Claims
- 1. A process for producing a flat heat exchange tube having parallel refrigerant passages in its interior and comprising flat upper and lower walls to which fins are to be joined, and a plurality of reinforcing walls connected between the upper and lower walls, extending longitudinally of the tube and spaced apart from one another by a predetermined distance, using a rolling mill comprising a central work roll and a plurality of planetary work rolls arranged around a portion of the periphery of the central work roll and spaced apart circumferentially thereof, the central work roll or the planetary work rolls being formed with parallel annular grooves in the periphery of the roll, the process comprising rolling a metal sheet blank by the rolling mill and thereby reducing the thickness of the blank to a specified value with the peripheral surface of the central work roll and the peripheral surfaces of the planetary work rolls to form a flat portion serving as at least one of the upper wall and the lower wall and form vertical ridges projecting from the flat portion integrally therewith and providing the reinforcing walls with the annular grooves.
- 2. A process for producing a flat heat exchange tube as defined in claim 1 wherein the rolling mill further comprises a guide shoe between each pair of immediately adjacent planetary work rolls, and means for biasing the guide shoe toward the central work roll.
- 3. A process for producing a flat heat exchange tube as defined in claim 1 wherein a roll formed with parallel annular grooves and parallel shallow annular grooves between each two adjacent annular grooves is used as the central work roll or as each of the planetary work rolls to form heat transfer area increasing low ridges projecting from the flat portion integrally therewith when forming the vertical ridges projecting from the flat portion integrally therewith and providing the reinforcing walls with the annular grooves.
- 4. A process for producing a flat heat exchange tube as defined in claim 1 wherein a roll formed with parallel annular grooves and projections provided at a predetermined interval in each of the grooves and having a height smaller than the depth of the groove is used as the central work roll or as each of the planetary work rolls, whereby when the vertical ridges projecting from the flat portion integrally therewith and providing the reinforcing walls are formed with the annular grooves, a plurality of cutouts are formed at the predetermined interval in the upper edge of each of the ridges for forming communication holes for effecting communication between the parallel refrigerant passages.
- 5. A process for producing a flat heat exchange tube as defined in claim 4 wherein the cutouts are trapezoidal.
- 6. A process for producing a flat heat exchange tube as defined in claim 4 wherein each of the reinforcing walls is 10 to 40% in opening ratio which is the ratio of all the communication holes in the reinforcing wall to the reinforcing wall.
- 7. A process for producing a flat heat exchange tube as defined in claim 4 wherein the communication holes in the plurality of reinforcing walls are in a staggered arrangement when seen from above.
- 8. A process for producing a flat heat exchange tube having parallel refrigerant passages in its interior and comprising flat upper and lower walls to which fins are to be joined, opposite side walls and a plurality of reinforcing walls connected between the upper and lower walls, extending longitudinally of the tube and spaced apart from one another by a predetermined distance, using a rolling mill comprising a central work roll and a plurality of planetary work rolls arranged around a portion of the periphery of the central work roll and spaced apart circumferentially thereof, the central work roll or the planetary work rolls being formed with parallel annular grooves in the periphery of the roll and projections provided at a predetermined interval in each of the annular grooves other than the annular grooves at opposite roll ends and having a height smaller than the depth of the grooves, the process comprising the step of rolling by the mill a metal sheet blank having a greater thickness than the lower wall of the heat exchange tube to be produced and thereby reducing the thickness of the blank to a specified value with the peripheral surface of the central work roll and the peripheral surfaces of the planetary work rolls to form a flat portion serving as the lower wall, cause the annular grooves at the roll ends to form upright portions providing the respective side walls and the other annular grooves to form vertical ridges providing the reinforcing walls, the upright portions and the vertical ridges projecting from the flat portion integrally therewith, and cause the projections in each groove to form cutouts in the upper edge of each of the ridges at the predetermined interval, and the step of placing a metal sheet over all the ridges to provide the upper wall, joining the metal sheet to the upright portions to make the upright portions serve as the opposite side walls, joining the ridges of the lower wall to the upper wall to form the reinforcing walls and closing openings of the cutouts in each ridge with the upper wall to form communication holes for holding the parallel refrigerant passages in communication with one another.
- 9. A process for producing a flat heat exchange tube as defined in claim 8 wherein the annular grooves at the roll ends have a greater width than the other annular grooves and are each further formed at the outer end of the bottom thereof with an annular groove of reduced width, the metal sheet blank having a thick portion at each of opposite side edges thereof to thereby give a greater thickness to the upright portion than to the ridges and form a stepped part at the same level as the upper ends of the ridges at an upper portion of each upright portion and a thin wall projecting upward from the stepped part, the metal sheet being flat and having an outwardly downward slope on the upper surface of each side edge portion thereof, each side edge portion of the metal sheet being placed on the stepped part of the upright portion, followed by joining the upward thin wall of the upright portion to the slope of the metal sheet by inwardly bending the thin wall and fitting the thin wall to the slope.
