1. Field of the Invention
The present invention relates to a process for producing gas hydrate pellets, wherein a gas hydrate is first formed by reacting raw gas with raw water under predetermined temperature and pressure conditions, and subsequently shaping the gas hydrate into pellets by means of a pelletizer.
2. Description of the Related Art
In the past, proposals have been made wherein gas hydrate powder is first shaped into pellets by means of a pelletizer, and subsequently this pelletized gas hydrate is stored in a storage tank on land or in the hold of a ship (see Japanese patent application Kokai publication No. 2002-220353, for example).
Meanwhile, a continuous process for producing gas hydrate pellets as shown in
However, in order to store the gas hydrate at atmospheric pressure, the gas hydrate is cooled to a sub-zero temperature (−20° C., for example) by means of the refrigerating machine 4, dry powder of gas hydrate (a) is then depressurized from the pressure conditions maintained by the refrigerating machine 4 (5.4 MPa) to atmospheric pressure (0.1 MPa). If the powdered gas hydrate (a) is shaped into pellets (p) by means of the pelletizer 6 after conducting the above, there is a problem in that the gas hydrate concentration decreases by 15 wt % to 30 wt %.
In other words, the powdered gas hydrate (a), having been cooled to a sub-zero temperature (−20° C., for example) by means of the refrigerating machine 4, exists in a formation region X; more specifically, the gas hydrate (a) is subject to the conditions labeled A in
In addition, it has been found that if the pellet formation pressure in the pelletizer is increased, gas hydrate grains fracture and the gas decomposition amount increases. If the formation pressure is then suppressed as a result, gaps (e) occur in a pellet (p) between particles of the gas hydrate (a), as shown in
On the other hand, gas hydrate having a small grain size is strongly adhesive, and may cause blockage in the depressurizing device 5 or its surrounding pipes. As a result, there is a problem in that pellets can no longer be continuously produced.
The present invention, being devised in order to solve such problems, has as an object to provide a process for producing gas hydrate pellets wherein gas hydrate decomposition is suppressed during depressurization and pellet formation, and thus gas hydrate concentration is high, and additionally, wherein the gas decomposition amount is low while in storage.
Another object of the present invention is to provide a process for producing gas hydrate pellets that do not readily cause blockage in a depressurization device or its surrounding pipes.
In order to solve the problems described above, the present invention is configured as follows. In the process for producing gas hydrate pellets in accordance with the invention according to claim 1, gas hydrate is first formed by reacting raw gas and raw water under predetermined temperature and pressure conditions. The gas hydrate is then shaped into pellets by means of a pelletizer under conditions of the gas hydrate formation temperature and formation pressure, wherein the gas hydrate used is newly-formed gas hydrate or still-moist gas hydrate that has been partially dehydrated. Subsequently, the shaped pellets are cooled to a sub-zero temperature by means of a refrigerating machine.
The process for producing has gas hydrate pellets in accordance with the invention according to claim 2 involves the following. In the process for producing gas hydrate pellets according to claim 1, after gas hydrate formation, gas hydrate having a gas hydrate concentration between 70 wt % and 95 wt % is shaped into pellets.
The process for producing gas hydrate pellets in accordance with the invention according to claim 3 involves the following. In the process for producing gas hydrate pellets according to claim 1, partially dehydrated gas hydrate having a gas hydrate concentration between 30 wt % and 70 wt % is shaped into pellets.
The process for producing gas hydrate pellets in accordance with the invention according to claim 4 involves the following. Gas hydrate is first formed by reacting raw gas and raw water under predetermined temperature and pressure conditions. The gas hydrate is then shaped into pellets by means of a pelletizer, wherein after forming the gas hydrate, the gas hydrate is cooled to a sub-zero temperature, and subsequently shaped into pellets by means of the pelletizer under conditions of the gas hydration formation pressure.
As described above, the invention according to claim 1 shapes gas hydrate into pellets by means of a pelletizer under conditions of the gas hydrate formation temperature and formation pressure, wherein the gas hydrate used is newly-formed gas hydrate or still-moist gas hydrate that has been partially dehydrated. In so doing, gas hydrate pellets are formed that are tightly compacted and solid, while also being translucent due to the included water in the slight gaps between gas hydrate grains.
Furthermore, these pellets are practically solid, with a smaller specific surface area related to decomposition compared to pellets of the related art having gaps between gas hydrate grains. For this reason, hardly any decomposition occurs when using the depressurizing device to reduce the pressure from a stable formation region (5.4 MPa, for example) to unstable atmospheric pressure (0.1 MPa). Moreover, since only the outer surface of the pellets is exposed to air, the gas decomposition amount during storage is smaller compared to that of the porous gas hydrate pellets of the related art. Thus, the high gas hydrate concentration at the time of gas hydrate formation is maintained at almost the same level.
