali plant. Such purification step results in a preferential absorption of bromine in the water/waste stream, thus producing a purer chlorine gas. Examples of the various aqueous waste streams which can be used includes, but are not limited to, the reject brine stream from the sulfate removal process, a purge stream from the iodide removal step, a purge stream from the silica removal step, any other purge stream intended to control the level of impurities in the brine loop, the condensate from the evaporators, the condensate from hydrogen coolers and the regeneration waste stream from the ion-exchange. It is possible to adjust the pH of the water/washing solution in order to improve the absorption of bromine. The washing may be performed in one or more stages. If desired, the waste stream may be recycled until a satisfactory concentration of bromine therein is reached, before directing the waste stream to disposal.
It is also possible to direct contaminated chlorine to disposal. If the latter option is chosen, it is possible to perform the destruction of all residual chlorine and oxychlorine species (such as, for example, chlorate and hypochlorite ions/hypochlorous acid) in the second dechlorination step (i.e. upon addition of the reducing agent and, optionally, hydrochloric acid) and possibly avoid the first dechlorination step altogether. A flow diagram of an embodiment of the process of the present invention is schematically presented in
Without being bound by any particular theory, it is believed that the main sources of elemental bromine are chemical reactions taking place in the depleted brine treatment loop rather than the electrochemical cells. It is further believed that the content of bromine in the main chlorine product can be further minimized by adjusting the pH of the electrolyte (anolyte in the case of the membrane process). While the general operating pH range in the electrolyzers is typically about 3.1 to about 5.5, it is preferred to adjust the pH upward to the range about 3.5 to about 5.5, most preferably about 3.9 to about 5.5. Such pH adjustment can be conveniently achieved by, for example, the addition of hydroxide and/or carbonate to the feed brine stream. The pH of the feed brine streams utilized in the present invention is typically in the range of 8 to 11.
It is beneficial to maintain the temperature of the electrolyte (anolyte in the case of the membrane process) in the range of about 80° to about 90° C.
The novel method of the present invention can be utilized in most conventional chlor-alkali processes (in particular membrane and mercury based processes). A relatively small and inexpensive modification to the existing chlor-alkali plants results in achieving a goal of producing chlorine with low bromine content. If desired, it is possible to combine the process of the present invention with other processes involving removal of alkali metal bromide from brine such as those described, for example, in Modern Chlor-Alkali Technology, Volume 7, pp. 157-159, published in 1997, cited earlier in this patent application.
The testing of the concept of the present invention was carried out in the membrane-based, chlor-alkali plant located in Port Edwards, Wis. This plant operates two product lines, one producing chlorine, sodium hydroxide and hydrogen and the second one producing chlorine, potassium hydroxide and hydrogen. A simplified flow diagram of the chlorine handling system in this plant is presented in
During testing of the concept of the present invention, the content of bromine was frequently monitored in the final chlorine product after the compression step. The time dependence of the bromine content in gaseous chlorine product during testing is graphically presented in
The experiments presented above clearly show that, by separating the chlorine product originating in the primary dechlorination tower from that originating in the electrolyzers, a very significant improvement in the chlorine product purity can be achieved (over 60%). These experiments also show that the anolyte pH has a significant effect on the contribution of bromine impurity (the higher the pH, the higher the content of bromine in chlorine originating in the primary dechlorination tower, thus the lower the contamination of the final chlorine product upon separation of both sources of chlorine). The positive effect of a higher anolyte pH on the purity of chlorine was further confirmed by adjusting the pH in the potassium line electrolyzers upward from 3.6 to 3.8 and measuring the bromine content in the chlorine product originating in the electrolyzers, a decrease of bromine content of nearly 30% was observed.
A further improvement in the separation of the impure chlorine from the pure chlorine can be achieved by additional changes to the chlorine handling system of the embodiment shown in
In summary of this disclosure, the present invention provides a procedure for producing gaseous chlorine having a low bromine content. Modifications are possible within the scope of the invention.
This application is a continuation-in-part of U.S. patent application Ser. No. 13/067,685 filed Jun. 21, 2011, which claims priority under 35 USC 119(e) from US Provisional Application No. 61/436,313 filed Jan. 26, 2011.
Number | Name | Date | Kind |
---|---|---|---|
460370 | Dow | Sep 1891 | A |
2662966 | Lindstaedt et al. | Dec 1952 | A |
3371998 | Schambra | Mar 1968 | A |
3551309 | Dunn, Jr. et al. | Dec 1970 | A |
3660261 | Wright et al. | May 1972 | A |
3864226 | Spitzer | Feb 1975 | A |
5069884 | Filippone et al. | Dec 1991 | A |
6428677 | Bonnick et al. | Aug 2002 | B1 |
7972493 | Davis et al. | Jul 2011 | B2 |
20060027463 | Lavelle et al. | Feb 2006 | A1 |
20080224094 | Ariki et al. | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
19726531 | Dec 1998 | DE |
979671 | Nov 1999 | EP |
382512 | Oct 1932 | GB |
526542 | Sep 1940 | GB |
893692 | Apr 1962 | GB |
991610 | May 1965 | GB |
WO2004018355 | Mar 2004 | WO |
WO2005068686 | Jul 2005 | WO |
Entry |
---|
Modern Chlor-Alkali Technology, vol. 7 (1997) pp. 157-161. |
Handbook of Chlor-Alkali Technology: Fundamentals, vol. 1 (2005) Chapter 6, pp. 446-449. |
Modern Chlor-alkali Technology, vol. 4 (1990), pp. 251-259. |
Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., vol. A6, VCH, 1990, pp. 409-410. |
Characterization of Mercury Emissions at a Chlor-Alkali Plant, Jan. 2002, pp. 14 and 23. |
Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., vol. A6, pp. 462-463. |
Number | Date | Country | |
---|---|---|---|
20120186990 A1 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
61436313 | Jan 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13067685 | Jun 2011 | US |
Child | 13286242 | US |