- 10. A process for producing a flat heat exchange tube as defined in claim 9 wherein the metal sheet has a depending portion integral with each of side edge portions thereof, and the opposite side walls are formed by fitting the depending portions to the respective upright portions of the lower wall on the outer side thereof to form a flat metal tube.
- 11. A process for producing a flat heat exchange tube as defined in claim 10 wherein when the flat portion providing the lower wall is formed by rolling the metal sheet blank, an outwardly upward slope is formed at each side edge lower portion thereof, and the depending portion is given a slightly greater height than the upright portion and has a lower end portion tapered downwardly inward in cross section to fit and join the tapered portion to the slope.
- 12. A process for producing a flat heat exchange tube having parallel refrigerant passages in its interior and comprising flat upper and lower walls to which fins are to be joined, and a plurality of reinforcing walls connected between the upper and lower walls, extending longitudinally of the tube and spaced apart from one another by a predetermined distance, using a rolling mill comprising a central work roll and a plurality of planetary work rolls arranged around a portion of the periphery of the central work roll and spaced apart circumferentially thereof, the central work roll or the planetary work rolls being formed in the periphery of the roll with parallel annular grooves on opposite sides of the midportion of the length thereof symmetrically, projections being formed at a predetermined interval in each of the annular grooves and having a height smaller than the depth of the grooves, the process comprising the step of rolling by the mill a metal sheet blank having a thickness greater than the wall thickness of the heat exchange tube to be produced and thereby reducing the thickness of the blank to a specified tube wall thickness with the peripheral surface of the central work roll and the peripheral surfaces of the planetary work rolls to form a flat portion, cause the annular grooves to form ridges projecting from the flat portion integrally therewith, cause the projections in each groove to form cutouts in the upper edge of each of the ridges at the predetermined interval and bend at least one of opposite sides edges of the blank toward the direction of projection of the ridges, and the step of bending the resulting metal sheet having the cutouts in the ridges like a hairpin at the midportion of width of the plate, butt-joining the side edges of the plate, joining downward ridges to upward ridges to form the reinforcing walls and combining the cutouts of the opposed ridges to form communication holes for holding the parallel refrigerant passages in communication with one another.
- 13. A process for producing a flat heat exchange tube having parallel refrigerant passages in its interior and comprising flat upper and lower walls to which fins are to be joined, and a plurality of reinforcing walls connected between the upper and lower walls, extending longitudinally of the tube and spaced apart from one another by a predetermined distance, using a rolling mill comprising a central work roll and a plurality of planetary work rolls arranged around a portion of the periphery of the central work roll and spaced apart circumferentially thereof, the central work roll or the planetary work rolls being formed in the periphery of the roll with parallel annular grooves on each of opposite sides of the midportion of the length thereof, the annular grooves on one of the opposite sides being displaced from the annular grooves on the other side by 1/2 of groove pitch toward one end of the roll, projections being formed at a predetermined interval in each of the annular grooves and having a height smaller than the depth of the grooves, the process comprising the step of rolling by the mill a metal sheet blank having a thickness greater than the wall thickness of the heat exchange tube to be produced and thereby reducing the thickness of the blank to a specified tube wall thickness with the peripheral surface of the central work roll and the peripheral surfaces of the planetary work rolls to form a flat portion, cause the annular grooves to form ridges projecting from the flat portion integrally therewith, cause the projections in each groove to form cutouts in the upper edge of each of the ridges at the predetermined interval and bend at least one of opposite sides edges of the blank toward the direction of projection of the ridges, and the step of bending the resulting metal sheet having the cutouts in the ridges like a hairpin at the midportion of width of the plate, butt-joining the side edges of the plate, joining the ridges on the resulting upper wall to the flat portion of the resulting lower wall and the ridges on the lower wall to the flat portion of the upper wall alternately to form the reinforcing walls and closing opening of the cutouts in the ridges with the flat portions to form communication holes for holding the parallel refrigerant passages in communication with one another.