Furthermore, since in the present invention the pellets are cooled to a sub-zero temperature (−20° C., for example) by means of a refrigerating machine, the water existing between gas hydrate grains freezes, thereby hardening the pellets and making decomposition even more difficult. In addition, since the pellets are tightly compacted with physical dimensions that are much greater than those of the powder, the pellets do not adhere to the depressurizing device or other equipment.
In the invention according to claim 2, newly-formed gas hydrate having a gas hydrate concentration between 70 wt % and 95 wt % is shaped into pellets. In so doing, gas hydrate pellets are formed that are tightly compacted and solid, while also being translucent due to the included water in the slight gaps between gas hydrate grains. Moreover, as described above, these pellets are practically solid, with a smaller specific surface area related to decomposition compared to pellets of the related art having gaps between gas hydrate grains. For this reason, hardly any decomposition occurs even when using the depressurizing device to reduce the pressure from a stable formation region (5.4 MPa, for example) to unstable atmospheric pressure (0.1 MPa).
In the invention according to claim 3, partially dehydrated gas hydrate having a gas hydrate concentration between 30 wt % and 70 wt % is shaped into pellets. In so doing, gas hydrate pellets are formed that are tightly compacted and solid, while also being translucent due to the included water in the slight gaps between gas hydrate grains. Moreover, since the gaps between gas hydrate grains are filled with water, these pellets have a smaller specific surface area related to decomposition compared to pellets of the related art having gaps between gas hydrate grains. For this reason, hardly any decomposition occurs even when using the depressurizing device to reduce the pressure from a stable formation region (5.4 MPa, for example) to unstable atmospheric pressure (0.1 MPa).
In the invention according to claim 4, newly-formed gas hydrate is cooled to a sub-zero temperature, and subsequently, the gas hydrate is shaped into pellets by means of a pelletizer under conditions of the gas hydrate formation pressure. In so doing, reduction in the contained gas ratio of the pellets is suppressed.
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
If the gas hydrate formation herein is conducted at over the freezing point (273 K), then ordinarily the formation pressure becomes a value between 3.5 MPa (273 K) and 8 MPa (284 K). If the temperature conditions for producing pellets under high pressure are taken to include the range of −20° C. to 0° C., then the formation pressure becomes a value between 253 K (2 MPa) and 284 K (8 MPa).
The gas hydrate slurry generated by the first generator 1 is then physically dehydrated by means of the dehydrating machine 2. After being physically dehydrated by means of the dehydrating machine 2, gas hydrate having a gas hydrate concentration between 40 wt % and 50 wt % is fed into the second generator 3. In the second generator 3, raw gas (g) from the first generator 1 is fed and hydrated with unreacted raw water (w), thereby raising the gas hydrate concentration to approximately 90 wt %. Similarly to the first generator 1, reaction heat is removed from the second generator 3 by means of a refrigerating machine not shown in the drawings.
After having been hydrated and dehydrated in the second generator 3, the gas hydrate is then shaped into pellets of arbitrary shape (such as spherical, lenticular, or briquette shapes) and size (approximately 5 mm to 30 mm, for example) by means of the pelletizer 6. Since the gas hydrate that was dehydrated in the second generator 3 still retains some moisture, shaping the gas hydrate into pellets by means of the pelletizer 6 yields pellets (p) having a tightly compacted shape as shown in
Herein, the gas hydrate concentration during pellet formation is preferably in the range of 70 wt % to 95 wt %. If the gas hydrate concentration after formation exceeds 95 wt %, then moisture in the gas hydrate is low, and thus it becomes difficult to yield pellets without gaps. In contrast, if the gas hydrate concentration is less than 70 wt %, then the amount of contained gas is reduced due to the large amount of moisture.
Subsequently, the gas hydrate pellets are cooled to a sub-zero temperature (−20° C., for example) by means of the refrigerating machine 4, thereby causing the water (w) in the gaps between gas hydrate grains (a) to freeze, thus yielding harder pellets. Subsequently, the pellets are depressurized from the gas hydrate formation pressure (5.4 MPa) to atmospheric pressure (0.1 MPa) by means of the depressurizing device 5, and then stored in a storage tank (not shown in the drawings).