- 14. A process for producing a flat heat exchange tube having parallel refrigerant passages in its interior and comprising flat upper and lower walls to which fins are to be joined, and a plurality of reinforcing walls connected between the upper and lower walls, extending longitudinally of the tube and spaced apart from one another by a predetermined distance, using a rolling mill comprising a central work roll and a plurality of planetary work rolls arranged around a portion of the periphery of the central work roll and spaced apart circumferentially thereof, the central work roll or the planetary work rolls being formed in the periphery of the roll with parallel annular grooves on one of opposite sides of the midportion of the length thereof, projections being formed at a predetermined interval in each of the annular grooves and having a height smaller than the depth of the grooves, the process comprising the step of rolling by the mill a metal sheet blank having a thickness greater than the wall thickness of the heat exchange tube to be produced and thereby reducing the thickness of the blank to a specified tube wall thickness with the peripheral surface of the central work roll and the peripheral surfaces of the planetary work rolls to form a flat portion, cause the annular grooves to form ridges projecting from the flat portion integrally therewith, cause the projections in each groove to form cutouts in the upper edge of each of the ridges at the predetermined interval and bend at least one of opposite sides edges of the blank toward the direction of projection of the ridges, and the step of bending the resulting metal sheet having the cutouts in the ridges like a hairpin at the midportion of width of the plate, butt-joining the side edges of the plate, joining the ridges on one of the resulting upper and lower walls to the flat portion of the other wall to form the reinforcing walls and closing opening of the cutouts in the ridges with the flat portion to form communication holes for holding the parallel refrigerant passages in communication with one another.
- 15. A process for producing a flat heat exchange tube in the form of a flat metal tube having parallel refrigerant passages in its interior and comprising flat upper and lower walls to which fins are to be joined, and a plurality of reinforcing walls connected between the upper and lower walls, extending longitudinally of the tube and spaced apart from one another by a predetermined distance, using two rolling mills each comprising a central work roll and a plurality of planetary work rolls arranged around a portion of the periphery of the central work roll and spaced apart circumferentially thereof, the central work roll or the planetary work rolls being formed with parallel annular grooves in the periphery of the roll, projections being formed at a predetermined interval in each of the annular grooves and having a height smaller than the depth of the grooves, the process comprising the step of rolling by each of the mills a metal sheet blank having a thickness greater than the wall thickness of the heat exchange tube to be produced and thereby reducing the thickness of the blank to a specified tube wall thickness with the peripheral surface of the central work roll and the peripheral surfaces of the planetary work rolls to form a flat portion, cause the annular grooves to form ridges projecting from the flat portion integrally therewith, cause the projections in each groove to form cutouts in the upper edge of each of the ridges at the predetermined interval and bend opposite sides edges of the blank toward the direction of projection of the ridges, and the step of joining the resulting two metal sheets as opposed to each other at the side edges to obtain the side walls, make the flat portions of the two metal sheets serve as the upper and lower walls, join downward ridges to upward ridges and thereby form the reinforcing walls, and combine the cutouts of the opposed ridges to form communication holes for holding the parallel refrigerant passages in communication with one another.
- 16. A process for producing a flat heat exchange tube as defined in any one of claims 1 to 15 wherein he plurality of planetary work rolls are so arranged relative to the central work roll that the rolling clearance gradually decreases toward the direction of advance of the metal sheet blank.
- 17. A process for producing a flat heat exchange tube as defined in any one of claims 1 to 15 wherein the metal sheet blank comprises a brazing sheet having a brazing material layer over least one of opposite surfaces thereof.
- 18. A process for producing a flat heat exchange tube as defined in claim 8, 9, 10, 11 or 15 wherein the metal sheet comprises a brazing sheet having a brazing material layer over least one of opposite surfaces thereof.
Priority Claims (1)
Number |
Date |
Country |
Kind |
7-342471 |
Dec 1995 |
JPX |
|
Parent Case Info
This application is a continuation-in-part of application Ser. No. 08/665,310, filed Jun. 17, 1996, which is a division of application Ser. No. 08/283,504, filed Aug. 1, 1994, now U.S. Pat. No. 5,553,377, which is a division of application Ser. No. 08/077,069, filed Jun. 16, 1993, now abandoned.
US Referenced Citations (17)
Foreign Referenced Citations (11)
Number |
Date |
Country |
283937 |
Sep 1988 |
EPX |
0 617 250 A2 |
Sep 1994 |
EPX |
3622926 A1 |
Mar 1987 |
DEX |
3730117 C1 |
Jun 1988 |
DEX |
57-98796 |
Jun 1982 |
JPX |
57-136093 |
Aug 1982 |
JPX |
57-174696 |
Oct 1982 |
JPX |
1-98896 |
Apr 1989 |
JPX |
332280 |
Jul 1930 |
GBX |
2256471 |
Sep 1941 |
GBX |
1468710 |
Mar 1977 |
GBX |
Non-Patent Literature Citations (1)
Entry |
Journal of Heat Treating, vol. 1, No. 6, Dec. 1, 1992, "Development of Satellite Mill and Trial Rolling of Profiled Metal Strip" pp. 789-795. |
Divisions (2)
|
Number |
Date |
Country |
Parent |
283504 |
Aug 1994 |
|
Parent |
77069 |
Jun 1993 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
665310 |
Jun 1996 |
|