An arbitrary pelletizer may be used as the pelletizer 6. However, since the pelletizer is used under high pressure conditions (5.4 MPa, for example), it is preferable to use a briquetting roll pelletizer as shown in
The gas hydrate slurry generated by the first generator 1 is then physically dehydrated by means of the dehydrating machine 2. At this stage, the gas hydrate is in a nearly powder-like state having a gas hydrate concentration between 40 wt % and 50 wt %. However, by using a pelletizer 6 having dehydration functions, the gas hydrate is shaped into pellets while extracting excess water (w), thereby yielding pellets having a gas hydrate concentration between 70 wt % and 80 wt %. The water obtained as a result of dehydration is reverted to raw water (w).
The pellets shaped by the pelletizer 6 are then fed into the second generator 3. In the second generator 3, by feeding in raw gas (g) from the first generator 1 and reacting (i.e., hydrating) again with unreacted raw water (w), the gas hydrate concentration of the pellets becomes approximately 90 wt %. Similarly to the first generator 1, reaction heat is removed from the second generator 3 by means of a refrigerating machine not shown in the drawings.
After having been hydrated and dehydrated in the second generator 3, the gas hydrate pellets are fed into the refrigerating machine 4 and cooled to a sub-zero temperature (−20° C., for example). In so doing, water (w) freezes in the gaps between gas hydrate grains (a), resulting in harder pellets. Subsequently, the pellets are depressurized from the gas hydrate formation pressure (5.4 MPa) to atmospheric pressure (0.1 MPa) by means of the depressurizing device 5, and then stored in a storage tank (not shown in the drawings).
Herein, the gas hydrate concentration of the partially dehydrated gas hydrate (i.e., the gas hydrate dehydrated by the dehydrating machine 2) is preferably in the range of 30 wt % to 70 wt %.
The gas hydrate slurry generated in the first generator 1 is then physically dehydrated by means of the dehydrating machine 2. At this stage, the gas hydrate is in a nearly powder-like state having a gas hydrate concentration between 40 wt % and 50 wt %. The gas hydrate is then fed into the second generator 3. In the second generator 3, raw gas (g) from the first generator 1 is fed and hydrated with unreacted raw water (w), thereby raising the gas hydrate concentration to approximately 90 wt %. Similarly to the first generator 1, reaction heat is removed from the second generator 3 by means of a refrigerating machine not shown in the drawings.
After having been hydrated and dehydrated in the second generator 3, the gas hydrate is cooled to a sub-zero temperature (−20° C., for example) by means of the refrigerating machine 4. After being cooled to a sub-zero temperature (−20° C., for example) by means of the refrigerating machine 4, the gas hydrate is then shaped into pellets of arbitrary shape (such as spherical, lenticular, or briquette shapes) and size (approximately 5 mm to 30 mm, for example) by means of the pelletizer 6.
Subsequently, the gas hydrate pellets are depressurized from the gas hydrate formation pressure (5.4 MPa) to atmospheric pressure (0.1 MPa) by means of the depressurizing device 5, and then stored in a storage tank (not shown in the drawings).
As described above, the gas hydrate is cooled to a sub-zero temperature and subsequently pelletized by means of the pelletizer 6 before being released to atmospheric pressure. In so doing, harder pellets can be obtained, and thus reduction in the rate of contained gas in the gas hydrate pellets is suppressed.
In the present embodiment, an arbitrary pelletizer may be used as the pelletizer 6. However, since the pelletizer is used under the high pressure formation conditions (5.4 MPa, for example), it is preferable to use a briquetting roll pelletizer as shown in
In contrast, in the related art, the gas hydrate concentration after depressurization (point H) is 76 wt %, the gas hydrate concentration after shaping (point I) is 63 wt %, and the gas hydrate concentration after storage (point J) is 52 wt %. Thus it can be seen that gas hydrate concentrations in the present invention are significantly higher than those of the related art.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2006/306746 | 3/30/2008 | WO | 00 | 9/30/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/116456 | 10/18/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5536893 | Gudmundsson | Jul 1996 | A |
6149951 | Bee et al. | Nov 2000 | A |
20050059846 | Kohda et al. | Mar 2005 | A1 |
20070100178 | Carstens et al. | May 2007 | A1 |
20080103343 | Balczewski | May 2008 | A1 |
20090062579 | Nazari et al. | Mar 2009 | A1 |
20090287028 | Iwasaki et al. | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
2001-342473 | Dec 2001 | JP |
2002-220353 | Aug 2002 | JP |
2004-067992 | Mar 2004 | JP |
2005-263675 | Sep 2005 | JP |
2006-052261 | Feb 2006 | JP |
2006-104256 | Apr 2006 | JP |
2006-104258 | Apr 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20090247797 A1 | Oct 2009 | US |